
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010 181

Toward Correctness in the Specification and Handling
of Non-Functional Attributes of High-Integrity

Real-Time Embedded Systems
Daniela Cancila, Roberto Passerone, Member, IEEE, Tullio Vardanega, Member, IEEE, and Marco Panunzio

Abstract—In high-integrity systems, the focus of the develop-
ment process is geared to assuring that the assertions made on
the system are both correct (i.e., semantically sustainable) and fea-
sible (i.e., true at run time). Some of those assertions take effect
in the non-functional domain, that is, in how the system is real-
ized and behaves in time, space and communication during exe-
cution; others in the functional domain, and thus concern what
outputs the system produces for its inputs. In this paper, we ad-
dress the problem of achieving correct specification and handling
of non-functional attributes, with particular regard to the concur-
rent structure of the system, the safeness of the interaction proto-
cols engaged in it, and the guarantee that its timing feasibility can
be statically verified. Our approach is based on a Model-Driven
Engineering methodology, in which correctness can be ensured by
construction or verified at a high level of abstraction, while the run-
time implementation structure and code are automatically gener-
ated. We employ the Ravenscar Computation Model (RCM) and
focus, in particular, on aerospace applications, which impose strin-
gent requirements on correctness properties. We discuss an alge-
braic formalization of our model based on graph theory which we
use to prove safe termination in systems compliant with RCM, and
show how to use the MAST+ static analyzer to verify the timing as-
pects. We finally illustrate the results of a prototype tool that was
developed for evaluation by major industrial players in the Euro-
pean space industry.

Index Terms—Formal methods, high-integrity real-time em-
bedded systems, model-based engineering, non-functional at-
tributes, ravenscar computational model (RCM), static analysis.

I. INTRODUCTION

O VER the last few years, a wealth of methodologies, tech-
niques and formalisms have been proposed to construe

component-based development as a promising approach to ad-
dress the increasing complexity of large-scale systems [1]–[4].
In most cases, emphasis is placed on those aspects that permit
to leverage reuse and separation of concerns, and have to do

Manuscript received June 03, 2009; revised November 12, 2009; accepted
January 29, 2010. First published March 11, 2010; current version published
May 05, 2010. Paper no. TII-09-06-0100.

D. Cancila is with CEA, LIST, Laboratory of Model Driven Engineering for
Embedded Systems, Point Courrier 94, Gif-sur-Yvette, 91191, France (e-mail:
daniela.cancila@cea.fr).

R. Passerone is with the Dipartimento di Ingegneria e Scienza dell’Infor-
mazione, University of Trento, 38122 Povo di Trento, Italy (e-mail: roberto.
passerone@unitn.it).

T. Vardanega and M. Panunzio are with the Dipartimento di Matematica
Pura e Applicata, University of Padova, 35121 Padova, Italy (e-mail: tullio.var-
danega@math.unipd.it; panunzio@math.unipd.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2010.2043741

with quality, integrity, and functionality. In this context, it is a
well accepted fact that dependence on a posteriori verification
is not economically viable. For this reason, considerable effort
is being deployed in the industrial and academic communities
to establish correct specification and handling of non-functional
attributes, with particular regard to the concurrent structure of
the system, the safeness of the interaction protocols engaged in
it, and the guarantee that its timing feasibility can be statically
verified. Of course, a certain amount of verification still has to
be performed at the end of the development process. In the em-
bedded systems industry, for example, hardware-software inte-
gration and end-to-end functional qualification, which are crit-
ical stages of the process, can only occur when all components
are ready and the system that integrates them can actually be op-
erated. Even in these cases, however, a rigorous design method-
ology can help establish a correct implementation path early in
the design flow.

In this work, we are interested in studying methodologies for
the design of high-integrity real-time embedded systems, and
focus in particular on the domain of aerospace applications.
Specifically, we target the design of the software architecture
for real-time platforms based on Ada and the Ravenscar pro-
file [5]. In this context, we address the problem of augmenting
component reuse by separating the treatment of functional and
non-functional concerns.

We go about this separation by stipulating that the functional
domain is concerned with what outputs the system shall produce
for its inputs, whereas the non-functional domain with how the
system is realized and behaves in time, space and communica-
tion during execution. This taxonomy is no different from that
proposed by Glinz [6] and others in a similar vein, except that we
restrict functional requirements to solely regard the sequential
element of component specification and their static aggregation
and interconnection.

