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Dependability Assessment of SOA-Based CPS
With Contracts and Model-Based Fault Injection
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Abstract—Engineering complex distributed systems is
challenging. Recent solutions for the development of cyber-
physical systems (CPS) in industry tend to rely on architec-
tural designs based on service orientation, where the con-
stituent components are deployed according to their service
behavior and are to be understood as loosely coupled and
mostly independent. In this paper, we develop a workflow
that combines contract-based and CPS model-based speci-
fications with service orientation, and analyze the resulting
model using fault injection to assess the dependability of
the systems. Compositionality principles based on the con-
tract specification help us to make the analysis practical.
The presented techniques are evaluated on two case stud-
ies.

Index Terms—Contract-based, cyber-physical, depend-
ability, fault injection, model-based, service orientation
(SOA).

I. INTRODUCTION

A SSESSING the dependability of large-scale distributed
cyber-physical systems (CPSs) is a difficult task that in-

volves understanding the systems dynamics both in terms of
functionality and of network interaction and communication.
The study of dependability can be interpreted as the identifica-
tion of the possible manners under which the system can break
down. This is usually expressed in terms of failures, i.e., as paths
leading the system to a violation of a given desired property. For
industrial practice, it is useful to have these paths laid down us-
ing fault trees (FT) and failure mode and effect analysis (FMEA)
tables. Yet, elaborating these by hand is costly in terms of both
time and budget and often prone to human error, especially as the
system scale grows, the architecture gets more distributed, and
diverse engineering teams work on different system features.

One natural solution is to adapt techniques from the domain
of requirement verification to requirement robustness checking,
as most commonly achieved using model-based fault injection,
or model extension [1]. When a CPS is deployed over a network,
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the analysis requires that individual components be distributed
in a modular way, precisely defining their role in the architec-
ture and their failure possibilities. This is commonly achieved
through the service oriented architectures (SOA) paradigm [2],
[3]. This, however, normally lacks a fully parallel recognition
at the modeling level, where the fault modalities of the single
components are not available on an individual basis and where
hardly ever are there explicitly stated dependability dependen-
cies liable to the network.

In this paper, we address the issue of dependability by inte-
grating methods from the SOA paradigm, CPS techniques, for-
mal verification, and model-based software engineering prac-
tice. In particular, we adopt a contract-based approach [4] to
specify properties offered by single services when participat-
ing in a compatible environment, and use model-based fault
injection [1] to take care of the dependability aspects. Our for-
mal assume-guarantee model leads naturally to modularity. We
therefore exploit the principle of compositionality [5] to make
the analysis practical and avoid the state explosion problem. We
show how the formalism consistently supports nonfunctional
properties, such as timing and availability, and quantify the va-
lidity of our techniques by practical implementations on two
use cases. Dependability assessment in our context is a rigor-
ous study of resilience to faults, diagnosability and fault event
analysis, that span from physical, to functional, to time delays
and network availabilities. Resilience refers to the ability of the
system to preserve its nominal properties. The safety analysis
tool xSAP [6] is used for the assessment of dependability using
model-based fault injection, an approach that has already be
proven itself effective on industry scale systems [7]. Our contri-
bution in this sense is showing its application on systems other
than digital.

The paper is organized as follows. We first give an account of
related work in Section II. Then, Section III discusses modeling
dependability for CPS using SOA and contracts on a thermostat
example. Dependability analysis is discussed in Section IV.
Finally, Section V illustrates an emergency response case study,
extends the approach, and discusses performance metrics.

II. RELATED WORK

There is a long history of validating systems against depend-
ability, often with techniques based on the intentional injection
of faults. One example of dependability analysis is presented
by Looker et al. [8], where the fault injection is performed
at the network level on the exchanged packets of a finalized
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system in place. The use-case is a feedback-based thermostat
that exchanges messages over a service-oriented architecture.
Our reference example is inspired by that work and, besides
a great deal of adaptation and rethinking, it has a conceptual
resemblance in the fault injection procedure, displaying faults
as delays at the network level. The model-based view that we
propose, however, takes advantage of the integration between
the formal system and the dependability view to make a com-
prehensive early awareness of the available system dynamics,
before deployment.

Xu et al. propose a set of techniques to verify the compliance
of services against a service workflow specification [9], [10].
Their model is based on a variant of Petri Nets and requirements
are specified using formulas similar to computation tree logic
(CTL). Our approach differs, in that we are interested in finding
minimal sets of faults that make the system violate the require-
ments in the context of a CPS. Thacker et al. enrich the tradi-
tional Petri Net formalism with continuous dynamics, however
the approach is reconcilable to automata for both expressiveness
and algorithmic techniques [11]. Rosenkrantz et al. [12] propose
a graph-based model for service-oriented networks to quantify
the resilience of the system under node and edge failures. The
authors develop an algorithm to compute the maximum number
of node or edge failures that the network can tolerate. Our ob-
jectives are similar, and we employ flags over dedicated extra
ports to model availability. However, our model is more general,
and is able to deal with more complex properties and the actual
service behavior, rather than only with the topology of the sys-
tem. More recently, Mehnni et al. have introduced SafeSysE,
a safety profile and dedicated algorithms for the generation of
dependability artifacts from a SysML specification [13]. Our
modeling approach is richer, and makes use of model check-
ing tools that guarantee minimality, although at the expense of
higher computational complexity. Our use of compositionality
and contracts helps us to address these problems.

