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Abstract—A 64 64-pixel ultra-low power vision sensor is pre-
sented, performing pixel-level dynamic background subtraction as
the low-level processing layer of an algorithm for scene interpre-
tation. The pixel embeds two digitally-programmable Switched-
Capacitors Low-Pass Filters (SC-LPF) and two clocked compara-
tors, aimed at detecting any anomalous behavior of the current
photo-generated signal with respect to its past history. The 45 T,
26 m square pixel has a fill-factor of 12%. The vision sensor has
been fabricated in a 0.35 m 2P3M CMOS process, powered with
3.3 V, and consumes 33 W at 13 fps, which corresponds to 620
pW/frame.pixel.

Index Terms—CMOS vision sensors, energy autonomous low-
power sensors, low-power, visual processing, wireless sensor net-
works.

I. INTRODUCTION

V ISUAL information is the richest source of information
describing our surrounding environment. At present, im-

agers are largely used in battery-powered consumer electronics,
such as mobile phones, camcorders, tablets and toys, embedding
one or two high resolution cameras, which are used to take pic-
tures, record movies and communicate through video and audio.
These imagers, which typically have megapixel resolution, con-
tinuously deliver data at frame rate requiring large communica-
tion bandwidth and power. Even a low-cost VGA imager con-
sumes about 70 mW, which represents a significant value for
a mobile device. In fact, a battery-powered system cannot af-
ford to keep a conventional camera working for long periods,
without cutting down dramatically the battery lifetime.
There are however applications which do not require accu-

rate and highly resolved images to be able to function and take
a decision. These kind of applications deal, for instance, with
monitoring of people or objects in domestic rooms or moving
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around a dangerous or an off-limit zone. Infrastructures repre-
sent a big obstacle in the diffusion of such systems, which need
to be placed all around the area to be monitored. This makes
battery-operated systems an attractive solution, reducing both
installation and maintenance costs. Present day, conventional
wireless video systems still consume too much power to enable
long-term battery powered operation. For these systems, how-
ever, the imager can be customized for an efficient use of the
available energy resulting in a significant improvement of the
system lifetime. Ultra-low power devices must therefore con-
tinuously monitor the scene, extracting useful information and
delivering data only when significant events have been detected,
delegating high-level processing to an external computing plat-
form.
The interest on ultra-low power imaging started years ago

[1]–[11] and is constantly growing, aiming toward W and
- W cameras targeting also applications such a implantable

retinas [12] and distributed wireless sensor networks [3], [10],
where power consumption is of main concern. In this paper,
we describe the implementation and experimental results of
a novel ultra-low power vision sensor, embedding a robust,
VLSI-oriented algorithm for temporal contrast detection [13],
forming the low-level part of an image processing algorithm
for scene interpretation [14]. The 4 k pixel sensor consumes 33
W at 13 fps, powered at 3.3 V. The 45-transistor pixel detects
and binarizes anomalous intensity changes with programmable
response time, according with the specific application. The
sensor is programmed and controlled in a closed loop with the
external off-chip logic.
Section II covers the basic techniques for image background

subtraction. Section III discusses the VLSI-oriented algorithm
for Dynamic Background Subtraction. Section IV addresses the
pixel implementation issues, while details on the sensor archi-
tecture are covered in Section V. Experimental results are re-
ported in Section VI. Section VII finally compares our work
and results with other sensors which have been recently imple-
mented.

II. BACKGROUND SUBTRACTION

Detecting an event occurring in the scene requires the fol-
lowing problem to be addressed:

“Given a frame sequence from a fixed camera, detect the
foreground objects.”

0018-9200/$31.00 © 2012 IEEE
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Fig. 1. Operating principle of a photodiode working in storage mode. CP is the junction capacitance while Ip represents the photo-generated current due to the
light impinging on the photodiode itself. The two voltage ramps VP1, VP2 show the response of the pixel in two illuminating conditions, where VP2 is related to
the higher light intensity.