The fundamental intent of this separation is to extend the
opportunity of software reuse: arguably in fact, the more a
functional specification is free from non-functional concerns
in the above connotation, the more it can be reused across
distinct system models—and thus take on varying non-func-
tional requirements—and/or composed in other functional
specifications.

Focus in this paper will be placed in particular on how we
handle non-functional properties, such as (explicit and/or im-
plicit) attributes set on the concurrent structure and on the timing
behavior of the system, and prove their consistency and assure
the correctness of their realization by automatically constructing
an implementation from a specification, and by adopting formal

1551-3203/$26.00 © 2010 IEEE

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

verification techniques to ascertain their satisfaction at run time.
Our main results are concerned with warranting the correctness
of the concurrent structure of the system in the way of proven
compliance with the Ravenscar profile, safe task interaction in
the way of freedom from infinite call cycles, and satisfaction
of timing attributes. As far as functional requirements are con-
cerned, instead, we expect that the designer has already provided
a “correct” functional specification and therefore do not address
this aspect of verification. (The reader shall be advised that in
this paper we consistently use the term “structure” to mean the
concurrent, runtime, organization of the system, which we re-
gard as a key non-functional concern. This connotation is thus
unrelated to static architectural considerations, which may also
take effect in the functional domain.)

We take a model-driven engineering (MDE) approach to
system development [7], [8]. As the name suggests, the MDE
methodology focuses on the use of models as the primary means
for software construction. In MDE, designers use a number of
distinct model spaces which allow them to perform software
specification at multiple levels of abstraction. With respect to
most component-based design methodologies, MDE introduces
a new level of abstraction, called metamodel, which is used to
specify the form of model elements and the relationships that
can exist between them. In our approach, designers specify
a system using notions such as classes, interfaces, ports, and
components. From there, transformations are employed on the
user model to automatically generate a new implementation
model in which runtime executable components correctly
realize in terms of the Ravenscar profile the original compo-
nents in the specification. Finally, code can be automatically
generated from the implementation model.

In an unrestricted general model space, problems may arise
from the composition of components, which may cause unex-
pected, unwanted or erroneous behavior to emerge at run time.
Examples are the introduction of invocation cycles which could
lead to erroneous (e.g., not terminating) task interactions, or
system composition causing tasks to miss their user-defined
deadline. These problems can be detected and avoided by fully
defining components by their assumptions and guarantees
[9]–[12]. Broadly speaking, guarantees are the services which
are provided by a component to its environment; assumptions,
instead, are those services which are required by a component
from its environment to accomplish its guarantees. In this
paper, we address the problem of ensuring that the assumptions
which are exposed by a component are satisfied by the guar-
antees of other components, where satisfaction implies correct
synchronization and timing. There are two distinct aspects
to this problem: one requires that an assumption (a required
service) may connect to a guarantee (a provided service)
as long as the guarantee satisfies the assumption locally. In
this case, the guarantee is sufficient to directly discharge the
assumption of the calling component. The other extends this
requirement transitively across the whole chain of locally-cor-
rect assumption-guarantee connections, so that guarantees from
components further down in the call sequence can be used
to discharge the assumption. The former is a comparatively
simple problem of value matching (and possibly round-trip
refinement). The latter is considerably more complex because
we must infer global properties on the system from guarantees

given on individual components. In the context of the MDE
methodology, this is further complicated by the fact that the de-
signer specifies the system at an abstract level, using classes and
interfaces, while the implementation in terms of threads reside
in runtime components, obtained via model transformations.

We adopt the approach proposed by Vardanega [13], and de-
fine one metamodel for both the design and the implementation
levels. The underlying idea is to use components and interfaces
to capture non-functional properties, and to reason, organize and
specify the architecture of the system. We then automatically
aggregate certain basic elements to build runtime components
that comply with the Ravenscar Computational Model (RCM)
[5], [14] and satisfy the given system architecture specification.
We show that the process enforces certain properties of interest
in our domain of application, such as the guarantee of safe ter-
mination for all computation threads, and apply static analysis
and round-trip engineering techniques to verify the temporal at-
tributes. The overall process has been implemented in a tool
based on Eclipse and developed at the University of Padova
(Italy). Temporal analysis is performed using MAST+, an ex-
tension of the MAST tool originally developed at the Univer-
sity of Cantabria (Spain) [15], also realized at the University of
Padova.

