
BCL: a compositional contract language for
embedded systems

Orlando Ferrante∗, Roberto Passerone∗†, Alberto Ferrari∗, Leonardo Mangeruca∗, Christos Sofronis∗
∗Advanced Laboratory on Embedded Systems S.r.l., Via Barberini 50, Rome, Italy – e-mail: first.last@utsce.utc.com

†DISI, University of Trento, Italy – e-mail: first.last@unitn.it

Abstract—The design of large scale complex systems demands
the ability to correctly specify and verify as early as possible in
the design cycle the interaction of the different components that
ensure that the global level requirements are satisfied. We address
this issue using an approach based on the notion of contract.
In particular, we propose a graphical and text-based language
for requirement definition that allows designers to incrementally
and hierarchically construct contract specifications for system
components by composing a set of simple and intuitive patterns.
The patterns have a formal semantics, and are implemented
as monitor components in the Simulink framework for run-
time verification. The contracts are simulated together with the
components to verify both satisfaction and compatibility. A cruise
control case study demonstrates the effectiveness of the approach.

I. INTRODUCTION

The verification of complex and large scale systems, such
as an airplane or an automobile, is becoming a primary concern
in the industry. Of particular importance when integrating
this kind of systems is the ability to correctly specify and
verify as early as possible in the design cycle the interaction
of the different components that ensure that the global level
requirements are satisfied. The current practice is based on
flowing of requirements written in natural languages, to/from
different companies, and verification is typically done locally
with only partial information of the other parts of the system,
subject to considerable interpretation. The integration of a
system wide model is therefore very partial and covers only
few aspects with limited capability to perform a cross-company
verification.

In this paper, we address the issue of requirement definition
and their verification in the context of a distributed system
using a simulation infrastructure. Because of the distributed na-
ture of the design and of the organization, which is fragmented
in several companies that cooperate to reach the final result, it
is essential to provide a precise specification of the properties
that each component should satisfy, and the assurance that
those properties together are sufficient to guarantee the require-
ments. We thus base our requirement capture methodology on
the notion of contract, which favors the definition of a correct
interaction mechanism by making both the assumptions and the
guarantees of a component explicit. Contracts are abstractions
of system components which express their desired properties,
as well as their correct context of use, therefore clearly
separating the responsibilities of the different suppliers and the
system integrator. Moreover, contracts can be made available
early in the design cycle, enabling concurrent independent
implementability [1] and system verification. To simplify their

correct definition, we introduce a text-based and a graphical-
based pattern language that makes it easy for the designer to
visualize and compose different requirements. Executable ver-
sions of the contracts, which are automatically generated from
the specification, are embedded in the simulation framework
in the form of monitor components that continuously interact
with the system to verify that the history of their inputs and
outputs is consistent with the specification. At the end of the
simulation, designers are able to check for any violation of the
system properties, and take appropriate corrective actions.

II. RELATED WORK

The definition of a user-friendly and semantically pre-
cise language is considered a key aspect for the successful
application of contract-based methodologies in the industrial
context. Lee and Sokolsky propose a graphical language for
the description of temporal formulae [2]. Even though this
language supports a great level of expressiveness, it misses
all the user-level facilities that augment its usability. In the
SPEEDS European Project, a pattern-based language called
Contract Specification Language (CSL) is formalized [3].
This language provides the user a number of parameterizable
concepts (patterns), which are translated into the underlying
SPEEDS HRC model [4]. However, the notion of time (or even
logical step) is not explicitly part of the language, instead CSL
inherits the implicit time defined by the basic SPEEDS HRC
semantics. The Requirement Specification Language [3] is a
CSL-based pattern language that provides additional support
for the composition of patterns. However, RSL does not pro-
vide the capability of specifying liveness-based requirements.
Othello is another contract specification language, based on a
synchronous hybrid temporal logic [5], focusing on building a
formal proof system for contracts. While supported by a set of
analysis tools, the language is not oriented towards run-time
verification, which is an essential feature for approaching large
systems for which formal verification is impractical. Moreover,
to make the generation of proof obligations feasible, the con-
tract hierarchy is limited to following the component hierarchy.
In this paper, we overcome these limitations and propose a
textual and graphical language for the specification of contracts
called BCL. Contracts can be developed independently of
the component structure. However, our implementation in
Matlab/Simulink allows the designer to mix the contract and
the component definitions in the same framework, naturally
extending the traditional component only approach.