Although this statement looks relatively simple to be satisfied
from a computer vision perspective, some considerations need
to be made in order to transfer this concept into silicon. The
simplest way of approaching this issue is represented by the
basic background subtraction:

(1)

where is the current frame, taken by the camera, is the
background corresponding to a reference frame and TH is a
user-defined threshold. As long as (1) is satisfied, foreground
objects are present in the scene. Despite its simplicity, this ap-
proach is not reliable enough. In fact, in a real scenario, the back-
ground constantly changes. It can change due to varying illumi-
nating conditions, suddenly such as moving clouds or slowly,
like the moving sun. The background can also change due to
camera oscillations, a tree in a windy day, the sea waves and so
on. According to these considerations, a more reliable approach
is to adopt the well known frame difference, where the back-
ground is assumed to be equal to the previous frame:

(2)

This method is simple and straightforward to be embedded into
a sensor and can be executed very quickly. Many implemen-
tations of vision sensors with frame difference operations have
been proposed in the past [4], [12], [15]–[19], using different
design techniques. Unfortunately, this technique is very sensi-
tive to the threshold TH and works properly only under certain
values of frame-rate and object speed. Alternatively, the back-
ground can be modeled in a more accurate way, by averaging
past frames:

(3)

This model takes into account the background variations, ac-
cording with the value of . It is very memory consuming, re-
quiring more frames to be stored in an off-chipmemory. It also
requires extra computation and memory access operations that
are in conflict with the low-power target of this work. One of the
best trade-offs that can be achieved, meeting the functional ro-

bustness of the system with the CMOS technology constraints,
is represented by the running average:

(4)

where is called learning rate, defining the time re-
sponse of the running average with respect to background vari-
ations. Equation (4) does not require extra memory and can be
tuned to the specific scenario by changing the value of . Using
(4), the dynanic background subtraction can be written as:

(5)

The present implementation takes advantage of (5) for the im-
plementation of a robust dynamic background subtraction with
VLSI-oriented characteristics. This operation is performed at
the pixel-level turning the sensor into a massively parallel, dig-
itally-programmable, analog processor.

III. ADAPTIVE DYNAMIC BACKGROUND SUBTRACTION

This section describes the algorithm for adaptive background
subtraction, which has been embedded in the sensor. The algo-
rithm is inspired by a vision processing algorithm for scene in-
terpretation [14] which pre-filters the photo-generated signals of
the pixels, extracting binary information on temporal changes.
This information is then processed by a higher level algorithm
that discriminates anomalous situations occurring in the scene.
The robustness of the algorithm requires that each pixel be able
to detect anomalous temporal changes with high reliability. This
drastically reduces system false positives, thus decreasing the
operating duty-cycle and the power consumption of the entire
vision system.
Before describing the details of the algorithm, we recall the

basic operating principle of a photodiode. Fig. 1 shows a pho-
todiode working in storage-mode. After a reset phase (RES),
where the photodiode is pre-charged to the reverse voltage VR,
VP starts discharging by the photo-generated current . For
small voltage variations, the discharge rate is approximately
linear with the light intensity impinging on the junction. After
the exposure time , the final value of the photodiode
is sampled. The larger the light intensity, the lower the voltage
VP2. Hence, low voltages refer to high illuminating levels,
while large voltages refer to low illuminating conditions.
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Fig. 2. Pixel-level dynamic background subtraction. The horizontal axis is divided in 20 frames to show how the computation evolves along time. The number
of frames (20) does not refer to a real case. The current signal is acquired by the photodiode; represents the upper-bound while is the lower-bound.

We may now describe the basic analog signal processing that
has been implemented at the pixel-level. Fig. 2 shows a voltage
diagram of the adaptive dynamic background subtraction em-
bedded in the pixel. is the current value of the pixel, sam-
pled at the end of the integration time and acquired at each
frame; and are two threshold voltages, changing
from frame to frame, according with the signal dynamics. To-
gether they define a grey-zone, corresponding to the gray-col-
ored area in Fig. 2, inside which the current signal is rec-
ognized as normal, i.e., having normal “background” behavior
with respect to its past values. Whenever goes above ,
the behavior of the signal is considered anomalous. Under this
condition, the pixel is classified as hot relative to the upper
bound , and the signal is asserted. At the same
time, quickly starts following to absorb the unexpected
variation, thus implementing the running average with the de-
sired learning rate. The unexpected variation is absorbed when

, so that the system recovers the highest sensitivity
of the pixel with respect to potential positive voltage variations.
The situation is dual for the lower bound: a hot pixel is detected
whenever is asserted and the thresholds
start following the signal with different time constants. There-
fore, depending on the pixel activity, the width of the grey-zone
changes from frame to frame, adapting the sensitivity to the spe-
cific working conditions and detecting alert situations (outside
the grey zone) with large reliability. The larger the grey-zone,
the larger the pixel signal change that is considered normal. The
algorithm, which is graphically described in Fig. 2, is formal-
ized in (6), (7), (8) and (9):