In this paper, we use a formalism based on automata, and
adapt its inputs to encompass the nonfunctional aspects rela-
tive to the introduction of the network in the system, following
a multiple-viewpoint approach [14], founded on model-based
fault injection [1]. Model-based fault injection consists in ex-
tending the model-abstraction semantics of the system with ad-
ditional faulty behaviors, in a controlled way, to investigate the
reliability of the system in terms of the occurrence of faults
that plausibly trigger those behaviors. One example is given
by Ezekiel and Lomuscio [15] where modal epistemic logic is
used to represent the knowledge of cooperation in multiagent
scenarios, combined with modal temporal logics to analyze the
complex systems in terms of their tolerance to faults. Our ap-
proach follows that proposed in [1], using xSAP [6] to study
of dependability in terms of tolerance, diagnosability, and fault
event analysis, with automatic model extension and automatic
construction of fault event artifacts such as FT or FMEA ta-
bles. The tool is mature and has already been used on industrial
case studies [7]. Among the approaches related to xSAP or
its predecessors, the closest to our work are networked event-
data automata, which use model-based fault injection techniques
to study the dependability of systems, taking into account the

interconnections of automata in a network [16]. In this paper, we
exploit a similar level of formalism to model cyber-physicality
of system components, but in addition focus on the service
interactions typical of SOA and their compositional nature. Be-
sides the mentioned Petri Nets, alternatives to the use of au-
tomata include models based on discrete events [17], [18]. For
instance, Vyatkin et al. propose an approach based on the Pro-
gramming Temporally Integrated Distributed Embedded Sys-
tems (PTIDES) model, which is of interest given the distributed
nature of services [18]. Timing is modeled by time-stamping
messages, which is shown to help the stability of the system us-
ing simulation. We prefer the use of automata, which are more
easily handled by formal verification tools.

Our dependability analysis considers the functional system
level and its dependency to network contingencies in a cohe-
sive, yet separated, way. Derler et al. [19] suggest an approach
where different viewpoints are developed independently and
with mutual guarantees of correct working in the form of design
contracts between, for example, control and software engineers.
Our work is along the same lines but contextualizes the cyber-
physical modeling over SOA. Regarding the effectual modeling
of faults and contingencies in SOA, our work follows the model
proposed by Broy et al. [20], extending it with the use of con-
tracts. Farcas et al. [21] also extend that model and use the Ser-
vice Architecture Definition Language (SADL), which includes
primitives to express service unavailability or connection drops;
thus, accounting for failures. After modeling, the system is ver-
ified to check the validity of temporal properties in presence of
faults in the architecture, triggered nondeterministically by the
SPIN model checker. Unlike our work, SADL can only express
the architectural interactions, as message sequence charts, but
not the functional dynamics of the single components. Also,
our dependability assessment is based on the establishment of
dependability artifacts, such as FT and FMEA tables, that are
constructed alongside to violations of invariant propositional
properties in the model. In addition to that, the support technol-
ogy that we chose for the artifact construction can handle the
verification of temporal properties on the extended model with
nondeterministic faults.

Gössler et al. [22] propose a formal framework for reasoning
about logical causality in contract violation, to establish rela-
tions between a fault (violation of a component contract) and a
damage (violation of the overall system contract). The analysis
is conducted a posteriori on the system execution traces. Their
approach is complementary to ours, which can be used during
system design to analyze the conditions under which a contract
violation may occur. The combination of the two approaches
could lead to a seamless analysis framework from design to
deployment.

III. MODELING DEPENDABILITY

In this and the next sections, we discuss the steps that we
use in our methodology to make the dependability analysis of
SOA-based CPS systematic, so that it can be translated to a
usable tool automation process. We propose an inclusive ap-
proach that treats the SOA aspect and the cyber-physical aspect
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Fig. 1. Overall steps of the methodology.

Fig. 2. Thermostat system.

at the same level, and talk about service-oriented cyber-physical
systems (SOCPS) to stress their peer-level modeling. Our ap-
proach, shown in Fig. 1, begins with a formal specification of the
service-oriented architecture of the system, using a combination
of the modeling standards SysML and SoaML. This is followed
by the specification of properties as contracts, each composed
of an assumption and a guarantee, which are expressed using a
pattern-based language to simplify the design entry. Faults are
introduced as additional ports of components based on a suitable
selection from a library and prepared to be analyzed, carrying
information on their presence and degree of impact. The model
is then translated into the SMV language and analyzed using
the xSAP tool [6], which returns the dependability artifacts of
interest, such as FT and FMEA tables.

We illustrate our approach by means of an example, a service-
oriented thermostat controller that regulates the temperature in
a room. The example is adapted from the dependability analy-
sis of Looker et al. [8], including the fault injection based on
latencies. The thermostat controller is a feedback system com-
posed of a Thermocouple (the sensor), a Controller (the control
device), and a Heater (the actuator), shown in Fig. 2. The three
components exchange SOA messages of current temperature,
control, and heat supply. As in the original paper, the thermo-
couple takes as input the heat supply and internally computes
the change in temperature; thus, abstracting the provision of
heat to the environment and its effect as a SOA communication
between actuator and sensor. We let this computation happen
once per second, so that the estimate is not exceedingly far
from reality. The space embedding the devices is surrounded by
walls, where the outside environment is large enough to neglect
any temperature variation due to heat transfer. The maximum
heat dissipation of the room is a parameter of our model. In-
terestingly, while the example may look simple, its feedback
structure is characteristic and representative of many systems of
interest. As we shall see, the feedback and the introduction of
fault injection make even this example difficult to analyze.