II. RELATED WORK

The large increase in the deployment of software systems
in recent years have made a range of new devices that inte-
grate several complex functionalities possible. Against this
backdrop, the academic and industrial communities have
looked at software reuse and component-based techniques as
the winning strategy to improve design productivity and to
increase quality. Reuse strategies typically exploit a set of
pre-designed architectural components and aggregate them by
designated composition rules meant to ensure that reuse occurs
as intended. In this context, several methods can be used to
guarantee correctness of the final result, operating either by
construction before the realization of an implementation, or by
verification of the generated system. We take a mixed approach,
and deal with structural properties mostly by construction, and
with temporal properties by early system verification. Because
the literature in this area is vast, we discuss in this paper what
we regard as representatives of classes of approaches that are
related to our work. Structural correctness is addressed in this
section, while work related to temporal attributes is deferred to
Section V.

Correctness by construction is described by Chapman as an
“economical method to develop security and safety-critical ap-
plications” [16]. The fundamental observation is that the later
errors are detected, the higher the cost to remove them [17].
Therefore, the underlying idea in a correct by construction flow
is to make it hard to introduce errors early in the development
and, otherwise, to detect them and remove them as soon as
they are introduced using static analysis techniques. Sifakis de-
scribes correctness by construction as based on two principles:
composability, which ensures stability of component properties
across integration, and compositionality, which permits to infer
global system properties from component properties [18]. Our
approach follows the general idea of correct by construction

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 183

design while integrating the process in the MDE development
paradigm, endorsed and promoted by the Object Management
Group (OMG) [19], [8]. Although our approach is different from
that of Sifakis, we arrive at the same conclusion: correctness by
construction depends on compositionality and composability. In
this work we deal primarily with the correct assembly of the run-
time components, hence focusing on our interpretation of com-
positionality, and we refer the reader to [20] for a discussion on
composability.

Component-based techniques can be classified as abstract or
constructive [21]. Abstract approaches are often based on ab-
stract algebra and are typically able to model highly general sys-
tems. For example, Montanari et al. use graph theory to model
the architectural structure of a system [22]. A set of graph trans-
formation rules is used to reconfigure the system and to prove
its correctness. Similarly, Reo uses category theory to analyze
the coordination of components via mobile channels [23]. Our
approach differs in that we restrict our attention to only a class
of models, which are suitable for our chosen domain of applica-
tion. In fact, although our formalization uses graph theory, our
results do not generalize to all systems, but apply only to those
that comply with RCM [5], [14]. These restrictions allow us to
derive specific results, which are not true for the general case.

An intriguing approach to model real-time embedded systems
is discussed by Easwaran et al. who focus on modeling hierar-
chical systems out of component interfaces [24], [25]. A compo-
nent is viewed as an interface decorated by temporal attributes.
Hierarchy is used in a bottom-up fashion to understand how time
needs to be allocated to the parent interface in order to satisfy
the requirements of the children interfaces. In our approach, in-
stead, we treat the system as a flat collection of interfaces and
derive results on the structure of the overall composition. In par-
ticular, we do not use the principle of compositionality to study
temporal requirements, which can be verified in our system by
static analysis. Hierarchy, if needed, can be modeled using the
notion of partition, while temporal budgets can be introduced as
discussed in [26]–[28].

Unlike abstract approaches, constructive approaches are
based on a specific language or platform which can execute a
given set of runtime components. BIP [29] is a typical example
of constructive approaches. In BIP, the description of the
system is partitioned into three layers. At the bottom layer, the
components are described as state machines. Their possible
synchronizations are specified in the form of connectors on the
second layer. A third layer of priorities restricts the interaction
space to obtain deterministic execution. Unlike BIP, which is
based on a concurrent state-based model, we use a caller/callee
dependency relation in a sequential execution context. While
this choice somewhat limits the expressiveness of our model,
it also avoids the exponential growth in the number of possible
interactions as new connectors are added to the system [29],
thereby facilitating analysis.