Upper Bound:

(6)

(7)

Lower Bound:

(8)

(9)

Equations (6) and (8) describe the two hot-pixel conditions. In
these cases, the filters work with the fastest time constant .
Under cold-pixel conditions, in (7) and (9), the filters adopt the
slowest one .
In order to validate its overall performance, the algorithmwas

simulated on a standard dataset, consisting of a number of video
clips, recorded within the CAVIAR project [20], acting out the
different scenarios of interest, as shown in Fig. 3. These include
people walking alone, meeting with others, window shopping,
entering and exiting shops, fighting and passing out and last, but
not least, leaving a package in a public place.
The grey-level pixels in the right image are those recognized

as hot-pixels. Therefore, they are transparent with respect to the
original image. The black pixels are those recognized as normal
background and do not bring any information. Although this is
a simple scenario, the number of hot-pixels covers about 10%
of the total image resolution, turning into a significant reduction
of data to be sent off-chip.

IV. PIXEL IMPLEMENTATION

The main challenge in the implementation is how to embed
a low pass filter with programmable time constant in a pixel.
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Fig. 3. Algorithm simulated on a CAVIAR dataset. (a) original image; (b) image filtered with the presented algorithm for adaptive dynamic background subtrac-
tion. The visible parts of the image are those where a hot-pixel has been detected.

Fig. 4. Basic block diagram of the proposed pixel. Two Low-Pass Filters (LPF)
are required to generate the Upper and Lower Boundary signals ,
that are compared to the current signal by means of two comparators. The
output of the comparators is masked by a digital circuitry providing the proper
control outputs to tune the LPFs. The Digital Control Block is placed at the
periphery of the imager and not embedded into the pixel.

Although the presented algorithm looks rather simple and natu-
rally oriented to a VLSI design, it is difficult to be implemented
in CMOS without compromising the pixel characteristics. As
shown in Fig. 4, it requires two programmable low-pass fil-
ters (LPF) and two comparators to be embedded in each pixel.
The two LPFs generate the two threshold voltages and

, which define the boundary conditions of the current signal
. The two comparators check where the current signal is

with respect to these thresholds and encode this position into a
2-bit code (BMax, BMin). The generation of the two threshold
voltages, as described in Fig. 2, requires that the two LPFs
change their frequency response according with the binary code
(BMax, BMin). This is the reason for the two feedback loops
in Fig. 4. The pixel schematic is shown in Fig. 5. The photo-
diode is buffered by the source follower M3, which is loaded by
the current source M1 and turned ON and OFF by M2, through
the global phase . This minimizes the operating duty-
cycle together with the dc-current of the buffer. The current
signal feeds two Switched-Capacitors Low-Pass Filters (SC-
LPF1, SC-LPF2) providing the upper-bound and lower-bound

thresholds , respectively. Two clocked compara-
tors (CMP1, CMP2) compare with and , gener-
ating the two output bits , which are used to code
the four possible states of the pixel, as shown in Table I. Al-
though status 4 is forbidden under ideal operating conditions,
it has to be taken into account in particular under the sensor
learning phase, after the system power-on. In this case, right
after powering the sensor, the two voltage thresholds

start from unpredictable values, allowing the forbidden
status to be set (Table I). The SC-LPFs have to be operated
for a certain number of frames (typically 50–100 frames) so
that the two threshold voltages can properly track the current
signal, suppressing any hot-pixel. It has to be pointed out that
the learning phase should be run under a static scene.
Three additional analog signals are avail-

able in the pixel, carried by three bit-lines (BVp, BVMax,
BVMin). They are activated at the pixel selection and multi-
plexed at the periphery of the array. Three unity-gain OpAmps
are used to buffer the signals before they are delivered off-chip.
Although the use of these signals turn into a significant tran-
sistor overhead for the pixel and large power consumption
for the OpAmps, they are very important both for the test and
debug phases as well as for the sensor learning phase. In a
more engineered version, only the current signal should
be preserved, being fundamental for the sensor installation
procedures. In this case, four transistors and two bit-lines could
be spared, with benefit for the pixel pitch.