A. Specification Language

Our problem definition language of choice is a combination
of the Universal Modeling Language (UML) standards SysML
and SoaML that we hereafter call SysML+SoaML. There

exist a wide range of languages that are available to model
SOA systems, although many are not prone to the modeling
of SOCSPs. WS-BPEL and WS-CDL are XML-based static
process execution languages, respectively used for modeling
orchestration and choreography in web services. OWL-S
and Web Service Modeling Ontology (WSMO) on the other
hand are ontology-based process execution languages whose
behavior is dynamic and defined during execution [23]. We are
not interested in process execution languages, because we do
not need the level of detail that they offer, especially on the im-
plemented service composition. We need a sufficiently abstract
language to yield favorably to verification, able to capture both
the architecture of the system and its cyber-physical dynamics.
SysML+SoaML, which also features the previously advocated
separation between the functional structure of the system and
its architecture, is a good option for that. Familiarity of system
engineers to UML is also a point that is not shared with other
abstract languages to model SOA.

Besides the system dynamics, we need to track the nonfunc-
tional aspects, such as timing issues relative to the network ser-
vice availabilities. One technique is to extend the expressiveness
of the language with additional constraints and annotations [24].
Our approach, instead, is to enrich the models with additional
ports, interpreted as functional by the verification and depend-
ability analysis engines, and as nonfunctional parameters in the
interpretation of the system as a whole, as will be described in
the next sections.

B. Contracts for SOCPS

We employ the framework of contracts [4], [25] for the spec-
ification of design requirements on the services of the architec-
ture, in the form of assumptions and guarantees from and to
the rest of the system. When put together in the same system,
services are required to satisfy a given top-level collaborative
goal. In this scenario, the dependability problem studies the cir-
cumstances that can prevent the system from reaching the goal
upon the violation of one or more of the services guarantees,
under validity of the assumptions. The benefits of adopting a
contract-based approach are manifold and include design mod-
ularity, separation of tasks across working teams, and separation
of responsibilities. In case of SOA, it is a perfect fit to grasp its
natural interface interaction. This will be instrumental to mak-
ing the analysis of the system effective, as described below in
Section IV-A.

Formally, a contract is a pair of properties (A,G) that specify
the assumption and the guarantee of the object to which it is
attached [4], [25]. Contract implementation makes the semantic
of contracts explicit: a component M is said to implement a
contract C, written M |= C, whenever the guarantees hold in
the scope of the assumptions.

A contract C1 = (A1 , G1) refines C2 = (A2 , G2), denoted
C1 � C2 , whenever the set of implementations of C1 is sub-
sumed by the set of implementation of C2 . This happens if the as-
sumptions of C1 are at least as broad as those of C2 and the guar-
antees of C1 are at least as strict. The refinement relation over
the class of contracts is a partial order, and forms a distributive
lattice with (A1 , G1) ∧ (A2 , G2) = (A1 ∨ A2 , G1 ∧ G2) the
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TABLE I
REQUIREMENTS FOR THE THERMOSTAT SYSTEM TAGGED WITH THE

ASSUMPTION/GUARANTEE LABEL AND COMPONENT

Id Requirement
A/G

Comp.

r1 The reference temperature is given in ◦C and
ranges in [15], [25]

A System

r2 The system reaches the reference temperature
within 10 minutes and never deviates by more than
1◦C thereafter

G System

r3 The thermocouple can work against power levels
no higher than 70 KW

A Sensor

r4 If the heater supplies energy at 2.1 KW more than
the maximum dissipation (7.5 KW), the
temperature increases by a rate of 0.06 ◦C per
second

G Sensor

r5 If the heater supplies energy at exactly the
maximum dissipation (7.5 KW) or up to 10 W
more, the temperature sensed by the thermocouple
increases by a rate of no more than 0.0003◦C per
second

G Sensor

r6 The heat controller is able to bring the temperature
of the room up to steady 14–28 ◦C

A Controller

r7 The temperature value sent to the controller is
assumed never to be below zero, nor higher
than 30 ◦C

A Controller

r8 The output of the heat controller ranges
continuously between −1 and 1: negative values
signal to lower the temperature level, positive
values to increase it and 0 to keep it steady

G Controller

r9 The heater can supply energy from 0 to 10 KW G Heater
r10 For the heater to work properly, input signals must

range within [−1, 1]
A Heater

r11 Positive values on the input signal always imply
positive heat supplies by the heater

G Heater

pairwise conjunction. Conjunction of contracts is commonly
used to combine different viewpoints of the same compo-
nent [4]. To combine contracts of different systems constituents,
we rather need the operator of parallel composition, denoted ‖,
that allows for the assumptions of one contract to be partially
satisfied by what the other contract offers as a guarantee. In
formulas [4]:

(A1 , G1) ‖ (A2 , G2) = ((A1 ∧ A2) ∨ (G1 ∧ G2), G1 ∧ G2).