Formal verification methods make use of analytical analysis
of the model to establish whether a property is true under
all possible conditions and input patterns. Passerone et al.

describe the process from a theoretical point of view, and
highlight the similarities between verification and synthesis [6].
Quinton et al. have developed a hierarchical approach that
deals with the problem of checking contract dominance [7].
Later, Raclet et al. have developed a theory of contracts based
on modal specifications implemented in the InterSMV toolset,
dedicated to checking dominance and refinement between con-
tracts [8]. More recently, contract-based specification methods
were extended to timed models by David et al. [9]. The use
of formal methods in our context is however limited, because
they are generally computationally complex, and are unable to
handle the large state space found in typical systems. Secondly,
and more importantly, formal methods are not yet able to
integrate components for which a formal model does not exist
(because, for instance, they are only available as shared binary
libraries). For this reason, our approach is oriented towards
semi-formal simulation-based methods. Monitor techniques,
or observers, have been used extensively in system design
through simulation. In our previous work [10] we discuss these
techniques [11], [12], [13], [14], [15] and address the problem
of asynchronous interaction. In this paper, instead, we focus
on the language issues. In particular, we discuss the specifi-
cation of formal requirements using a pattern based language.
The structured and formal nature of the patterns allows for
efficiently synthesizing monitors, reducing the complexity of
the monitoring problem.

III. MOTIVATIONAL EXAMPLE

In this section we describe a design scenario that will
be used throughout the rest of the paper as a case study
to show both contract authoring and contract verification.
The application is an embedded system that regulates the
speed of a vehicle based on a set of commands provided
by the user. We consider a modified version of the model
proposed by Aldrich [16]. The top level view of the system,
modeled in Matlab/Simulink, is shown in Figure 1. The system

Fig. 1. Cruise control system top level view in Matlab/Simulink

is composed of a discrete time controller, a model of the
vehicle dynamics and a speed sensor. The top level has
as input the acceleration and brake pedal pressures (signals
ACC PEDAL PERC and BRAKE PEDAL PERC) in per-
cent, the desired cruise speed (signal CRUISE SPEED) and
two additional Boolean inputs representing the status of the
ignition key (KEY ON) and the activation status of the cruise
control (CC ON). The system outputs the speed of the car

(SPEED, measured in miles per hour). The Controller acts
on the speed of the car by modulating the aperture of the
engine throttle (signal Throttle cmd, with values between 0
and 4000). When the cruise control is active, the aperture
value is automatically computed to meet the cruise speed
requirements; otherwise it is directly regulated by the pressure
of the acceleration pedal. The Vehicle Dynamics mimics the
behavior of the vehicle using discretized integral equations that
compute the speed as a function of the controls and of the
profile of the resistance of the road, expressed as a percentage
value (input LOAD PERC). Finally, the Speed Sensor models
the speed measuring process taking into account the presence
of possible errors due to uncertainty. Several requirements
can be expressed for this system. Table I lists some of the
natural language properties that we would want to verify,
separated into assumptions and guarantees, and assigned to
the individual components of the system or to the system as
whole. For instance, requirements r1 and r5 represent bound-

Id Requirement A/G Comp.
r1 Once the driver turns on the car, she will

eventually turn it off
A System

r2 A throttle aperture command corresponds
to a movement of the car

A Control

r3 A brake command disengages the cruise
control within 3 seconds

G Control

r4 When the cruise control is on, the desired
speed is reached with a maximum error of
5 mph within 10 seconds

G System

r5 Road slope corresponds to a resistance
value between 0 and 30%

A System

r6 Positive brake pressure corresponds to re-
duction in speed

G Dynamics

r7 Sensed speed is equal to real speed with a
maximum error of 5 mph

G Sensor

r8 Vehicle speed is always between 0 and 250
mph

A Sensor

r9 Brake pedal pressure grows at a maximum
rate of 50% per second

A Dynamics

TABLE I. NATURAL LANGUAGE REQUIREMENTS AS ASSUMPTIONS
AND GUARANTEES FOR THE CRUISE CONTROL

ary conditions for the correct use of the cruise control system,
while requirements r3 and r4 express performance properties.
Certain consistency properties can also be expressed, as for
requirement r6.