The work by Lundqvist et al. [30] focuses on fault tolerance
in high-integrity real-time systems. The approach adopts the
Ravenscar Profile to ensure static analyzability of the system in
the time dimension. Unlike our approach, timeliness properties
are analyzed by “a-posteriori” verification with model checking.
The approach further provides runtime hardware monitoring

of timing properties (task worst-case execution time and dead-
line) which does not alter the original timing behavior of the
system as in software-based approaches. Timing faults are han-
dled by triggering degraded operational modes for faulty tasks.
The execution platform is a Ravenscar-compliant kernel that has
been formally verified to ensure the correctness of its behavioral
semantics [31].

Several frameworks operate at a higher level of abstraction
to assist the designer with the creation and transformation of
generic models of the system. One example is the Generic Mod-
eling Environment (GME) [32], which allows the designer to
construct and manipulate domain-specific modeling languages.
This approach is related to ours in so far as languages can be ma-
nipulated to implement a variety of model transformations based
on standard traversal patterns or on graph rewriting rules. These
are used to automatically convert models between languages,
or to generate implementation models. Unlike GME and other
tools, which focus on metamodeling technology, our main con-
cern is to prove the correctness of such transformations on our
specific choice of model. Other approaches, such as Ptolemy
[33], Balboa [3], Metropolis [34] and SystemC-H [35], focus
primarily on functional aspects, and provide extensive support
for simulation and validation. Instead, we restrict our attention
to structural properties and in particular to the interaction proto-
cols between components, generated according to the designer
specifications.

To prove our correctness results we rely on a Domain Spe-
cific Language (RCM Metamodel) that conforms to the Raven-
scar profile. However, the current level of integration in em-
bedded systems is forcing academic and industrial communi-
ties to adopt more Domain Specific Languages for a single de-
sign. For instance, the MeMVaTEx and Saturn projects [36],
[37] use the SysML and MARTE profiles [38], [39] to construct
a Domain Specific Language, which separate the modeling of
requirements from that of the functionality. Model transforma-
tions can be used to integrate the heterogeneous parts, and can be
supported by tools such as MDATC [40] to ensure the correct-
ness of the operation. Our choice of a single restricted Domain
Specific Language (RCM Metamodel) clearly makes it easier
for us to derive specific results, to the detriment, of course, of
flexibility in the specification.

Currently, there is a lively debate in the scientific commu-
nity as to whether to adopt several Domain Specific Languages
and then interface them (heavyweight approach), or to have only
one metamodel (for all the application domains) and to gen-
erate several Domain Specific languages from it (lightweight
approach) [41]. The main advantage of the heavyweight ap-
proach is to build a Domain Specific Language that is exactly
tailored for the intended aim. However the main drawback is
the need to relate the various (meta)models and to integrate the
corresponding support tools. The lightweight approach does not
incur such a drawback. This approach introduces only one meta-
model, which contains general and common notions (such as
class or interface) and then builds Domain Specific Languages
as a suitable combination of profiles of that metamodel.

We make use of the heavyweight strategy to best address the
needs of high-integrity systems. More precisely, we introduce
a Domain Specific Language (the RCM Metamodel), which is

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

184 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

Fig. 1. Overall methodology.

tailored to the needs of aerospace applications, and introduces
limitations that may not be appropriate in other industrial do-
mains. The extension of our results to a heterogeneous setting
is part of our future work.

III. BACKGROUND AND METHODOLOGY OVERVIEW

We develop our methodology using RCM. RCM is a collec-
tion of concurrent components designed to satisfy the restric-
tions of the Ada Ravenscar profile, which is a subset of the Ada
programming language tailored to high-integrity real-time em-
bedded systems [5]. In order to warrant determinism and pre-
dictability, RCM prohibits task synchronization, any form of re-
cursion, and dynamic creation or allocation of resources. More-
over, RCM requires tasks to be nonterminating “to mitigate the
hazard that may be caused by tasks terminating silently” [5].
Their jobs, on the other hand, do terminate as we will show in
Section IV-B. System development in the RCM model space
follows a design-by-refinement flow in which an initial abstract
functional view is progressively transformed into a detailed ar-
chitectural description of the system as a composition and in-
terconnection of runtime components. We can place this de-
velopment process in the broader context of refinement-based
methodologies, such as platform-based design [4], [2], by iden-
tifying several levels of abstraction (see Fig. 1).