It can be shown that under these assumptions parallel composi-
tion preserves both refinement and implementations [25]. This
property, which we call compositional refinement, guarantees
that if a composition of contracts C1 ‖ · · · ‖ Cn refines a
top-level contract C, then a composition of implementations
M1 ‖ · · · ‖ Mn implements the top-level contract C as long as
each component Mi implements its individual contract Ci .

In addition to refinement and implementation, the theory we
adopt supports the notion of contract consistency (existence of
an implementation) and contract compatibility (consistency of
the assumptions) [4]. As we are interested in dependability under
fault injection, we assume that the system is fully functional in
nominal mode. Therefore, the premise is that aspects of consis-
tency and compatibility have been dealt with using appropriate
techniques [26], [27].

C. Thermostat Specification

The three thermostat components of Fig. 2 represent inde-
pendent services that interact at the interface level. We specify
the input/output behavior of the services using contracts.

Table I shows an informal set of requirements for the overall
system and its independent services. Each requirement is labeled
as Assumption or Guarantee, and is attached to the overall sys-
tem or a specific component. For instance, the system must
receive a reference temperature in the range [15, 25] ◦C (r1),
and stabilize in 10 min (r2). For the Thermocouple, we require
that the heat supply does not get too intense (r3), in which case
the sensor is not functional. The Thermocouple ensures a time-
proportional rise in the temperature of the room, according to
how much the heat supply outdoes the maximum dissipation
of the room. Requirements r4 and r5 are particular demands
on temperature increase per second. The Control Device has a
constant reference temperature threshold as input between 14
and 28 ◦C (r6), plus the temperature feedback from the Thermo-
couple is assumed never to be lower than 0 ◦C nor higher than
30 ◦C (r7). The output is given by a control signal that takes
values in the continuous interval [−1, 1], specifying whether the
temperature should be lowered, kept constant or increased (r8,
r10). The Heater can supply energy from 0 to 10 KW (r9). The
actual value is internally calculated by the Heater, accounting
for the input signal, and then actuated (r11).

The techniques described in this paper are to some extent
independent of the particular formalism used to express con-
tracts, as long as it supports temporal constraints. Here, we
adopt the pattern-based contract framework embodied by the
Block-based Contract Language (BCL) [28]. The reason under-
lying our choice is the simplicity of a pattern-based approach
combined with the Simulink front-end that the language makes
available, which could integrate property proving and simula-
tion in the early phases of development. In BCL, contracts are
expressed using patterns and expressions over the system vari-
ables. Patterns are built in layers to express invariants in terms of
events and their time and logical relations. In particular, the key-
word implies introduces a logical implication, while within
introduces a timing constraint. The keyword always specifies
that a timing constraint must be satisfied at every instant. The
primed version of a variable is used to denote its value in the fol-
lowing evaluation step, using a synchronous underlying model.

Table II shows the BCL contract specification, obtained as
the combination of individual requirements. Without pointing
out it explicitly in the formal specification, we assume that the
reference temperature is kept constant throughout evolution.
Also, we require the initial temperature of the room and the
environment temperature to be 0 ◦C.

The natural requisite for correctness of the system is that
the contract attached to the three component services compose
up to refine the overall system contract. The problem is that,
according to requirement r2, the system (top-level) contract is
expressed using a range of 600 s (10 min), whereas the single
components are defined by 1 s increments (e.g., requirement
r4). Our approach to address this difference is to unfold the
composite contract specification by constructing a contract of
incremental granularity up to reaching the needed 600 s. Fol-
lowing this direction, we start from the definition of the con-
tract Thermostat0 as the parallel composition of the three
service contracts at t = 0, when the temperature is 0 ◦C, ac-
cording to contractual specification. The composite contract will
have the reference temperature Tref as the input variable and the
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TABLE II
CONTRACTS FOR THE SYSTEM AND THE SERVICES

System Contract

A [15 ≤ Tr e f ≤ 25]
G [T ′ = Tr e f within [600s]] and [T ′ = Tr e f implies [[Tr e f − 1 ≤

T ′ ≤ Tr e f + 1] always] always

Sensor Contract
A [0 ≤ heat ≤ 70000] and [T [0] = 0]
G [heat > 7500 + 2100] implies [T ′ > T + 0.06] within [1s]
G [7500 ≤ heat ≤ 7510] implies [T ≤ T ′ ≤

T + 3 · 10−4 ] within [1s]

Control Device Contract
A [14 ≤ Tr e f ≤ 28] and [0 ≤ T ′ ≤ 30]
G [T ′ < Tr e f ] implies [0 ≤ u ≤ 1]
G [T ′ > Tr e f ] implies [−1 ≤ u ≤ 0]

Heater Contract
A [−1 ≤ u ≤ 1]
G [u > 0] implies [heat > 0]
G [0 ≤ heat ≤ 10000]

temperature after 1 s (T [1]) as the output. Similarly, we can de-
vise one Thermostatk contract for each k value up to 600, each
having the reference temperature Tref and the temperature T [k]
as input, and the temperature T [k + 1] as the output. Taking the
composition of all of these contracts gives

Thermostat = ‖ {Thermostatk}k∈[0...599]

that takes the constant reference temperature Tref as the input
and has the temperature after 600 s T [600] as the output. This
new contract can then be shown to refine the top-level contract
of the overall system by boolean algebraic manipulations of the
involved formulas. Once this step of checking the compositional
refinement is done, the single services of the architecture can
be implemented individually without further connections to the
others.

