
0740-7475/06/$20.00 © 2006 IEEE Copublished by the IEEE CS and the IEEE CASS September–October 2006 359

THE GROWTH OF THE EDA INDUSTRY has been less

than satisfactory in the past few years. For example, in

2005 growth was only 0.6%,1 and in 2006 it is predicted to

be less than 3%.2 The reasons are varied and are beyond

the scope of this article. However, one of the main issues

is the failure of EDA to address new customers. New cus-

tomers imply a revenue potential that is not consuming

present business, thus allowing real industry growth.

Traditionally, EDA has served the IC industry, where the

demand for tools has been rampant since the early 1980s.

An obvious adjacent market for EDA growth is electron-

ic system-level (ESL) design. (See the “Trends affecting

the ESL design market” sidebar for a brief history and

explanation of how various market factors have con-

tributed to developments in ESL design.)

The 2004 International Technology Roadmap for

Semiconductors (ITRS) placed ESL “a level above RTL,”

including both hardware and software design. The ITRS

defined ESL to “consist of a behavioral (before HW/SW

partitioning) and architectural level (after)” and claimed

it would increase productivity by 200,000 gates per

designer-year. The ITRS states that ESL will improve pro-

ductivity by 60% over an “Intelligent Testbench”

approach—the previously proposed ESL design improve-

ment.3 Although these claims cannot yet be verified and

seem quite aggressive, most agree that

ESL’s overarching benefits include

■ raising the abstraction level at which

designers express systems,

■ enabling new levels of design reuse,

and

■ providing for design chain integration

across tool flows and abstraction levels.

The purpose of this article is to paint the ESL design

landscape by providing a unified framework for plac-

ing and analyzing existing and future tools in the con-

text of an extensible design flow. This approach should

help designers use tools more efficiently, clarify their

flow’s entry and exit points, and highlight areas in the

design process that could benefit from additional tools

and support packages. This framework is based on plat-

form-based design concepts.4,5 Using this framework,

we’ve classified more than 90 different academic and

industrial ESL offerings and partitioned the tool space

into metaclasses that span an ideal design flow.

(Although we try to cover as much of the ESL tool space

as possible, we make no claim of completeness. We

apologize in advance to the authors of tools we have

inadvertently ignored. Also, we don’t analyze the exten-

sive literature that describes these tools; rather, we iden-

tify Web sites that contain relevant information.)

We used this framework to explore three design sce-

narios to demonstrate how those involved in ESL design

at various levels and roles can effectively select tools to

accomplish their tasks more efficiently than in a tradi-

tional IC design flow. The ability to study design sce-

narios goes beyond mere classification, because our

framework exposes the relationships and constraints

A Platform-Based Taxonomy
for ESL Design

Editor’s note:
This article presents a taxonomy for ESL tools and methodologies that
combines UC Berkeley’s platform-based design terminologies with Dan
Gajski’s Y-chart work. This is timely and necessary because in the ESL world
we seem to be building tools without first establishing an appropriate design
flow or methodology, thereby creating a lot of confusion. This taxonomy can
help stem the tide of confusion.

—Gary Smith, Gartner Dataquest

Douglas Densmore

University of California, Berkeley

Roberto Passerone

University of Trento

Alberto Sangiovanni-Vincentelli

University of California, Berkeley

among different classes to the designer, who may wish

to implement a specific integration flow. (The “Related

work” sidebar discusses other efforts to categorize ESL

design approaches.)

The ESL classification framework
The design framework shown in Figure 1 is based on

the platform-based design (PBD) paradigm presented

by Sangiovanni-Vincentelli and Martin.5 This framework

treats the design process as a sequence of steps that

repeat themselves as the design moves from higher

abstraction levels to implementation. The primary struc-

ture is a Y shape; thus, it is similar to the famous Y-chart

introduced by Gajski. The left branch expresses the

functionality (what) that the designer wishes to imple-

ment; the right branch expresses the elements the

designer can use to realize this functionality (how); and

the lower branch identifies the elements the designer

will use to implement the functionality (the mapping).6

In this context, the right branch is the platform, and it

includes

■ a library of elements, including IP blocks and com-

munication structures, and composition rules that

express which elements can be combined and how;

and

■ a method to assess the quantities associated with

each element—for example, power consumed or

time needed to carry out a computation.

Each legal composition of elements from the plat-

form is a platform instance. Mapping involves selecting

the design components (choosing the platform

instance) and assigning functionality parts to each ele-

ment, thus realizing the complete functionality, possi-

bly with overlaps. Designers optimize this process

according to a set of metrics and constraints defined

from the cost figures provided, or quantities mentioned.

The designers then use these metrics to evaluate the

design’s feasibility and quality.

This view of the design process is basically an

abstraction of a process that designers have used implic-

itly for years at particular abstraction levels. For exam-

Electronic System-Level Design

360 IEEE Design & Test of Computers

The number of electronic system-level (ESL) designers
is reportedly several orders of magnitude larger than the
number of IC designers. However, until the late 1990s, the
system-level design market had been highly fragmented.
Consumers were unwilling to pay a high price for tools, so
EDA companies produced relatively simple tools. For most
of the products in this market, the end product’s complex-
ity was not a limiting factor.

In the late 1990s, the situation began to change dra-
matically as system complexity reached an inflection point
with the appearance of increasingly powerful electronic
devices. Demand increased for demonstrably safe, effi-
cient, and fault-tolerant operation of transportation systems
such as automobiles and airplanes. Demand also
increased for greater functionality in IT and communica-
tion devices, such as computing equipment and cell
phones. During the past 10 years, several recalls (consid-
er those from BMW and Daimler-Chrysler alone in the past
two years, for example) and delays in the launch of previ-
ously announced products in the consumer electronics
sectors demonstrated that new design methods, tools, and
flows were sorely needed to prevent expensive fixes in the
field and to bring new products to the market more quick-
ly and reliably.