IV. BLOCK-BASED CONTRACT LANGUAGE

The specification of the system starts from a set of informal
requirements which are formalized as contracts, expressed
using either a graphical block-based or text-based pattern
language. In brief, a contract C = (A,G) is a specification of a
component that defines the properties G that a component must
be able to guarantee, and the context A or the assumptions
under which the guarantee must be established [17], [3].
This assumption on the environment is what distinguishes a
contract model from a traditional component model. When
the assumptions are not satisfied, a component is free to
behave as desired, potentially violating its own guarantees. The
availability of the pair of specifications C = (A,G) opens up
the possibility for checking conditions which are not limited
to property checking. In particular, we are interested in two
essential aspects:

• Satisfaction: the verification that a component satisfies
its contract, i.e., that when placed in a context that

meets the assumptions A, the component is able to
guarantee the properties in G.

• Compatibility: the verification that components work
well in combination, i.e., that the guarantees of one
are able to meet the assumptions of the other, and
vice-versa.

Our approach to contract formalization uses a language
based on blocks which allows the user to specify contracts
using a high level abstraction mechanism. We call this lan-
guage Block-based Contract Language, or BCL. The lan-
guage consists of a set of blocks that can be seen either as
standard parameterizable elements with specific semantics or
as operators. The former are called patterns, and represent
high-level parameterizable requirements. In the remainder of
this section we present the structure of the language and
express its semantics in LTL. A pattern is a structured and
formalized sentence containing free uninterpreted expressions,
to be filled out by the designer. A pattern can be atomic
(part of a predefined library), or composite, obtained by
composition of other patterns using a set of operators. The
actual assertions that constitute assumptions and guarantees
of contracts are simply instantiations of patterns which bind
a concrete expression to each free expression of the pattern.
Each pattern is composed of a condition, which restricts the
values of the signals, and of a temporal specification, which
defines when the condition must be true. On top of this, we
use quantification and pattern composition to hierarchically
construct more complex assertions out of the basic ones, in
a layered fashion. We review these aspects in the rest of this
section. The condition of a pattern can be either the occurrence
of an event or a boolean expression built on signal values. An
event represents a condition that happens at a given instant and
does not carry any value: it may be present or absent. Boolean
expressions are conditions that can be true or false at every
time instant. The patterns [E] happens and [C] holds constrain
the event E to occur and the boolean expression C to be
true, respectively. Two more patterns are used as implications:
Everytime [E] then [C] and Everytime [E] then [E2] assert
that whenever event E occurs, the expression C is true or
event E2 occurs, respectively. The expressions E and C are
called event and condition expressions. A condition expression
is built on top of the model input and output signals using
assertions, relations and logical connectives. These elements
can be expressed either textually, as operators, or as blocks in
a graphical format. Each block takes as input the operands of
the operator, and provides as output the corresponding result,
which can be used as input of another block. This way, one
can graphically construct complex expressions. Every signal x
can be evaluated at time instant k with the expression x[k],
which form the basic terms of the expressions. A complete
expression is then built using the operators according to the
following grammar:

t := x[k]

r := t1 = t2 | t1 < t2 | TRUE(x[k]) | FALSE(x[k])
C := r | ∼ r | r1 ∧ r2 | r1 ∨ r2,

where the semantics of each operator is derived from its
conventional mathematical meaning. To simplify the specifi-
cation, the usual derived relational operators (6=, > and ≥)
and connectives (∨, →, ⇐⇒) are also provided. An event

expression is constructed from signals by identifying the oc-
currences of specific conditions. In particular, one can turn any
boolean expression C into an event, using the operator ev(C).
A timeout event identifies a logical event that is present when a
counting process reaches a given threshold. The timeout block
provides a native counting functionality with an input signal
that represents the start counting signal and an output signal
that represent the timeout event. The textual representation of
a timeout event that has a starting event E and a timeout
of N steps is timeout(E; N). Signal condition blocks allow
for capturing the change of value of a signal. A rising edge
condition takes as inputs a signal u and a reference value v.
The event is present if the conditions u[k−1] < v and u[k] ≥ v
are verified. The textual representation of this event is re(u, v).
A falling edge condition is defined dually, and represented as
fe(u, v). Rising or falling edge signal condition blocks can be
combined using the logical operators, with the exception of
negation, to construct more complex situations. In particular,
we natively provide the rising or falling edge condition as
rfe(u, v). Temporal constraints are used to identify the safety
or liveness nature of the specification. Each constraint takes
as input a portion of assertion, which we identify with the
symbol φ, and defines an interval over which φ must hold.
The simplest patterns refer to the validity of the φ assertion in
the time interval that goes from the current time to indefinitely
in the future. In particular,

• [φ] always represents a safety constraint on φ that
imposes to the formula be true at every time instant.
Formally, the specification specifies that for each time
instant k, φ[k] is true.