D. Service Implementation

We specify each service implementation as a set of equational
laws that can be shown to satisfy the corresponding service
contracts. The Thermocouple is formally implemented by acting
on the internal energy of the system, accounting for dissipations
using the differential equation:

dQout

dt
= αcond · A · (T − Ta). (1)

Here, Qout measures the heat natural dissipation in homoge-
neous conditions, αcond = [5, 20] W/(m2 · K) is the heat-transfer
coefficient of the wall, A = [50, 500] m2 is the surface of the
room exposed to the outside, T is the temperature of the room,
and Ta is the ambient temperature facing the wall on the outside,
set to 0 ◦C constant, and assume no other dissipations.

The heat supply from the actuator contributes positively to the
internal energy of the room, whereas the dissipation is wasted
energy. By inverting the heat equation ΔQ = Cs · m · (T ′ −
T ), we obtain the new temperature of the room T ′ under a heat
derivative supply of heat for Δt seconds, as

T ′ =
ΔQroom

Cs · m + T =
Δt · heat − ΔQout

Cs · m + T (2)

where Cs = [1000, 1015] J/(Kg· K) is the (isobaric) specific
heat of air and m = [35, 400] Kg is the mass of air in the room.
The value Δt is set to 1 s in the functional implementation.

The system actuator is implemented by a 10-KW Heater mod-
ule that increases power based on the control signal u, according
to the following rule:

heat = min(heat + 200 · u, 10 000).

A PID controller implements the control for the system with
parameters Kp = 0.02, Ki = 0, and Kd = 1.5, tuned by sim-
ulation on different values of the reference temperature and
guaranteeing the satisfaction of the controller contract.

IV. ASSESSING DEPENDABILITY

Faults in our systems of interest can happen in relation to the
functional aspects of the system or to the delivered quality-of-
service. Functional issues can be studied using standard model
extension techniques [1] or, faithful to our contractual view, as
contract violation [29]. The situation is different if we want
to analyze quality-of-service requirements, i.e., nonfunctional
properties. Those mainly relate to time properties of communi-
cation (e.g., latencies, jitter, round-trip time) and are paramount
for the correct serving of distributed cyber-physical systems. In
the case under analysis, delays in communications can stream
out-of-date messages in the network, making the internal partial
representation of the system of each participant inconsistent,
possibly leading the system itself to a crash, and with poor
diagnostic information.

An effective way to inject faults as latencies, or other quan-
tities, is thus essential for the system dependability assessment.
Our approach is to reduce it to a functional problem, introducing
for each input and output variable of each participant an associ-
ated fictional port carrying the nonfunctional values, in a similar
style of [14]. If these ports are related to the timing viewpoint,
we call them latency ports. We attach one latency port for each
service input signal (input latency port) and one latency port for
each service output signal (internal latency port). Values for the
internal latency ports are produced by the service, and specify
the amount of time needed for the corresponding signal to be
emitted once all dependent inputs are available. On the other
side, input latency ports express the time difference from the
last arrival of their relative input signal to the considered current
arrival event. For instance, the Thermocouple has an additional
input port ilpheat (for input latency port) and an output port intT
(for internal latency port), bound to communicate the time that
the message needs to reach the receiver from the moment it is
created.

Latency ports are allowed to interact exclusively with a Net-
work participant component, that we introduce anew (see Fig. 3).
The role of the Network agent is to forward latency port val-
ues from one component to another, based on network inter-
connections, integrating those values with delays coming from
commonplace communication. Furthermore, in order to keep
coherence in the model, we let all functional signals pass through
the Network, so that services never directly communicate with
each other in any way.
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Fig. 3. Thermostat model including the network.

An abstract SysML+SoaML picture related to our use case
example is represented in Fig. 3, where input latency ports are
represented in green and internal latency ports in red. For in-
stance, the Thermocouple needs 1 second between one sensing
and the next, therefore it has on its temperature internal latency
port intT the time needed to reach the 1 s, conditional to the
time that already has elapsed since the sensing previous to the
current one. In formula, the value on intT will be given by
intT = 1s − ilpheat.

The network decides, following a schema independent from
anything attached to the network, how to feed the single par-
ticipant latency ports. In our specific example, let S stand for
Sensor, C for Controller and H for Heater, and tX→Y for the
communication time. Assuming a communication nominal la-
tency of 0.01 s between any two participants and negligible
internal latency for the Controller and the Heater (i.e., intu = 0
and intheat = 0), the network will pass on the Controller ilpT

port the value (in the nominal case):

ilpT = tC→H + tH→S + intT + tS→C

= 0.01s + 0.01s + 0.97s + 0.01s = 1.00s.

This machinery gives the network the prerogative to decide the
communication times with input latency ports and leaves to
components to decide their own running times, using internal
latency ports. Since all the network-dependent nonfunctionality
of the architecture has been relegated to functional ports, the
dependability assessment can proceed for the nonfunctional side
just in the same way as traditional techniques would do for the
functional side.