A. Switched-Capacitors Programmable Low-Pass Filter

A first-order SC-Low Pass Filter can be implemented in
CMOS by means of two MOS switches and two capacitors
(Fig. 6) [21]. Its transfer function in the z-domain is:

(10)

where . In our case .
Assuming that the clock frequency of the filter is much larger
than the frequency of the photo-generated signal
and using the linear transform , where /fps is
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Fig. 5. Schematic of the pixel. The photodiode PD is buffered with a PMOS source-follower which is activated by only at the end of the integration time
to minimize the dc power consumption. The two SC-LPFs are fed by the current photo-generated signal and generate the two voltage thresholds .

TABLE I
PIXEL STATUS. QMAX, QMIN ARE USED TO CODE THE STATUS OF THE PIXEL

Fig. 6. Schematic of the Switched-Capacitors Low-Pass Filter (SC-LPF) im-
plemented in the pixel.

the frame period of the sensor, typically ranging from 10 to 30
frame/s, the filter transfer function expressed in the continuous
time domain is

(11)

Therefore, the time constant of the filter is:

(12)

Because the filter is fed by the signal , which is available
only once per frame, the highest clock frequency of the filter is
equal to the frame-rate . is always pre-charged
with at every frame by clocking once a frame. By
activating the second phase only once every frames, the
filter can be slowed-down by an arbitrary value, as shown in
(13), where is an integer multiplying the filter’s time constant

(13)

In order to execute the proposed algorithm, the SC-LPF has to
be switched between two values of time response ;
under a hot-pixel detection, the related filter has to have a fast
response , while under cold-pixel the filter has to have a
slow response . This can be set though a proper control of
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Fig. 7. Comparator built-in offset to enhance noise immunity when the current signal is near the thresholds.

the phase . Referring to Table I, for instance, in case of a
“Hot-pixel Max” , the LPF should be fast

, while under “Cold-pixel Max” it has to be
slowed-down . Although this is not a fine-tuning technique,
its main advantage is that it is fully digital and does only require
simple control logic to be integrated at the imager periphery.
The two SC-LPFs are tuned independently according to the

status of the pixel (see Table I).

B. Noise Immunity

Under steady-state conditions when the value of the pixel
does not change, the two threshold voltages con-
verge toward the current value of the pixel, reducing the
extent of the safe grey-area, and thus achieving the largest pixel
sensitivity. An overly large sensitivity may result in spurious
hot-pixel detection due to noise affecting the signals. For this
reason, we have implemented safe-zones around the pixel value
delimited by an offset voltage that determines a minimum
width of the grey-area, as shown in Fig. 7. Mathematically, as
long as the following conditions are satisfied:

(14)

(15)

no hot-pixel will be detected. The width of the safe-zone is de-
fined by properly unbalancing the differential input pairs of the
clocked comparators CMP1 and CMP2 used in Fig. 5, whose
schematic is shown in Fig. 8 [22]. In our case, an offset voltage

mV has been intentionally set in the two comparators.

V. SENSOR ARCHITECTURE

Fig. 9 shows the basic block diagram of the vision sensor.
It consists of an array of 64 64 pixels, a 64-bit ROW DE-
CODER, sequentially selecting the rows of the imager, and a
64-stage UPDATE REGISTER, delivering binary and analog
data to the output of the chip and providing the control logic for
the SC-LPFs of the pixels. Each pixel of the generic column
is connected with 2 binary bit-lines (BMaxj, BMinj) detecting
“Hot-pixel Max” and “Hot-pixel Min” respectively, and 3
analog bit-lines delivering the analog
signals of the photodiode, and the analog thresholds and

respectively.
The basic operating function of the sensor is the following. At

the end of the integration time, each pixel compares the current

Fig. 8. Schematic of the clocked voltage comparator.

value with the two thresholds and computes
the 2 bits QMax and QMin coding the status of the pixel. Then,
the ROW DECODER sequentially selects the 64 rows of the
array. Each pixel P(i, j) of the selected row places the values
of QMax and QMin on the two bit-lines [BMaxj, BMinj], up-
loading them to the -th cell of the UPDATEREGISTER, which
has two functions: a) to control the time constant of the filter
according to the status of the pixel; and b) to provide a binary
and/or analog data readout of the selected row.
The filter control works as follows. Assume that P(i,j) de-

tects a hot-pixel with respect to , i.e., a light-to-dark inten-
sity change. During the readout phase, the two bit-lines [BMaxj,
BMinj] are set to [1, 0]. The bit-lines are connected to the asyn-
chronous set (S) of the flip-flop pair of the -th, cell forcing