• [φ] infinitely often constrains the input φ to be true
infinitely often. This means that for every time instant
k, there exists a time instant j ≥ k such that φ[j] is
true.

• [φ] eventually constrains the formula φ to be true at
some time instant in the future. The specification is
satisfied if there exists a time instant k such that φ[k]
is true.

Patterns are also provided in which it is possible to specify
a defined time interval I. An interval specification identifies
a set of time instants delimited by a start event and an end
event. Intervals may be open or closed at both ends obtaining
four possible combinations. Formally, an interval is the set
of time instants between the start event and the end event
each defined using one of the event blocks described in the
previous paragraphs. As an examples of interval specifications
consider the interval specification expression [re(x,1), fe(x,1)]
that formalizes an interval that starts when signal x takes
value 1 with a positive derivative and ends when it assumes
value 1 with a negative derivative. As an example of pattern
that uses the interval specifications consider [φ] during [I]
constrains φ to be true during the time instants identified by
the interval. The formula evaluates to true if, at every k-th
time instant, k 6∈ I or k ∈ I and φ[k] is true. The patterns
and the operators seen so far are already sufficient to model a
large variety of requirements. In particular, we are interested
in formalizing the requirements listed in Table I. The act of
formalization accomplishes various goals. One is to convey the
intent of the natural language requirements unambiguously.

Another is to express the requirements in a form that is
analyzable and/or executable by tools, to make an efficient
use of the specification. And finally, formalization helps the
designer refine the requirements by making them more precise.
Patterns are particularly well suited for this, since their pre-
defined structure requires that certain templates be followed
that include the necessary information. Table II shows the
formalization of the requirements for our cruise control system.
Here, the der operator is used to compute the first derivative of

Id Formalization A/G Comp.
r1 [KEY ON] implies [KEY OFF] eventually A System
r2 [THROTTLE > 0 → SPEED > 0] A Control
r3 Everytime [BRAKE PERC > 0] then

[THROTTLE = 0] within [3 s]
G Control

r4 Everytime [CC ON] then [abs(SPEED -
CRUISE SPEED) < 5] within [10 s]

G System

r5 [0 ≤ ROAD RESISTANCE ≤ 30] always A System
r6 Everytime [BRAKE PERC > 0] then

[der[SPEED] < 0]
G Dynamics

r7 [abs(SPEED− SENSED SPEED)≤ 5] always G Sensor
r8 [0 ≤ SPEED ≤ 250] always A Sensor
r9 [der(BRAKE PERC) < 50] always A Dynamics

TABLE II. FORMALIZED REQUIREMENTS FOR THE CRUISE CONTROL

the argument over time. These examples show the expressive
power of the pattern language, which could be sufficient for
our case study. More complex cases require additional facilities
to iterate through signals and to compose requirements, as
described next.

Quantification patterns provide a syntactic mechanism for
the logical unfolding of requirements. The universal quantifier
∀, or for every signal block, applies the input signals to
a formula R and computes their logical conjunction. The
semantics of ∀s ∈ S.R(s) corresponds to the equivalent
formula R(s1)∧R(s2)∧· · ·∧R(sn), where S = {s1, . . . , sn}.
As an example, the requirement that “no two signals in a set
S are both positive” can be expressed as

∀s′, s′′ ∈ S. ∼ [(s′ > 0) ∧ (s′′ > 0)]

A corresponding formula without quantifiers grows quickly
with the number of signals. The dual existential operator ∃ is
also available. The semantics of the expression ∃s ∈ S.R(s)
is the disjunction R(s1) ∧ · · · ∧R(sn).

A key element of the proposed language is the capability
to compose patterns to derive more complex ones. A number
of pattern composition blocks are used to derive a composite
pattern C out of two patterns A and B. The following
composition patterns are available in the language:

• AND (&): A & B is an assertion that identifies a set
of behaviors satisfying both assertion A and B;

• OR (|): A | B is an assertion that identifies the set of
behaviors satisfying assertion A or assertion B;

• IMPLIES (⇒): A⇒ B is an assertion that identifies
the set of behaviors that do not satisfies A or that
satisfies both A and B;

• NOT (∼): ∼ A is an assertion that identifies the set
of behaviors that do not satisfy A (complement set).