This situation created the conditions for the birth of new

tool companies and new offerings in established EDA com-
panies to address the needs of a changing market.
However, because the system industry landscape is very
diverse—with companies varying as widely as Nokia and
General Motors, Boeing and Otis Elevators, and Hewlett-
Packard and ABB—a design approach that could satisfy
all these diverse needs would have required a large invest-
ment, with a high risk of failure. Hence, the bulk of the ESL
design effort (with a few notable exceptions) has come
from academia and some small start-up companies trying
to address a subset of the many problems and geared
toward a limited number of potential customers.

For years, Gartner Dataquest has predicted dramatic
growth in ESL tool revenues, which unfortunately has failed
to materialize. One of the reasons for unrealized growth is
the lack of a vision in EDA of what system-level design
ought to be and of how various tools fit in an overall
methodology that the system industry at large could satis-
factorily adopt. Consequently, there is confusion about the
very definition of ESL and about what role it could play in
the overall design of electronic products. Some compa-
nies have adopted ESL methodologies and tools, devel-
oped either internally or in academic circles, integrating
some commercial tools as well. However, we are certainly
at a relatively early stage of adoption.

Trends affecting the ESL design market

ple, interpreting the logic synthesis process in this

framework, we find the following:

■ RTL code or Boolean functions represent the

design’s functionality.

■ The platform includes a library of gates, or higher-

complexity logic blocks.

■ Mapping is the actual logic synthesis step that imple-

ments the functionality as an interconnection of

gates (platform instance) optimizing a set of metrics

involving area, power, and timing; the synthesis tool

then exports the mapped design (gate-level netlist)

to the layout phase, and the physical design tool

maps this representation to a physical platform.

The PBD paradigm applies equally well to the applica-

tion and algorithmic levels, where functionality can be a

mathematical description—for example, a Moving Picture

Experts Group (MPEG) encoding algorithm. Also, the plat-

form can be a set of subalgorithms for implementing each

functional block of the encoding method. The result of the

mapping process then goes to a lower level, where the left

branch is a mapped platform instance, and the right

361September–October 2006

We are not the first to realize the importance of catego-
rizing ESL design approaches. Smith and Nadamuni used
two axes for this purpose.1 The first axis contains three
methodology components: an algorithmic methodology, a
processor and memory methodology, and a control-logic
methodology. Each refers to the way in which a designer
thinks about the design or its components. The second
axis includes the abstraction levels to express the designs:
behavioral, architectural, and platform based. Smith and
Nadamuni examined approximately 50 approaches in this
framework.

Maniwa presented a similar approach, also based on
two axes, to categorize industrial tools.2 The first axis is the
design style: embedded software, SoC (hardware), behav-
ioral, or component. The second axis is the language (for
example, C, C++, or Verilog) to describe the design.
Maniwa examined approximately 41 approaches.

Gries also used two axes to classify ESL tools devel-
oped in academia and industry.3 The axes in this case
related to abstraction levels (for example, system level and
microarchitectural level) and design stages (such as appli-
cation, architecture, and exploration). Gries examined
approximately 19 approaches.

Finally, Bailey, Martin, and Anderson provided a com-
prehensive set of taxonomies: a model taxonomy, a func-
tional-verification taxonomy, a platform-based design
taxonomy, and a hardware-dependent software taxonomy.4

To the best of our knowledge, their book provides the best
classification of high-level design tools, and we follow its
definitions when appropriate. Compared to their approach,
our paradigm places tools in a more general design con-
text and gives guidelines on how to connect the available
tools, and IP blocks and their models, in a design flow.

References
1. G. Smith and D. Nadamuni, “ESL Landscape 2005,”

Gartner Dataquest, 2005.

2. T. Maniwa, “Focus Report: Electronic System-Level

(ESL) Tools,” Chip Design, Apr./May 2004, http://www.

chipdesignmag.com/display.php?articleId=23&issueId=4.

3. M. Gries, “Methods for Evaluating and Covering the Design

Space during Early Design Development,” Integration: The

VLSI J., vol. 38, no. 2, Dec. 2004, pp. 131-138.

4. B. Bailey, G. Martin, and T. Anderson, Taxonomies for

the Development and Verification of Digital Systems,

Springer, 2005.

Related work

FunctionalityF P

M

Platform

Mapping

Figure 1. Platform-based design classification framework

elements. Functionality indicates functional representations

of a design completely independent of implementation

architectures. Platform concerns the modules used to

implement the functional description—for example,

processors, memories, and custom hardware. Mapping refers

to instances of the design in which the functionality has been

assigned to a set of correctly interconnected modules.

branch is a new set of elements for implementing the

mapped platform instance. This process repeats until the

result of the mapping process is a fully implemented solu-

tion. Thus, the design process is partitioned into levels,

where each level represents a particular abstraction. The

corresponding platform and mapping process optimizes

specific aspects of the design.

This framework prescribes a unified design method-

ology and hence is useful for identifying where existing

tools and flows fit and how to integrate them in the over-

all system design process.

Classifying ESL tools
We use the PBD paradigm to classify several ESL-relat-

ed tools. Doing so casts present system-level design efforts

in a global framework that serves as a unifying element.

Of course, existing approaches may fall into more than

one classification category because they cover more than

one step of PBD. We could consider this a fault of the

classification method, because a classification is effec-

tive only if it can cleanly partition the various objects

being classified. However, partitioning the design steps

rather than the tool coverage is more powerful because it

identifies the tools’ roles in the overall design paradigm.

Indeed, the classification criteria can provide hints on

how to connect different tools to yield an encompassing

design flow. We’ve developed an environment for design

space exploration called Metropolis, which completely

reflects the design paradigm followed here. Metropolis

can serve as the unifying framework for system design,

where tool developers can embed tools, libraries, and

approaches if the appropriate interfaces are built.