. An UPDATE pulse is then provided,
masked by [QMaxj, QMinj] through the AND gate. This turns
into which directly drive the two
clocks of the selected SC-filters:

(16)

(17)

After the UPDATE phase, data of the -th row are read out and
a new row is selected.
The UPDATE REGISTER also embeds a 64 3 analog-

channel multiplexer consisting of a column decoder which
sequentially selects the analog bit-lines of one of the 64 pixels
in the row. It provides 3 analog serial outputs
which are buffered by three unity-gain OpAmps and delivered
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Fig. 9. Block diagram of the 64 64 pixels sensor architecture with detailed schematic of the UPDATE REGISTER and its connections to the selected i-th row
(SELi) of the imager. The D-Type flip-flops can be set (S) by the bit-lines. Before shifting out data to the output of the chip (DOUT) by applying an external clock
(CLK), an UPDATE pulse is provided, which is masked by the bit-line values (BMj, Bmj) before arriving to the filters of the selected pixels (MMj, Mmj).

synchronously with the binary data (DOUT). The multiplexer
is usually enabled during the sensor test and calibration. These
signals allow the current signal of each pixel to be moni-
tored together with the activities of the two analog memories

and during the algorithm execution.
The interface of the sensor is fully digital, with the exception

of the three analog signals devoted to the chip debug and testing.
Fig. 10 shows the timing diagram of the main operating phases
of the sensor. After the Integration Time (Ti), the signal is sam-
pled onto the first capacitors of the SC-filters (C1M and C1m
of Fig. 5) by turning ON the buffer and pulsing

SETVp. The two comparators are then clocked, comparing
with and . Binary data (QMax, QMin) are now stored
into each pixel and the sensor is ready for the readout phase.
START selects the first row of the imager and stores the values
of the bit-lines (BMaxj, BMinj) into the UPDATE REGISTER.
At the rising edge of EOR (End Of Row), data are ready to be
read out. Before reading out, the filters (SC-LPF1, SC-LPF2)
of the pixels of the selected row have to be updated, by pulsing
UPDATE, according with the corresponding values of (QMax,
QMin). Now, data can be read out serially through DOUT, pro-
viding 64 2 clock pulses on CLK. The next row is selected
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Fig. 10. Timing diagram of the sensor including Integration Time (Ti), data readout of the first row and filters update.

Fig. 11. Pixel response on electrical stimulus simulating a sudden light-to-dark change. The current signal is set to its highest level, , while is
pre-charged to the photodiode saturation level , thus forcing a Hot-pixel Max condition.

by pulsing ACK. This operation is executed 63 times during the
array raster-scan readout phase, until EOF (End Of Frame) is
asserted.

VI. EXPERIMENTAL RESULTS

Various tests have been carried out on the fabricated chip
to measure and verify the basic sensor functionality. Of par-
ticular interest is the filter time response. To measure it, we
have induced an abrupt signal variation on the photodiode
to cross the thresholds and , respectively, as shown
in Figs. 11 and 12. Both filters have been clocked at every frame
thus making them work at their fastest time response. This oper-
ating mode has been implemented by pulsing the phases
and once at every frame ( in (13)), thus making the
two filters quickly react to any hot-pixel event. When setting

, the two filters are fast enough to cover the target appli-
cation, which requires time constants ranging between 30–300
frames, which means from 2 s to 20 s in case the sensor works
at 15 frame/s.
HH Test (Fig. 11)-Hot-pixel Max
Initial conditions:

The pixel takes 8 frames to absorb the anomalous
signal change.
HL Test (Fig. 12)-Hot-pixel Min
Initial conditions:
The pixel takes 5 frames to absorb the anomalous
signal change.
It is possible to note that the two filters exhibit different time
response necessary to absorb an hot-pixel event (8 frames and 5
frames for HH and HL respectively). This means that the filters
need to be tuned according with these characterisitcs. There-
fore, assuming the desired time response to be 80 frames for
both Hot-pixel Max and Hot-pixel Min, the value for
the Hot-pixel Max has to be chosen, turning into a time constant
of frames, while for Hot-pixel Min, turning
into a time constant of frames. The different be-
havior of HH and HL with respect to the algorithm is probably
due to the coupling effects, in particular the clock of the com-
parators which are fed by floating capacitors. Despite the pixel
layout symmetry, the signals are not equally af-
fected by the clock coupling. This behavior can be observed in
Fig. 13, where the imager was operated in the dark while the
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Fig. 12. Pixel response on electrical stimulus simulating a sudden dark-to-light change. is set to its highest level, , while the current signal
is pre-charged to the photodiode saturation level = , thus forcing a Hot-pixel Min condition.