An assertion is identified using an assertion definition block
that has as (unique) parameter the name for the assertion. A
valid assertion is obtained by the composition of a condition

assertion, its conditions and a temporal specification. The
assertion block can be placed at the end of the temporal
specification block or it can be attached to a composition block
to identify the compound assertion. Examples of composition
will be shown in Section IV-A to construct the contracts for our
case study. In the previous sections we defined the available
patterns and the means of composition. The formal semantics
is defined by mapping the patterns into the LTL specification
language. This mapping can also serve as an implementation
when we want to use an analysis engine that supports this
type of specification of requirements. In order to translate
the requirement into temporal logic, we must primarily find a
way to express the pattern temporal specification. An interval
specification of type I = [E1, E2] can be implemented using
the until operator. For instance, the pattern Everytime [E] then
[C] holds during [I] is translated as follows:

G(E ⇒ ¬E1 U (E1 ∧ C ∧ (C U (E2 ∧ C)))),

where the first until is used to wait for the occurrence of E1,
while the second wait for the occurrence of E2. The case of
an open or semi-closed interval can be handled analogously.
The patterns that do not make use of an explicit interval
specification map easily onto LTL using the corresponding
operators. The complete semantics specification is lengthy,
and the details will be omitted in this paper. Contracts are
pairs of assertions (namely the assumption and the guarantee).
The contract specification layer includes a specific block for
the definition of contracts which identifies the assumption and
guarantee using separate parameters. Composition of contracts
is similar to pattern composition, however the semantics of
the composition operators follows that of contract models,
rather than that of traditional logic models. For instance, for
conjunction, contracts take the disjunction of the assumptions
and the conjunction of the guarantees, to ensure that the
refinement relation (contract dominance) is preserved [18].

A. Simulink Language Implementation

The textual assertion specification language described in
the previous section is useful in formalizing the requirements
using signals, patterns and their operators. An even more
convenient representation is a graphical format, that can ex-
press the specification in a way similar to the implementation
model. Our Block-based Contract Language is of this kind.
For our implementation, we have chosen the Matlab/Simulink
software, which is the standard-de-facto for modeling discrete
and continuous time dynamic systems and control algorithms.
To support contract-based design in BCL, we have developed
a Simulink toolbox implementation in which the different
specification layers of the language have been implemented as
executable library elements supporting constructs for the spec-
ification of events, atomic assertions and composition. Patterns
are also represented as blocks, encapsulating a complex specifi-
cation. This approach has two advantages. First, the user is able
to provide the specification in a graphical environment which
is easier to learn and visualize, and with which many designers
are already familiar. This greatly decreases the steep learning
curve associated with learning a new formalism. In the second
place, we can take advantage of the many facilities already
provided by the hosting language, such as the built-in operators
and functions, which enrich the specification language with no

additional cost. In addition, we can make use of the code gener-
ation functionality offered by the Simulink framework to help
automatically generate the executable version of the assertions.
The individual assertions are combined to form contracts, by
assembling together the assumptions and guarantees of each
component. A composition operator combines the assertions
for the assumption. The guarantee is instead composed of
a single pattern, a time-related assertion in which the time
bound is computed from the requirement (time interval of 3
seconds) and the sampling time of the discrete systems (50
milliseconds). Figure 2 shows the contract for the controller,
formed by combining requirements r2 and r3. This is a simpler

Fig. 2. The controller contract

specification that uses the patterns directly to formalize the
assertions. The contract for the Vehicle Dynamics can be
obtained similarly, and is not shown here.

V. CONTRACT VERIFICATION

Our monitor-based contract verification method uses sim-
ulation to keep track of the validity of the assumption and
guarantee assertions in the contract. A monitor is a compo-
nent that verifies at run-time a specific relation between its
inputs. The assumptions and promises are described using BCL
and linked to their corresponding component. Each contract-
enriched component exposes two additional boolean output
signals: signal a, which is updated with the violation status of
the assumptions, and signal g which holds the violation status
of the guarantees. The verification technique based on monitors
has to be carefully applied to the verification of liveness
constraints. The MATLAB Simulink based implementation of
the BCL language follows the approach described by Bauer
et al. [19]: given a partial execution of a model (i.e., a finite
trace), each monitor output can be:

• TRUE, if the property checked by the monitor holds
irrespective of the future evolution of the system;

• FALSE, if the property does not hold irrespective of
the future evolution of the system;

• UNDEFINED, if the property has not yet been verified
or disproved up to the current execution time, but it
could be verified or disproved in the future.