The classification classes reflect the Y-shaped diagram,

with an additional classification criterion related to the

abstraction level at which the tools work (see Figure 1):

Bin F consists of functional representations of a

design independent of implementation architectures

and with no associated physical quantity, such as time

or power. For example, a Simulink diagram expressing

an algorithm for automotive engine control and a

Ptolemy II description of an MPEG-decoding algorithm

both belong to this bin. These diagrams could be refine-

ments of more abstract representations such as meta-

models, as in Metropolis. To this bin, we assign tools that

manipulate, simulate, and formally or informally ana-

lyze functional descriptions.

Bin P represents the library of modules for imple-

menting the functional description. The modules are

architectural elements such as processors, memories,

coprocessors, FPGAs, custom hardware blocks, and

interconnections (buses, networks, and so on). The ele-

ments also include middleware, such as operating sys-

tems for processors and arbitration protocols for buses,

because these software components present the archi-

tectural services that the hardware offers to the applica-

tion software. To this bin, we assign tools for connecting

or manipulating the modules, as well as tools for ana-

lyzing the property of the complete or partial platform

instances obtained.

Bin M represents mapped instances of the design in

which the designer or an automatic mapping tool has

assigned functionality to a set of correctly intercon-

nected modules. The connection between bins F, P,

and M represents the mapping process. In this bin, we

classify any tool that assigns architectural elements to

functionality or generates the design’s mapped view.

For example, bin M would include a high-level synthesis

tool because the designer has assigned, perhaps man-

ually, part of the functionality to a virtual hardware com-

ponent in the platform and is asking the tool to generate

the lower-level view, in this case an RTL description of

the design. By the same token, we can classify a code

generation tool in bin M because the designer has

assigned (perhaps manually) part of the functionality

to a software-programmable element of the library and

is asking the tool to generate the lower-level view. In this

case, the view is a software program—whether assem-

bly language, C, or a higher-level language—which is

then compiled to move toward implementation. In this

article, we consider the compilation phase and the syn-

thesis from RTL to gates to be part of a traditional design

flow and thus not part of our ESL tool classification.

Some tools can handle two or even all three aspects

of the PBD paradigm. To classify these tools, we intro-

duce metaclasses (or metabins), indicated by combi-

nations of F, P, and M. For example, in metabin FM, we

assign a synthesis tool that handles functional compo-

nents along with their mappings to platform compo-

nents. Tools classified in metaclasses cover several parts

of the PBD design flow. Designers using these tools can

benefit from the design view we propose by clearly

decoupling function from architecture and mapping.

Doing so can enhance reusability and help the design-

er reach a correct implementation efficiently.

To make the partitioning of the tools finer, we intro-

duced another, orthogonal criterion for classification:

the abstraction level at which the tools operate.

Whereas PBD doesn’t limit the abstraction levels that

designers use per se, most of the tools we reviewed

work at three levels, listed here from highest to lowest:

Electronic System-Level Design

362 IEEE Design & Test of Computers

■ System level S corresponds to heterogeneous designs

that use different models of computation (MoCs) to

represent function, platforms, and mappings.

■ Component level C involves subsystems containing

homogeneous components.

■ Implementation level I comprises the final design

step, when the design team considers the job

complete.

We now present our classification, beginning with

tools that fall into individual bins—those meant to be

part of a larger tool flow or that work in a very specific

application domain. We then address tools that cover

larger portions of the design flow space.

Bin F
Tools in this bin often serve to capture designs and

their specifications quickly without making any assump-

tions about the underlying implementation details (see

Tables 1-3). At this level, the descriptions might include

behavioral issues such as concurrency, or communi-

cation concepts such as communication protocols.

Some tools handle only one MoC—for example, finite-

state machines (FSMs). Others are more general, han-

dling a set of MoCs or having no restrictions. For

example, the Simulink representation language handles

discrete dataflow and continuous time. Hence, it is a

limited heterogeneous modeling-and-analysis tool.

Ptolemy II, with its actor-oriented abstract semantics,

363September–October 2006

Table 1. Tools in bin F: Industrial. (C: component level; I: implementation level; S: system level)

Provider Tools Focus Abstraction Web site

MathWorks Matlab High-level technical computing S: Matlab language, http://www.mathworks.com/products/

language and interactive vector, and matrix matlab

environment for algorithm operations

development, data visualization,

analysis, and numeric

computation.

Scilab Scicos Graphically model, compile, and S: Hybrid systems http://www.scilab.org

simulate dynamic systems

Novas Verdi Debugging for SystemVerilog I: Discrete event http://www.novas.com

Software

Mentor SystemVision Mixed-signal and high-level S: VHDL-AMS, http://www.mentor.com/products/

Graphics simulation Spice, C sm/systemvision

EDAptive EDAStar Military and aerospace S: Performance http://www.edaptive.com

Computing system-level design models

Time Rover DBRover, Temporal rules checking, pattern C: Statecharts http://www.time-rover.com

TemporalRover, recognition, and knowledge assertions

StateRover reasoning

Maplesoft Maple Mathematical problem S: Mathematical http://www.maplesoft.com

development and solving equations

Wolfram Mathematica Graphical mathematical S: Mathematical http://www.wolfram.com

Research development and problem equations

solving with support for Java,

C, and .Net

Mesquite CSIM 19 Process-oriented, general-purpose S: C, C++ http://www.mesquite.com

Software simulation toolkit for C and C++

Agilent Agilent Ptolemy Functional verification C: Timed http://www.agilent.com

Technologies synchronous

dataflow

National LabView Test, measurement, and control S: LabView http://www.ni.com/labview

Instruments application development programming

language

can handle all MoCs. Depending on the MoC support-

ed, design entry for each tool could start at a higher or a

lower abstraction level.