The nominal version of the thermostat model can be shown
to satisfy the top-level thermostat contract. The latency ports
only end up being short negligible delays for the system, in
nominal mode. Now, injections can happen on latency ports as
system delays. For example, we can inject faults on internal la-
tency ports. Those would mimic accidental computation delays.
We can inject faults on input latency ports. These would mimic
network-related delays. After injection, the Thermocouple will
use a new value for Δt in its computations, this time acquired
from the network through the tainted latency ports. For exam-
ple, if the heat message was so delayed to hit the Thermocouple
after 1 s, then the Thermocouple would return a value sensed
exactly after that time, and the whole system safety would be

Fig. 4. nuXmv code for the Heater.

at stake, because the contract satisfactions of the single sub-
components would no longer be guaranteed. We would like,
eventually, to study the system under these sorts of degraded
conditions.

A. Fault Injection

The tool used for the dependability analysis in the present
study is xSAP [6]. xSAP is a safety analysis platform devised
to carry out model-based fault injection and dependability arti-
fact construction over digital systems. It is built on top of the
tool nuXmv [30] and inherits all of its model checking features.
Functionally, xSAP takes a nuXmv specification of a correctly
behaved system in the SMV language, an adverse top-level event
nominally prevented by the system in normal conditions and a
structured specification of the ways faults may trigger therein,
providing, as a result, dependability artifacts such as FT and
FMEA tables. The computation may use four different engines:
exhaustive BDD model checking (bdd), incremental Satisfi-
ability (SAT)-based (bmc), and SMT-based (msat) bounded
model checking (BMC), and IC3 (ic3). We will employ the
most convenient for each case.

To use xSAP, we need to translate our specification into
nuXmv. Feasibility of translation from UML-like languages to
verification engines has already been established in the litera-
ture [31]. For our specific work, we did not use any form of
automation for this, but directly implemented the three services
of the thermostat into nuXmv modules defined by the equations
of Section III-D. We then introduced the network participant
and latency ports as per the previous section. Fig. 4 shows a
(simplified) fragment of the code for the Heater, including the
command u with its latency port LP_u and the output heat
with the internal latency ILP. To be analyzed, the code must
be further discretized (not shown). The complete source code,
including the steps for discretization for the entire system is
available in our technical report [32].

The first phase for dependability assessment is to inject faults
in the model. This is done in xSAP by dedicating specialized
hook variables to the occurrence of faults and starting nominal
or faulty models correspondingly. Importantly, hooks for the
timing view are all put on the network component and the func-
tional view remains intact as it were before the fault injection. In
the case at study, we will assume that the faults are transient and
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consist in a gradual increase in the network times of communi-
cation between participants, from 1 to 22 , 25 , and 210 hundredth
of a second (centiseconds).

In order to specify the top-level property around which the
dependability analysis is established, we introduce a simple
monitor whose task is to supervise the system and, in this par-
ticular case, trigger a timeout event if 600 s have elapsed without
the reference temperature of the room being reached. We can
ask xSAP to inject the model with faults and construct the fault
tree for the property timeout. The aim is to select all minimal
sets of hook variables (the so called cut sets) that can lead the
Top-Level Event to occur.

The discretized model consists of a finite state machine with
approximately 90 bits of state variables. By running xSAP out
of the box, the analysis never terminates, no matter which en-
gine is used. This is because, as in contract verification, the
single modules have the time granularity of 1 s, whereas the
top-level contract has coarser requirements, expressed over 600
s of time. Injections on such a system are performed at ev-
ery feedback loop of evolution, thereby blowing up the search
space exponentially at every loop. More specifically, the hook
variables activate extra state machines that model the faults,
contributing additional bits (from 6 to 9 in our case) to the
state space for every iteration, quickly becoming the dominant
factor. We nonetheless retrieved a partial result bounding the
computation using bmc to the first 100 s only. We were able to
get a fault tree in 9 min for Tref = 1 ◦C, showing that a delay
of 210 centiseconds leads to the violation of the contract. For
comparison, increasing the bmc limit to 110 s, the execution
time increases to 16 min. Beyond this, computation becomes
impractical.

Fortunately, by exploiting compositionality in refinement
checking, we can avoid extending the analysis up to 600 s and
focus instead on the single components, on the timing viewpoint.
In fact, under a correct contract compositional refinement, the
only way to break the top-level contract is by breaking one
of the component contracts. Notice that the converse is not
true, therefore the approach that we propose is conservative. We
therefore developed a model for the Thermocouple, the only
component specifying timing restrictions on its contract, with
the precise intention of studying its timing view with respect
to its contract. The point now will not be to simulate the entire
system evolution, but rather check that every possible imple-
mentation deriving from the Thermocouple satisfies the contract
of the Thermocouple. Compositional refinement checking (see
Section III-B) then guarantees that the top-level goal is
satisfied.