Using the two additional signals, it is possible to evaluate at
run-time the satisfaction and compatibility relations between
the component implementation and the contract. If we denote
by ai and gi the value of the monitor status signal at time
instant i, the contract is satisfied by the component if and

only if, for every i, ai → gi, and the system is compatible if
for all monitors ai ↔ TRUE. We must, however, extend the
implication operators to account for the extra undefined value.
This can easily be accommodated as shown in Table III.

A/G undefined violated satisfied
undefined undefined undefined satisfied
violated satisfied satisfied satisfied
satisfied undefined violated satisfied

TABLE III. EXTENSION OF THE IMPLICATION OPERATOR

We applied the contract-based verification methodology to
the analysis of the cruise control system. The system compo-
nents and their interconnections were modeled in Simulink,
as described in Section III, and the corresponding contracts
were attached to the components, as discussed in Section IV-A.
Then, the run-time verification capabilities of the tool have
been exploited to perform a satisfaction and a compatibility
relation check. Figure 3 shows a plot of the results of the
analysis. Our simulation scenario starts with the car and the

Fig. 3. System behavior during simulation

cruise control initially switched off. Then, the car is turned
on and the driver presses the acceleration pedal. After a
few seconds, the desired cruise speed is set, after which the
accelerator pedal is released, and the cruise control is switched
on (at time 10). At this point the system reaches the desired
speed. At time 40 seconds, the brake pedal is pressed and
eventually the driver re-gains control of the car disengaging
the controller. During the entire simulation, the system was
provided with a specific road resistance profile, simulating
a landscape where an initial increase of the road slope is
followed by a slow decrease. We exploited the simulation
capabilities of the Simulink software to execute the run-
time verification of the contract compatibility and satisfaction
relation.

A. Contract compatibility verification

The compatibility relation can be checked using run-
time verification only for closed systems (i.e., systems not
containing free inputs). In this case, the contracts are not
compatible if at least one of the modeled assumptions is
violated. Incompatible contracts cannot be safely composed
and intuitively expose logical incoherence between the require-
ments. The simulation of the cruise control system exposed
the incompatibility between the cruise control and the vehicle
dynamics contracts, which leads to the falsification of the as-
sumptions of the former. The problem lies in the formalization

of the requirement r2, which does not take into account the
response time of the engine. The proposed formalization, in
fact, asserts that there should be an instantaneous response of
the vehicle as a consequence of the accelerator pedal pressure
whereas the vehicle dynamics contract only constraints the
behavior of the car in presence of a brake pedal pressure
allowing the implementation to react to an accelerator pressure
within an arbitrary amount of time (Requirement r6). The
implementation of the dynamics models properly the physics
of the car reacting to an accelerator pressure in a non-zero
time satisfying, on one hand, the vehicle dynamics contract
and violating, on the other, the controller assumption. This
violation shows an internal incompatibility between these two
contracts w.r.t. the implementation model and the input trace
used to close the system. To solve the incompatibility, the
violated assumptions has been refined using the less restrictive
formulation

r2 : Everytime [THROTTLE > 0] then [SPEED > 0]
within [1 s]

to take into account the response time of the physical parts.
The new formulation of the assumption does not expose
incompatibility between the contracts.

B. Contract satisfaction verification

The contract satisfaction relation can likewise be verified or
falsified for a closed system at run-time by evaluating the status
of the executable monitors. For the system under analysis, the
run-time verification exposes a contract violation due to an
implementation error of the throttle aperture control, which
does not allow the controller to sense the CC ON signal. After
the cruise control is turned on (at step 10 seconds), the car
speed does not increase reaching the desired speed within 10
seconds as stated by requirement r4, leading to the violation
of the contract. A correct implementation of the controller
has been implemented in a second scenario, which solves the
satisfaction violation.