Bin P
This category includes providers of platforms or plat-

form components, as well as tools and languages that

describe, manipulate, or analyze unmapped platforms

(see Tables 4 and 5). Similar to tools in bin F, those in bin

P can span several abstraction layers and support differ-

ent kinds of architectural components. For example,

Xilinx and Altera mainly concern programmable hard-

ware devices, whereas Tensilica focuses on configurable

processors. Others, such as Sonics and Beach Solutions,

focus on integration and communication components.

This category’s main characteristic is configurability,

which ensures the applicability of a platform or compo-

nents to a wide variety of applications and design styles.

Bin M
This bin contains tools dedicated to refining a func-

tional description into a mapped platform instance,

including its performance evaluation and possibly the

synthesis steps required to proceed to a more detailed

abstraction level (see Tables 6-8). The tools in bin M

vary widely in particular design style, MoC, and sup-

ported application area. To provide the necessary qual-

ity of results, the tools are typically very specific.

Electronic System-Level Design

364 IEEE Design & Test of Computers

Table 2. Tools in bin F: Academic.

Provider Tools Focus Abstraction Web site

Univ. of Ptolemy II Modeling, simulation, and design of S: All MoCs http://ptolemy.eecs.berkeley.edu

California, concurrent, real-time,

Berkeley embedded systems

Royal Inst. of ForSyDe System design starts with a C: Synchronous MoC http://www.imit.kth.se

Technology, synchronous computational

Sweden model, which captures

system functionality

Mozart Board Mozart Advanced development platform for S: Object-oriented http://www.mozart-oz.org

intelligent, distributed applications GUI using Oz

Table 3. Tools in bin F: Languages.

Provider Tools Focus Abstraction Web site

Celoxica Handel-C Compiling programs into hardware C: Communicating NA

images of FPGAs or ASICs sequential processes

Univ. of SpecC ANSI-C with explicit support for C: C language based http://www.ics.uci.edu/~specc

California, behavioral and structural

Irvine hierarchy, concurrency, state

transitions, timing, and

exception handling

Inria Esterel Synchronous-reactive C: Synchronous http://www-sop.inria.fr/meije/

programming language reactive esterel/esterel-eng.html

Univ. of Rosetta Compose heterogeneous S: All MoCs http://www.sldl.org

Kansas specifications in a single

declarative semantic

environment

Mozart Board Oz Advanced, concurrent, networked, C: Dataflow http://www.mozart-oz.org

soft real-time, and reactive synchronization

applications

Various ROOM Real-time object-oriented modeling S: Object oriented NA

Metabin FP
This category consists of languages that can express

both functionality and architecture (see Tables 9 and 10

on p. 368). Typically, they express algorithms and differ-

ent styles of communication and structure for different

MoCs. Assertions, or constraints, complement the platform

description. In the case of Unified Modeling Language

(UML), the semantics are often left unspecified.

Metabin FM
This metabin reflects tools that provide some com-

bination of functional description and analysis capa-

bilities plus mapping and synthesis capabilities (see

Table 11 on p. 368). In this case, the platform architec-

ture is typically fixed. This lack of flexibility is offset by

the often superior quality of achievable implementation

results.

Metabin PM
This metabin includes tools that combine architec-

tural services and mapping (see Tables 12-14 on pp. 369-

370). These tools have a tight coupling between the

services they provide and how functionality can map to

these services. They require the use of other tools for

some aspect of system design (often in the way the

design functionality is specified).

Metabin FPM
Entries in this category are the frameworks that sup-

port the PBD paradigm (see Tables 15 and 16 on p. 371).

365September–October 2006

Table 4. Tools in bin P: Industrial.

Provider Tools Focus Abstraction Web site

Prosilog Nepsys Standards-based IP libraries and C: RTL and http://www.prosilog.com

support tools (SystemC) transaction-level

SystemC; VHDL

for SoCs

Beach EASI-Studio Solutions to package and deploy C: Interconnection http://www.beachsolutions.com

Solutions IP in a repeatable, reliable manner

Altera Quartus II FPGAs, CPLDs, and structured I: IP blocks, C, and http://www.altera.com

ASICs RTL; FPGAs

Xilinx Platform Studio IP integration framework C: IP blocks, FPGAs http://www.xilinx.com

Mentor Nucleus Family of real-time operating S: Software http://www.mentor.com/products/

Graphics systems and development tools embedded_software/nucleus_rtos

Sonics Sonics Studio On-chip interconnection I: Bus-functional http://www.sonicsinc.com

infrastructure models

Xilinx ISE, EDK, FPGAs, CPLDs, and structured I: IP blocks, C, and http://www.xilinx.com

XtremeDSP ASICs RTL; FPGAs

Design and Hosted Extranet IP delivery systems S: All types of IP http://www.design-reuse.com

Reuse Services

Stretch Software Compile a subset of C into C: Software- http://www.stretchinc.com

Configurable hardware for instruction configurable

Processor extensions processors

compiler

ProDesign CHIPit Transaction-based verification C: FPGA-based rapid http://www.prodesign-usa.com

platform prototyping

Table 5. Tools in bin P: Languages.

Provider Tools Focus Abstraction Web site

Spirit Spirit IP exchange and integration S: Various IP levels http://www.spiritconsortium.com

Consortium standard written in XML

In particular, Metropolis fully embodies this paradigm,

covering all bins and all abstraction layers. In this cate-

gory, we include design space exploration tools and lan-

guages that can separately describe the functionality on

the one hand, and the possible architectures for an

implementation on the other. These tools can also map

the functionality onto the platform instances to obtain

metrics for the implementation’s performance.

Design scenarios
Here, we use the PBD framework of Figure 1 to map

three design flow scenarios on the tool landscape.

Figure 2 (see p. 372) shows the metabins and the hier-

archical levels where activities take place.