Fig. 13. Histogram of the three analog voltages referred to a uniformly illuminated grey-level image. The two thresholds have been settled in
order to absorb all the hot-pixels, turning into a black output image. The distance of VMax and VMin with respect to Vp is defined by the built-in offset of the
pixel comparators (CMP1, CMP2). The three beans are centered on code 152 , 161 and 175 respectively.

photodiodes were intentionally reset to an intermediate value
(VR), thus simulating a uniform grey-level image (161/255).
Values of and of the entire array have been mea-
sured and plotted together with . Experimental results show
that is effectively placed between the two threshold

. However, is not exactly in the middle
of the range, so that the sensitivity level for hot pixel detec-
tion is higher for the lower bound (9 LSB) than for the upper
bound (14 LSB). We must point out that these values refer to a
black image, i.e., with no active hot-pixel. If an increase in sen-
sitivity is required, we have to expect a certain number of spu-
rious hot-pixels. This is due to the coupling effect of the clocked

comparators and to the fact that both and drift toward
VDD, because of the junction leakage current of the two PMOS
transistors MSW1 and MSW2 working as switches (Fig. 5).
Fig. 14 shows measurement results of a pixel under abrupt light
changes. After a positive signal variation of , a hot-pixel
is detected and quickly tries to absorb
the anomalous change. This takes about 15 frames, while
slowly reaches the final value of in more than 70 frames. The
pixel behaves the same in case of . As already men-
tioned, a certain amount of mismatch can be observed, which
is probably due to the leakage current in the memories and cou-
pling effects during the comparator operation. Typically, the ex-
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Fig. 14. Pixel response vs abrupt light changes . Under hot-pixel condition quickly absorbs the anomalous variation, while slowly
reaches the final value of .

Fig. 15. Photograph of the measurement setup used to debug and test the sensor
functionalities. The sensor prototype consists of two stacked boards. The vi-
sion chip with optics is placed on the front one, while the FPGA is placed
on the rear, driving the vision sensor and interfacing the prototype with a PC,
through the USB. In order to test the algorithm execution, a movie has been used
as benchmark, continuously running on a monitor and acquired by the vision
sensor. The analog outputs, generated by the chip, have been acquired through
an analog/digital acquisition board and displayed on the monitor (left).

pected number of hot pixels is kept relatively constant at about
of the total number of pixels. Thus a pixel is hot ap-

proximately every 100 frames. This keeps the sensitivity of the
sensor constantly at its maximum. Fig. 15 shows the experi-
mental setup used to test the functionality of the chip. The sensor
looks at a monitor which repeatedly shows a movie (Bench-
mark) with moving objects. The vision sensor is directly inter-
faced to an FPGA board, providing the timing to the chip. Bi-
nary and analog outputs are acquired by a mixed analog/digital
Acquisition Board and visualized on amonitor (Sensor Outputs)

in order to evaluate the analog and digital in-
formation delivered by the sensor.
Fig. 16 shows an example of the sensor operating function, em-
phasizing the hot-pixel compensation of the adaptive algorithm.
The hand moves periodically in front of the imager. The motion
is intentionally slowwith respect to the algorithm response time.
At the beginning, the hand is still and no hot-pixel is detected.
When the hand starts moving, a large amount of hot-pixels is as-
serted (Fig. 16(d)). The analog memories try to reduce their gap
with respect to the signal . Therefore, (Fig. 16(b)) in-
creases from frame to frame, becoming darker and darker, while