VI. CONCLUSIONS

We have presented the Block-based Contract Language, a
pattern-oriented graphical and textual language for the spec-
ification of contracts for system components. The graphical
notation was implemented in Simulink, making the contract
methodology a natural extension of the system design. In
our current work, we are studying how to employ different
interaction paradigms for modeling, to allow both synchronous
and asynchronous components to be part of the system, and
introducing hardware in the loop in the verification infras-
tructure, to allow contracts to be verified against a physical
prototype implementation of the components.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the
SPRINT EU project1 (grant agreement no: 257909) and the
EU ARTEMIS Joint Undertaking under grant agreement no.
269335 (project MBAT2) and the Italian Ministry of Education,
University and Research (MIUR).

1http://www.sprint-iot.eu/
2https://www.mbat-artemis.eu/home/

REFERENCES

[1] T. A. Henzinger and D. Ničković, “Independent implementability of
viewpoints,” in Proc. of the 17th Monterey conference on Large-Scale
Complex IT Systems: development, operation and management, Oxford,
UK, 2012.

[2] I. Lee and O. Sokolsky, “A graphical property specification language,”
in Proc. of the 2nd IEEE Workshop on High-Assurance Systems
Engineering, Washington, DC, USA, August 11-12, 1997.

[3] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand,
“Using contract-based component specifications for virtual integration
testing and architecture design,” in Proc. of the Conference on Design,
Automation and Test in Europe, Grenoble, France, March 14-18 2011.

[4] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone,
and C. Sofronis, “A contract-based formalism for the specification
of heterogeneous systems,” in Proc. of the Forum on Specification,
Verification and Design Languages, Stuttgart, Germany, Sep. 2008.

[5] A. Cimatti and S. Tonetta, “A property-based proof system for contract-
based design,” in Proc. of the 38th Euromicro Conference on Software
Engineering and Advanced Applications, ser. SEAA12, Cesme, Turkey,
September 5-8 2012.

[6] R. Passerone, L. d. Alfaro, T. A. Henzinger, and A. L. Sangiovanni-
Vincentelli, “Convertibility verification and converter synthesis: Two
faces of the same coin,” in Proc. of the 20th IEEE/ACM International
Conference on Computer-Aided Design (ICCAD02), San Jose, Califor-
nia, November 10–14, 2002, pp. 132–139.

[7] S. Quinton and S. Graf, “Contract-based verification of hierarchical
systems of components,” in Proc. of the 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods, ser. SEFM
’08, Washington, DC, USA, 2008.

[8] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and
R. Passerone, “A modal interface theory for component-based design,”
Fundamenta Informaticae, vol. 108, no. 1–2, pp. 119–149, 2011.

[9] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed
I/O automata: a complete specification theory for real-time systems,”
in Proc. of the 13th ACM international conference on Hybrid systems:
computation and control, ser. HSCC ’10, Stockholm, Sweden, 2010.

[10] O. Ferrante, R. Passerone, A. Ferrari, L. Mangeruca, C. Sofronis,
and M. D’Angelo, “Monitor-based run-time contract verification of
distributed systems,” in Proc. of the 9th IEEE International Symposium
on Industrial Embedded Systems, Pisa, Italy, June 18–20, 2014.

[11] F. Balarin and R. Passerone, “Specification, synthesis and simulation
of transactor processes,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 10, Oct. 2007.

[12] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “METROII: A design envi-
ronment for cyber-physical systems,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 1s, pp. 49:1–49:31, March 2013.

[13] Y. Kakiuchi, A. Kitajima, K. Hamaguchi, and T. Kashiwabara, “Auto-
matic monitor generation from regular expression based specifications
for module interface verification,” in Proc. of the International Sympo-
sium on Circuits and Systems (ISCAS05), May 2005.

[14] J.-Y. Brunel, M. Di Natale, A. Ferrari, P. Giusto, and L. Lavagno,
“Softcontract: an assertion-based software development process that
enables design-by-contract,” in Proc. of the conference on Design,
automation and test in Europe (DATE04), 2004.

[15] M. Krichen and S. Tripakis, “Conformance testing for real-time sys-
tems,” Formal Methods in System Design, vol. 34, no. 3, June 2009.

[16] W. Aldrich, “Coverage analysis for model based design tools,” in
Proc. of the 18th International Conference and Exposition on Testing
Computer Software, ser. TCS’2001, Washington, DC, June 18-22 2001.

[17] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-based design for cyber-physical systems,”
European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012.

[18] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Formal Methods for Components and Objects, 6th Interna-
tional Symposium (FMCO 2007), October 24–26 2008, vol. 5382.

[19] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, 2011.