Scenario 1: New application design from
specification

The requirements of this scenario include the need

to start from a high-level specification; the desire to cap-

ture and modify the initial specification quickly; the

ability to express concurrency, constraints, and other

behavior-specific characteristics efficiently; and the

ability to capture useful abstract services for imple-

menting high-level specifications into a more detailed

functional view. The flow thus starts at the higher

abstraction levels in bin F of our classification. We can

expand these levels into a Y diagram of the same struc-

ture as the one described in Figure 1. This structure

offers

■ flexible specification capture—no ties to a particu-

lar implementation style or platform;

■ services that help move the abstract design toward a

more constrained version (for example, algorithms

that can implement functionality); and

■ independent mapping of functionality onto algo-

rithmic structures that enable reuse of the functional

specification.

Electronic System-Level Design

366 IEEE Design & Test of Computers

Table 6. Tools in bin M: Industrial, set I.

Provider Tools Focus Abstraction Web site

MathWorks Real-Time Code generation and embedded- S: Simulink-level http://www.mathworks.com

Workshop software design models

dSpace TargetLink Optimized code generation and S: Simulink models http://www.dspace.com

software development

ETAS Ascet Modeling, algorithm design, code S: Ascet models http://en.etasgroup.com/products/

generation, and software ascet/index.shtml

development, with emphasis on

the automotive market

Y Explorations eXCite Take virtually unrestricted ISO or S: C language input http://www.yxi.com

ANSI-C with channel I/O behavior

and generate Verilog or VHDL

RTL output for logic synthesis

AccelChip AccelChip and DSP synthesis; Matlab to RTL C: Matlab http://www.accelchip.com

AccelWare

Forte Design Cynthesizer Behavioral synthesis C: SystemC to RTL http://www.forteds.com

Systems

Future Design System Center ASCI-C to RTL synthesis toolset C: C to RTL http://www.future-da.com

Automation Co-development

Suite

Catalytic DeltaFX, RMS Synthesis of DSP algorithms on I: Matlab algorithms http://www.catalytic-inc.com

processors or ASICs

ACE CoSy Automatic generation of compilers I: DSP-C and http://www.ace.nl

Associate for DSPs embedded-C

Compiler language extensions

Experts

Tenison VTOC RTL to C++ or SystemC I: RTL, transactional http://www.tenison.com

Let’s examine an example in the multimedia

domain: the implementation of a JPEG encoder on a

heterogeneous multiprocessor architecture such as the

Intel MXP5800. This architecture has eight image signal

processors (ISP1 to ISP8) connected with programmable

quad ports (eight per processor).7 The encoder com-

presses raw image data and emits a compressed bit-

stream. The first step in the scenario is to choose a

367September–October 2006

Table 7. Tools in bin M: Industrial, set II.

Provider Tools Focus Abstraction Web site

Sequence ESL Power Power analysis and optimization I: SystemC level http://www.sequencedesign.com

Design Technology,

Power Theater,

CoolTime,

CoolPower

PowerEscape PowerEscape Memory hierarchy design, code C: C code http://www.coware.com/products/

(with Architect, performance analysis, powerescape.php

CoWare) PowerEscape complete profiling

Synergy,

PowerEscape

Insight

CriticalBlue Cascade Design flow for application-specific I: C code to Verilog http://www.criticalblue.com

hardware acceleration or VHDL

coprocessors for ARM processors

Synfora PICO Express C to RTL, or C to System C I: Pipeline processor http://www.synfora.com

(transaction-level models) arrays

Actis AccurateC Static code analysis for SystemC C: C syntax and http://www.actisdesign.com

semantic checking

Impulse CoDeveloper C to FPGA C: C code http://www.impulsec.com

Accelerated

Technologies

Poseidon Triton Tuner, Design flow for application-specific C: C and SystemC http://www.poseidon-systems.com

Design Triton Builder hardware acceleration

Systems coprocessors

SynaptiCAD SynaptiCAD line Testbench generators and C: RTL and SystemC http://www.syncad.com

simulators

Avery TestWizard Verilog HDL, VHDL, and C-based I: RTL and C http://www.avery-design.info

Design testbench automation

Systems

Emulation and ZeBu Functional verification I: Hardware emulation http://www.eve-team.com

Verification

Engine

Table 8. Tools in bin M: Academic.

Provider Tools Focus Abstraction Web site

Univ. of Impact Compiler Compilation development for S: C code for high- http://www.crhc.uiuc.edu/Impact

Illinois at instruction-level parallelism performance

Urbana- processors

Champaign

particular MoC to describe the design’s functionality.

To be more efficient in applying our proposed design

paradigm, the designer should use a MoC that is also

suitable for describing the architecture’s capabilities.

Hence, the designer eases the mapping task and the

analysis of the mapped design’s properties. In addition,

a synthesis step could execute the mapping process

automatically.

Because this is a data-streaming application that

maps onto a highly concurrent architecture, it is natur-

al to use a Kahn process networks (KPN) representa-

tion. In KPN, a set of processes communicate through

one-way FIFO channels. Reads from channels are

blocked when no tokens are present; processes cannot

query the channel status. However, this model is Turing

complete, so scheduling and buffer size are undecid-

able. The KPN model of the JPEG encoder algorithm is

completely independent of the target architecture sat-

Electronic System-Level Design

368 IEEE Design & Test of Computers

Table 9. Tools in metabin FP: Industrial.

Provider Tools Focus Abstraction Web site

MathWorks Simulink, Modeling, algorithm design, and S: Timed dataflow, http://www.mathworks.com

State Flow software development FSMs

Table 10. Tools in metabin FP: Languages.

Provider Tools Focus Abstraction Web site

Open SystemC Provide hardware-oriented S: Transaction level http://www.systemc.org

SystemC constructs within the to RTL

Initiative context of C++

Object Unified Specify, visualize, and document S: Object-oriented, http://www.uml.org

Management Modeling software system models diagrams

Group Language

Accellera SystemVerilog Hardware description and verification S: Transaction level, http://www.systemverilog.org

language extension of Verilog RTL, assertions

Table 11. Tools in metabin FM: Industrial.