The application of the analysis to the Thermocouple takes
practically no time. We therefore enriched the model with all
delay injections on the input latency port of the Thermocouple
service, ranging from 22 to 210 centiseconds. Fig. 5 shows the
resulting fault tree, which demonstrates that the system is safe as
long as the heat message reaches the heat port of the Thermo-
couple in less than or equal to 27 centiseconds. This is consistent
with the partial result obtained using bmc, and perfectly in line
with the model: up to a delay of 27 centiseconds—which is our

Fig. 5. Fault tree for delay injections over the thermocouple latency
ports.

approximation of 1 s in base 2 logarithmic scale—the system
behaves as if no delay was there, i.e., it is resilient. However, as
delays go from 27 to 28 , so that the system experiences a delay
of 27 beyond the Thermocouple computation time, the system
starts to malfunction. The effect of delays on the other services
is null because they have no functional dependency on time,
which implies their FT are empty (and thus not shown).

Our interpretation suggests that the system can be read very
easily and its resiliency to faults determined. This is yet another
evidence that the approach that we used is valuable to our aims.

In particular, the output of xSAP tells us how possible combi-
nations of unfavorable events contribute to the loss of the nom-
inal functionality, and therefore to the violation of the system
properties. This result is useful also during the design process:
different implementations of a control system can be shown to
be more or less resilient to unfavorable events (for instance to
the likelihood and duration of network delays), and therefore
help in architectural decisions.

V. AVAILABILITY AND DUALITY

In a similar fashion to latency ports, it is possible to sup-
plement the service components with ports concerning service
availability. These are boolean ports whose nominal value is
positive, before injections, and are responsible for enabling the
functional activity of the components. We illustrate this on a
simplified version of the concept Alignment Example (CAE)
emergency response system [33], representative of a number of
case studies aimed at the organization of safety plans for the re-
covery from alarming situations. We use this example to model
the evolutionary development of SOA-based systems in terms
of participants arbitrarily leaving the playboard.

The scenario is that of an urban area, a District, that relies
on a Fire Station to prevent unexpected fire explosions to burn
over. The Fire Station has a number of Fire Fighting Cars avail-
able, 5 in our specific case, that it can send to mitigate the fire.
We assume that one car is always enough to mitigate one fire
explosion, and that cars are dispatched in order of their index,
from 1 to 5.

The SOA structure is that of the seven participants (the Dis-
trict, the Station, and the 5 Cars) communicating with each other
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Fig. 6. Emergency response system activity diagram.

according to the agreed modes. Upon fire, the District sends a
help request to the Fire Station. The Fire Station immediately
gathers its available resources and sends a signal to one of its
Cars to reach the place. The selected Car moves on the district,
extinguishes the fire, and sends an acknowledgment to the dis-
trict. Then, it goes back to the Fire Station sending a message
of mission accomplished. This makes the Fire Station acknowl-
edge that the car is back operative once it gets to the station.
We assume that a car needs to go back to the station when-
ever it quenches one fireburst (e.g., to refuel, alternate firemen).
The activity diagram of the CAE (with one car) is presented
in Fig. 6.

A. CAE Injection

As opposed to the thermostat, which assumed everything was
fixed in the topology, here there are parts of the system, either
connections or components, whose presence is not to be taken
for granted. The fault modalities that this system is subject to are
sudden, not necessarily permanent, disappearances of services
(boolean unavailability). As for the thermostat, we first create
our nominal model, inject faults, and see the results. Unlike the
thermostat, here we do not need a specific network agent for
the interactions because we do not need to attach nonfunctional
behaviors such as timing. The introduction of the network or
a similar conception is anyhow possible and would have the
advantage of having all fault modalities gathered together in
one entity.

We derive the nominal SMV model of the CAE from the
SOA specification, assuming no faults and that everything goes
smoothly according to plans. Using nuXmv, we verify that the
system is always able to eventually quench all fires, with a pos-
itive result. As possible instances of system faults, cars can for
instance disappear, simulating their unavailability. Car unavail-
ability is modeled as the Fire Station failing to connect with the
car to tell it to go. Another fault is the case of a car moving
but never reaching the destination. Finally, we model the case
of a car losing connection with the Fire Station once the fire is
quenched. We represent the faults as extensions on the Car mod-
ule and on the Fire Station module: unavailabilities are modeled
as connections stuck at inactive.

Since top-level events can only be expressed by invariant for-
mulas in xSAP, we will need some workaround to guarantee that
fires will always be extinguished, eventually, which is expressed
in temporal logic. To do that we implement a monitor, which

Fig. 7. Performance of xSAP on the CAE model using different engines.

operates as a supervisor on the district. The purpose of the mon-
itor is to let the system know when a fire is not extinguished
in a fixed amount of time, by triggering a timeout variable set
to 10 time units. This will provide a bounded guarantee and is
expressed in our Top-Level Event specification as nonoccur-
rence of the timeout event.

The xSAP analysis finds ten minimal cut sets. The first
eight indicate that the failure of any one of the cars labeled
in {1, 2, 3, 4} can lead to a failure of the desirable property. For
the fifth car this is not enough: the first car has to be nonoperative
also, otherwise it could supply for Car 5 once back to the Fire
Station. Two cut sets identify this scenario. Other failure scenar-
ios are omitted, since the fault tree construction automatically
excludes those subsumed by the minimal ones.