(Fig. 16(c)) decreased, becoming lighter and lighter. In
this way, the number of hot-pixels slowly decreases until a black
image is reached.
Table II lists the main chip specifications. The total chip

power consumption is 66 W, where 33 W are consumed
by the vision sensor, while another 30 W are burned by the
BIAS block, generating the temperature compensated global
bias voltage for the buffers of the pixels. This block belongs
to a library cell, provided by the silicon foundry, and is not
designed for low-power applications. Moreover, its power
consumption does not scale with the imager resolution. This
is the reason why we did not take it into account in the sensor
power consumption as well as in the pixel power consumption
and in the computing power, listed in Table II. The main source
of power consumption is due to the pixel embedded voltage
buffer M1–M3 of Fig. 5, which sinks about 1 A. In order
to minimize its activity, the source-follower is turned on only
at the end of the integration time to sample the current signal

onto the two capacitors and . This operation is
executed in 10 s and could be further reduced, after which
the photodiode is not used anymore. Fig. 17 shows the chip
micrograph together with pixel implementation details. The
layout of the two SC-filters is symmetric with respect to the
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Fig. 16. Working example of a moving hand. (a) Current analog signal , acquired by the sensor; (b) image stored in the analog memory; (c) image stored
in the analog memory; (d) binary image delivered off-chip .

Fig. 17. Micrograph of the chip. In the top-left part the BIAS block, providing the bias voltage to the pixels, and the three unity gain analog buffers (OpAmps)
delivering the analog outputs of the pixels during the chip debug phase. In the blow-up, layout of the pixel with embedded processing.

TABLE II
MAIN SENSOR CHARACTERISTICS

horizontal axis. The switches are placed at the top and bottom,
while the NMOS capacitors are in the middle.
A picture of the vision system prototype is shown in Fig. 18.

The system is interfaced directly to a PC through a USB con-
nection. A graphical user interface allows data to be visualized
and provides a way to change some operating parameters of the
sensor such as the integration time and the algorithm learning
rate .

VII. COMPARISONS WITH OTHER SENSOR ARCHITECTURES

Although no standard metrics have been defined yet to
compare vision sensors performance, it is worth listing the
specifications of the most significant sensors performing

similar functionalities such as spatial and temporal contrast.
Table III lists a number of sensors with comparable resolution
and CMOS process. We observe that power consumption varies
significantly between the different solutions. The presented
sensor together with [23] are those that exhibit the lowest
power consumption, which is a factor of about 250 lower with
respect to [18]. The fill factor is relatively low with respect
to other implemented chips [18], [23], mostly because of the
large area occupied by the four capacitors of the two SC-LPFs
(C1M, C2M, C1m, C2M). The overall performance of the
sensor can be estimated according to the executed operation at
the operating frame-rate. In our case, the operations are analog
and are mainly performed at pixel-level, as described in (6),
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Fig. 18. Vision system prototype. (a) the chip is interfaced with an FPGA, providing the proper timing and supporting the USB link with the PC. A graphic
interface allows the user to set few sensor’s parameters: integration time and filter’s learning rates ; (b) final version of the sensor demo.

TABLE III
SUMMARY AND COMPARISON OF CHIP CHARACTERISTICS

TABLE IV
COMPUTING PERFORMANCE

(7), (8) and (9). As listed in Table IV, the sensor performs
about 4 GOPS/mm and 42 GOPS/W at 13 fps. These values
are in line with the most significant vision chips featuring
image processing techniques that have been published in the
last years.

VIII. CONCLUSION

We have presented a 64 64 pixel, ultra-low power vision
sensor embedding pixel-level analog dynamic background sub-
traction as the basic image filtering for a scene interpretation
algorithm. Each pixel delivers 2 bits detecting an anomalous
signal behavior (hot-pixel) with respect to its past history. The
algorithm uses two SC-Filters/pixel, changing their frequency

response through a fully digital control. Each filter can be
tuned according with the pixel status. The sensor delivers a
64 64 2—bit image where the asserted pixels are those
detecting a potential alert situation. This image is the input of
the high-level algorithm for scene interpretation, which is exe-
cuted by an external processor. The sensor exhibits a pixel size
which is in-line with those of similar vision sensors. Some un-
desired effects have been observed and reported in Section VI.
They are mainly due to the coupling effects of CLKCMP on
the three analog signals , which are stored
onto high-impedance nodes. In fact, the clocked comparators
strongly affect the analog signals although a careful symmetric
layout has been adopted. Moreover, the built-in offset in the
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comparators differential pair cannot be changed, turning into
a limitation in the capabilities of the sensor to adapt itself to
the different application scenarios. Alternative design solutions
would be more desirable, in order to be able to change this
value upon request.
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