Provider Tools Focus Abstraction Web site

Celoxica DK Design Suite, Algorithmic design entry, behavioral C: Handel-C based http://www.celoxica.com

Agility Compiler, design, simulation, and synthesis

Nexus-PDK

BlueSpec BlueSpec BlueSpec SystemVerilog rules S: SystemVerilog and http://www.bluespec.com

Compiler, and libraries term-rewriting

BlueSpec synthesis

Simulator

I-Logix Rhapsody and Real-time UML-embedded S: UML based http://www.ilogix.com

Statemate applications

Mentor Catapult C C++ to RTL synthesis C: Untimed C++ http://www.mentor.com

Graphics

Esterel SCADE, Esterel, Code generation for safety-critical I: Synchronous http://www.esterel-technologies.com

Technologies Studio applications such as avionics and

automotive

Calypto SLEC System Functional verification between C: SystemC, RTL http://www.calypto.com

system level and RTL

isfying the requirements for this scenario. We could use

Ptolemy II to capture this model and simulate the select-

ed algorithm’s behavior.

To allow a better analysis and to refine the model

toward implementation, we can map this model into

another dataflow model, similar to cyclostatic dataflow,8

which permits only one writer per channel but allows

multiple reader processes. For all channels, each reader

process can read each data token exactly once. Also, this

dataflow model allows limited forms of data-dependent

communication. To enable the execution of multiple

processes on a single processing element, this MoC sup-

ports multitasking. In particular, the system may suspend

a process only between firings. Because of the limitations

just discussed, this MoC lets designers decide scheduling,

buffer sizing, and mapping. It is easy to express the model

in Ptolemy II and to describe it in Simulink or the Signal

Processing Worksystem (SPW). This first step—mapping

a more flexible model for the functionality into a more

restricted one that is easier to implement and analyze—

is critical in any system-level design.

Subsequently, the mapped specification becomes

the functional representation for the diagram in Figure

1. So, the flow can continue at lower abstraction levels

with tools in metabin FM for an integrated solution, or

in bin F followed by M for a multitool solution. Because

most of the architecture is fixed, an efficient, special-

ized approach is more appropriate. Figure 2a shows a

369September–October 2006

Table 12. Tools in metabin PM: Industrial, set I.

Provider Tools Focus Abstraction Web site

ARM RealView Embedded microprocessors and C: C++ ARM http://www.arm.com

MaxSim development tools; system-level processor

development tools development

Tensilica Xtensa, XPRES Programmable solutions with C: Custom ISA http://www.tensilica.com

specialized Xtensa processor processor, C and

description from native C and C++ code

C++ code

Summit System Architect, Efficiently design and analyze the C: SystemC http://www.sd.com

Visual Elite architecture and implementation

of multicore SoCs and

large-scale systems

VaST Comet, Meteor Very high-performance processor S: Virtual processor, http://www.vastsystems.com

Systems and architecture models bus, and peripheral

Technology devices

Virtio Virtio Virtual High-performance software model I: Virtual platform http://www.virtio.com

Platform of a complete system models at

SystemC level

Cadence Incisive Integrated tool platform for S: RTL and SystemC http://www.cadence.com

verification, including simulation, assertions

formal methods, and emulation

Mentor Platform Express XML-based integration environment C: XML-based http://www.mentor.com

structure

SpiraTech Cohesive Protocol abstraction transformers C: Transaction level, http://www.spiratech.com

IP blocks

ARC ARC Embedded microprocessors and I: ISA extensions, http://www.arc.com

International development tools microarchitectural

level

Arithmatica CellMath Proprietary improvements for I: Microarchitectural http://www.arithmatica.com

Tool Suite implementing silicon computational datapath

units computation elements

and design

potential traversal of the framework. For our JPEG case,

we can map the functionality onto the MXP5800 using

the Metropolis environment to analyze potential prob-

lems with the architecture or to optimize the applica-

tion’s coding for the chosen platform instance.

Scenario 2: New integration platform
development

This scenario describes the development of a new

integration platform: a hardware architecture, embed-

ded-software architecture, design methodologies

Electronic System-Level Design

370 IEEE Design & Test of Computers

Table 13. Tools in metabin PM: Industrial, set II.

Provider Tools Focus Abstraction Web site

Target Chess (compiler), Retargetable tool suite for I: Mapping of C code http://www.retarget.com

Compiler Checkers (ISS) developing, programming, and to processors written

Technologies verifying embedded IP cores in nML

Arteris Danube, Synthesis of NoC C: NoC dataflow http://www.arteris.net

NoCexplorer

ChipVision Orinoco Pre-RTL power prediction for C: SystemC http://www.chipvision.com

Design behavioral synthesis algorithm input

Systems

Wind River Various Provide various platforms for I: Software API http://www.windriver.com

Systems platform different design segments

solutions (auto, consumer)

CoWare ConvergenSC Capture, design, and verification S: SystemC http://www.coware.com

for SystemC functionality input;

SystemC, HDL

services

Carbon VSP Presilicon validation flow C: Verilog and VHDL, http://www.carbondesignsystems.com

Design bus protocols

Systems

GigaScale IC InCyte Chip estimation and architecture S: High-level chip http://www.chipestimate.com

analysis information (gate

count, I/O, IP blocks)

Virtutech Virtutech Simics Build, modify, and I: C language http://www.virtutech.com

program new virtual and ISAs

systems

National LabView 8 FPGA Create custom I/O and control C: LabView graphical http://www.ni.com/fpga

Instruments hardware for FPGAs programming

CoWare LisaTek Embedded-processor C: Lisa architecture http://www.coware.com

design tool suite description language

Table 14. Tools in metabin PM: Academic.