As indicated in Section IV-A, there are four engines available
to xSAP for the Fault Tree construction, namely bdd, bmc,
msat, and ic3. The CAE example is simple enough (the state
is composed of 38 bits) to let us highlight some aspects regard-
ing performance without incurring into intricacies and model
complexities as we had for the thermostat use case example.
Fig. 7 shows the different performance of xSAP using different
engines, as a function of the BMC bound k. Here, the timeout in
the monitor is set to ten time units. The bdd and ic3 methods
do not depend on the bound; thus, their performance is constant.
For this model, the fastest algorithm up to k = 24 is SAT-based
bmc, while ic3 is the slowest.

After the bound k = 11, we expect FT to be all equivalent,
because the monitor is defined using a timeout of 10, which en-
tails executions that all monotonically subsume the first. Notice
that if we did not have domain knowledge about the system, we
could not claim satisfaction for any k at all. This delineates a
tradeoff between the use of BMC and complete methods. For
the CAE example, if less than k = 23 steps were not enough to
hold confidence in the model, then it would be better to use the
plain bdd procedure, because it would take less time.

Unfortunately, the cutoff value where choosing one method
is preferable to the other cannot be known in advance; thus, the
tradeoff can exploit little or no black-box guidance. Consider
for example that increasing the timeout from 10 to 12 increases
the computation time from 8 to 53 min for bdd, whereas the
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bmc computation time is still lower than 14 min even for a
timeout of 23 (setting k = 24). Similar to what is usual in model
checking, a BMC procedure can be used in the earlier phases
of development to find FT in a very fast way and think about
completeness later for self-assurance.

B. Exploiting Duality

When constructing the fault tree, it is instinctive to set the
Top-Level Event as an unwanted hazard. Dually, we can think
of the Top-Level Event as a desirable state, rather than a bad one.
The extension of the model are then performed by introducing
welcoming positive events, and the fault tree represents desirable
configurations. We apply this procedure to the CAE example.
The question that we would like to answer is whether we can find
a nonfaulty configuration of cars that can manage a maximum of
five fires in less than ten time units. To answer this question, we
need to lay out a nominal empty system of one District, one Fire
Station, and no cars. The injections in this case are not faults, but
cars. The fault tree construction generates all possible minimal
cut sets leading the system to the satisfaction of the desired
formula. We call the dual fault tree a suggestion tree.

Because xSAP is allowed to pick any arbitrary value for
its variables, for the result to be minimal, the tool will pre-
fer those configurations with no fires ever bursting out in the
scene. In this case, suggestion trees are of no use. We therefore
need to enforce some sort of fairness by asking that in the final
state—corresponding to the property violation—the district ex-
periences all the possible fire explosions and that the monitor
reaches a time count equal to the timeout. The construction finds
four minimal cut sets. In particular, we need any two cars among
those in {2, 3, 4, 5}, arbitrarily, based on when fires burst plus
Car 1. Car 1 is special and needs to be there in all minimal con-
figurations: since failures are not admitted, all cars in {2, 3, 4, 5}
are instructed to go only if Car 1 is not at the Fire Station.

The suggestion tree could be found using BMC methods
with bound k = 11. It took 3.173 s using the SAT-based bmc
procedure and 25.812 s using msat. Then, we tried to feed the
problem to the bdd and ic3 engines. Not without surprise,
xSAP was able to find smaller cut sets using those procedures,
respectively, in 4.668 and 38.069 s. The reason for this new,
different suggestion tree lays in the completeness of the bdd
and ic3 methods: xSAP can look at the whole state space and
explore more options to make the existential paths minimal. A
path could be generated such that the single Car 1 could make
its way back and forth from the FireStation to extinguish all
fires independently in 24 steps. The same fault tree could then
be found using BMC-based techniques with a bound of k = 24.
This time, however, it took much more time: around 16 s for the
bmc procedure and more than 300 s for msat.

VI. CONCLUSION

In this paper, we proposed a contract-based approach for
SOCPS modeling that combines service orientation and cyber-
physicality to track both the dynamics of systems and their

SOA-related nonfunctional aspects, such as timings and avail-
ability. Our methodology is founded on the enhancement of the
service implementations with additional ports of interaction,
whose value is either determined by a network participant or
by the single services themselves, internally. We have shown
how this is compatible with the decomposition of contracts in
viewpoints and how traditional techniques for the construction
of dependability artifacts can exploit this decomposition and be
used for diversifying assessments.

We advised the utilization of SysML+SoaML as a problem
description language, but our methodology is independent from
the actual language of choice. For model-based fault injection
we used xSAP, which is currently state-of-the-art in the field
and has great potential beyond the illustrative examples used in
this paper. Moreover, it comes with the model-checking algo-
rithms of nuXmv that can be applied on the nominal model ex-
tended with faults, supporting verification/preservation of tem-
poral formulas before and after the model extension. Our future
work includes automating the translation into SMV, combin-
ing the existing technologies into a comprehensive flow. As
part of the process, we plan to extend the network with asyn-
chronous communication and a more detailed model of faults,
that may be found in SOA-specific interactions between partic-
ipants in the network, and integrate suggestion trees to support
the choice of components and parameters in dynamic system
reconfiguration.
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[20] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model of services,”
ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, Feb. 2007, Art. no. 5.

[21] C. Farcas, E. Farcas, I. H. Krueger, and M. Menarini, “Addressing the
integration challenge for avionics and automotive systems—From com-
ponents to rich services,” Proc. IEEE, vol. 98, no. 4, pp. 562–583, Apr.
2010.
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