Provider Tools Focus Abstraction Web site

Carnegie MESH Enable heterogeneous microdesign C: C input; http://www.ece.cmu.edu/~mesh

Mellon Univ. through new simulation, programmable,

modeling, and design strategies heterogeneous

multiprocessors

Univ. of xPilot Automatically synthesize high-level C: C, SystemC http://cadlab.cs.ucla.edu/soc

California, behavioral descriptions for silicon

Los Angeles platforms

(authoring and integration), design guidelines and

modeling standards, virtual-components characteri-

zation and support, and design verification (hardware-

software, hardware prototype), focusing on a

particular target application.9 Unlike the first scenario,

this one is not concerned with the design of a particu-

lar application but rather with the development of a

substrate to realize several applications. Characteristic

of this scenario is the service- and mapping-centric

requirements that concern tools in metabin PM for

development and analysis at the desired abstraction

level. The platform developer builds the substrate, or

platform, and uses the tools in metabin PM. The plat-

form user proceeds in metabin FM to map the desired

371September–October 2006

Table 15. Tools in metabin FPM: Industrial.

Provider Tools Focus Abstraction Web site

CoFluent CoFluent Studio Design space exploration through S: Transaction-level http://www.cofluentdesign.com

Design Y-chart modeling of functional SystemC

and architectural models

MLDesign MLDesigner Integrated platform for modeling S: Discrete event, http://www.mldesigner.com

Technologies and analyzing the architecture, dynamic dataflow,

function, and performance of and synchronous

high-level system designs dataflow

Mirabilis VisualSim Multidomain simulation kernel and S: Discrete event, http://www.mirabilisdesign.com

Design product family extensive modeling library synchronous

dataflow,

continuous time,

and FSM

Synopsys System Studio Algorithm and architecture capture, S: SystemC http://www.synopsys.com

performance evaluation

Table 16. Tools in metabin FPM: Academic.

Provider Tools Focus Abstraction Web site

Univ. of Metropolis Operational and denotational S: All MoCs http://www.gigascale.org/metropolis

California, functionality and architecture

Berkeley capture, mapping, refinement,

and verification

Seoul Peace Codesign environment for rapid S: Objected-oriented http://peace.snu.ac.kr

National development of heterogeneous C++ kernel (Ptolemy

Univ. digital systems based)

Vanderbilt GME, Great, Metaprogrammable tool for S: Graph http://repo.isis.vanderbilt.edu

Univ. Desert navigating and pruning large transformation, UML

design spaces and XML based,

and external

component support

Delft Univ. Artemis, Workbench enabling methods and C: Kahn process http://ce.et.tudelft.nl/artemis

of Compaan and tools to model applications and networks

Technology Laura, Sesame, SoC-based architectures

Spade

Univ. of Mescal Programming of application-specific S: Extended Ptolemy II, http://www.gigascale.org/mescal

California, programmable platforms network processors

Berkeley

functionality to the selected platform instance. Figure

2b illustrates the metabin flows that support these

development requirements.

Consider as a test case the development of a new

electronic control unit (ECU) platform for an automo-

tive engine controller. The application designers have

already developed the application code for the plat-

form, but a Tier 1 supplier wants to improve the cost and

performance of its part of the platform to avoid losing

an important original equipment manufacturer (OEM)

customer. If the designers employ the paradigm

described in this article, the application becomes as

independent on the ECU platform as possible. Next, in

collaboration with a Tier 2 supplier (a chip maker), the

Tier 1 supplier determines qualitatively that a dual-core

architecture would offer better performance at a lower

manufacturing cost. A platform designer then uses a

tool for platform development, such as LisaTek, to cap-

ture the dual-core architecture. If the dual core is based

on ARM processing elements, the designers and the Tier

1 supplier can also use ARM models and tool chains. An

appropriate new real-time operating system could

exploit the implementation’s multicore nature. At this

point, the designers map the application onto one of the

possible dual-core architectures, considering the num-

ber of bits supported by the CPU, the set of peripherals

to integrate, and the interconnect structure. For each

choice, the designers simulate the mapped design with

the engine control software or a subset of it to stress the

architecture. These simulations can employ the ARM

tools or VaST offerings to rapidly obtain important sta-

tistics such as interconnect latency and bandwidth,

overall system performance, and power consumption.

At the end of this exercise, the Tier 2 supplier is fairly

confident that its architecture is capable of supporting a

full-fledged engine control algorithm. Any other Tier 1

supplier can use this product now for its engine control

offering.

Electronic System-Level Design

372 IEEE Design & Test of Computers

F1

Functionality

PlatformFunctionality

Mapping

F0 P0

Step 1.
PM-based
tool

Step 2. FM
(augmented
functionality)

Option 1.
P-tool at

appropriate
abstraction

level

Functionality Platform Platform

Mapping

Mapping

F0 P0

M0 M0

F0 P0

M0

F1
F1 P1

P1P1

M1 M1

M1 Mapping

Step 1.
FPM-based
tool

Option 1a. F
(multitools)

Option 2.
FP with synthesis
to lower-level
flows

Option 1b. M
(multitools)

Option 2. FM
(integrated tools)

(
Functionality

Functionality

PlatformFunctionality

Platform

Mapping

Mapping

Platform

(a) (b) (c)

Figure 2. Metabins and hierarchical levels for three design scenarios: new application design from specification

(a), new integration platform development (b), and legacy design integration (c).

Scenario 3: Legacy design integration
The final scenario represents a common situation

for many companies wishing to integrate their exist-

ing designs into new ESL flows. In this case, it’s diffi-

cult to separate functionality and architecture,

because in most embedded systems the documenta-

tion refers to the final implementation, not to its orig-

inal specifications and the relative implementation

choices. If modifying the design is necessary to imple-

ment additional features, it’s very difficult to deter-

mine how the new functionality will affect the existing

design. This situation calls for reverse engineering to

extract functionality from the final implementation.

The most effective way to do this might be to start the

description of the functionality from scratch, using

tools in bin F. An alternative might be an effective

encapsulation of the legacy part of the design so that

the new part interacts cleanly with the legacy part. We

could then consider existing components as archi-

tectural elements that we must describe using tools in

bin P. This, in turn, is possible at different abstraction

levels. Because legacy components typically support

a specific application, mapping is often unnecessary,

and functional or architectural cosimulation can val-

idate a new design. Metabin FP at the system level is

therefore the appropriate flow model in this case.

Figure 2c illustrates this scenario.

ESL WILL EVENTUALLY BE in the limelight of the

design arena. But structural conditions in the EDA

and electronics industry must change to offer a suffi-

ciently receptive environment that will allow the

birth of new companies and the evolution of present

ones into this exciting area. An important technical

prerequisite is industry and academia agreement on

a holistic view of the design process in which to cast

existing and future tools and flows. Our unified

design framework can act as a unifying element in

the ESL domain. However, standardization of system-

level design will take years and require significant

effort to fully materialize. ■

Acknowledgments
We thank the following for their support in reviewing

this article and in helping to classify the various ESL

approaches. Without them, this article would not have

been possible: Abhijit Davare, Alessandro Pinto, Alvise

Bonivento, Cong Liu, Gerald Wang, Haibo Zeng, Jike

Chong, Kaushik Ravindran, Kelvin Lwin, Mark McKelvin,

N.R. Satish, Qi Zhu, Simone Gambini, Wei Zheng, Will

Plishker, Yang Yang, and Yanmei Li. A special thanks

goes to Guang Yang and Trevor Meyerowitz for their valu-

able feedback. This work was done under partial sup-

port from the Center for Hybrid Embedded Software

Systems and the Gigascale Systems Research Center.

References
1. G. Smith et al., Report on Worldwide EDA Market

Trends, Gartner Dataquest, Dec. 2005.

2. J. Vleeschouwer and W. Ho, “The State of EDA: Just

Slightly up for the Year to Date Technical and Design

Software,” The State of the Industry, Merrill Lynch report,

Dec. 2005.

3. International Technology Roadmap for Semiconductors

2004 Update: Design, 2004, http://www.itrs.net/Links/

2004Update/2004_01_Design.pdf.

4. A. Sangiovanni-Vincentelli, “Defining Platform-Based

Design,” EE Times, Feb. 2002, http://www.eetimes.com/

news/design/showArticle.jhtml?articleID=16504380.

5. A. Sangiovanni-Vincentelli and G. Martin, “Platform-

Based Design and Software Design Methodology for

Embedded Systems,” IEEE Design & Test, vol. 18, no. 6,

Nov.-Dec. 2001, pp. 23-33.

6. D.D. Gajski and R.H. Kuhn, “Guest Editors’ Introduction:

New VLSI Tools,” Computer, vol. 16, no. 12, Dec. 1983,

pp. 11-14.

7. A. Davare et al., “JPEG Encoding on the Intel

MXP5800: A Platform-Based Design Case Study,” Proc.

3rd Workshop Embedded Systems for Real-Time Multi-

media (ESTIMedia 05), IEEE CS Press, 2005, pp. 89-94.

8. G. Bilsen et al., “Cyclo-Static Dataflow,” IEEE Trans. Sig-

nal Processing, vol. 44, no. 2, Feb. 1996, pp. 397-408.

9. H. Chang et al., Surviving the SOC Revolution: A Guide

to Platform-Based Design, Kluwer Academic Publishers,

1999.

Douglas Densmore is a PhD can-
didate in the Department of Electrical
Engineering and Computer Sciences
at the University of California, Berke-
ley. His research interests focus on

system-level architecture modeling, with emphasis on
architecture refinement techniques for system-level
design. Densmore has a BS in computer engineering
from the University of Michigan, Ann Arbor, and an MS
in electrical engineering from the University of Califor-
nia, Berkeley. He is a member of the IEEE.

373September–October 2006

Roberto Passerone is an assistant
professor in the Department of Infor-
mation and Communication Technolo-
gy at the University of Trento, Italy. His
research interests include system-

level design, communication design, and hybrid sys-
tems. Passerone has a Laurea degree in electrical
engineering from Politecnico di Torino, Italy, and an
MS and a PhD in electrical engineering and computer
sciences from the University of California, Berkeley. He
is a member of the IEEE.

Alberto Sangiovanni-Vincentelli
holds the Buttner Endowed Chair of the
Electrical Engineering and Computer
Sciences Department at the University
of California, Berkeley. His research

interests include design tools and methodologies, large-

scale systems, embedded controllers, and hybrid sys-
tems. Sangiovanni-Vincentelli has a PhD in engineering
from Politecnico di Milano. He is cofounder of Cadence
and Synopsys, an IEEE Fellow, a member of the Gener-
al Motors Scientific and Technology Advisory Board,
and a member of the National Academy of Engineering.

Direct questions or comments about this article to
Douglas Densmore, Dept. of Electrical Engineering
and Computer Sciences, Univ. of California, Berkeley,
545Q Cory Hall (DOP Center), Berkeley, CA 94720;
densmore@eecs.berkeley.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

Electronic System-Level Design

374 IEEE Design & Test of Computers

DON’T RUN THE RISK.
BE SECURE.

Ensure that your networks operate safely and provide critical services
even in the face of attacks. Develop lasting security solutions, with this

peer-reviewed publication.

Top security professionals in the field share information you can rely on:

Wireless Security • Securing the Enterprise • Designing for Security Infrastructure
Security • Privacy Issues • Legal Issues • Cybercrime • Digital Rights Management

• Intellectual Property Protection and Piracy • The Security Profession • Education

Order your subscription today.

Submit an article to IEEE Security & Privacy. Log onto Manuscript Central at http://cs-ieee.manuscriptcentral.com/.

www.computer.org/security/

BE SECURE.
DON’T RUN THE RISK.