At the more abstract level, represented by the Functional
view, the designer specifies the functionality of the system as a
collection of classes and interfaces using a UML-like notation.
Interactions between components are made explicit by identi-
fying functional dependencies between methods. This process
partitions the interface services exposed by each component
into two groups, those that are provided by the component
(PI) and those that are required from other components (RI) to
fulfill the obligations associated with the provided interface. To
each PI there corresponds a set of RIs, which model the calls
of the PI to other services in the system. Thus, at this level of
abstraction, the system is represented both functionally and
structurally. However, the interaction between components is
limited to a dependency relation and ignores all aspects related
to synchronization and timing (which we refer to as attributes
on the “system structure” and on time).

The first refinement step consists in decorating PIs and RIs
with attributes that qualify the associated method with guaran-
tees (for the PIs) or assumptions (for the RIs) which must be
satisfied at run time. We call this level of abstraction the Inter-
face view of the system. Refinement actions in this view leave

Fig. 2. Structure of runtime RCM components.

the structure of the system, i.e., the services and their intercon-
nections, and the attributes of the Functional view, unchanged,
so they simply add information. The attributes that are intro-
duced are of two kinds. The first has to do with runtime char-
acteristics, such as the worst-case execution time and the pe-
riod of an operation. The second specifies the desired interac-
tion semantics between interface calls, such as, for example, a
periodic clock-based activation or the synchronization protocol.
The attributes specified in the Interface view have a direct ef-
fect in the next refinement step which consists in automatically
generating an Implementation view, constructed through a set
of model transformations by using appropriate runtime compo-
nents, which are RCM compliant by definition. In practice, de-
signers work exclusively at the Functional and Interface level,
by specifying the desired behavior through a suitable combina-
tion of attributes, which are automatically turned into an imple-
mentation. The structure of the runtime component and the way
the elements are aggregated is determined automatically by the
attributes set on the PIs in the Interface view. How this aggre-
gation happens without incurring semantic distortion, i.e., how
an RCM component realizes at run time the intentions that the
designer specified in the interface attributes, has been formal-
ized in [20]. In actual fact, this is the key to our approach: all
that the user is allowed to specify in terms of non-functional at-
tributes can be fully understood by our model transformations,
correctly implemented against the constraints of the Ravenscar
profile, and correctly verified for timing feasibility by means
of static analysis. The reader shall note that the notion of cor-
rectness in the latter use above signifies that what is provably
asserted of the user model also holds for the implementation
model and vice versa.

Runtime components in RCM are statically defined and can
be of different kinds: cyclic components, which are periodically
activated by the system clock; sporadic components, which are
activated by other components or by hardware or software in-
terrupts; protected components, which provide data access with
exclusion-synchronization guarantees; and passive components,
which offer data access with no synchronization guarantees. The
general structure of a runtime component is shown in Fig. 2.
Each component exposes its set of PIs and RIs. The PIs are

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 185

in turn decorated with attributes on functionality (visibility and
signature), on the structure (e.g., cyclic or sporadic), and on time
(e.g., deadline or period) [20], which derive from the attributes
selected in the Functional and Interface view. Within an RCM
component, every single RI descends from a given PI and the
relation between a PI and its RIs is one to many.

Each runtime component has a functional and a structural
part. The functional part is a set of Operational Control Struc-
tures (OPCS) which represent the functional and sequential
specification associated to each PI and which specify the RIs
needed by the PIs, if any. The structural part regulates the ac-
cess to the runtime component and it corresponds to an optional
protocol and possibly a thread. The protocol (Object Control
Structure, OBCS in the figure1) determines what guarantees
(e.g., none, exclusion synchronization, avoidance synchroniza-
tion) the component offers to the callers of its PI upon access
to the static data storage of its functional part. The optional
thread, on the other hand, executes a method provided by the
component on behalf of the actual caller. The activation of the
thread is always mediated by the protocol through a special
provided interface reserved for this purpose. If the component
includes no thread, then the caller directly executes the service
provided by the component, with or without synchronization
guarantees depending on the nature of the component. By RCM
constraints [5], an RCM component has at most one thread.

While the structure of the Implementation view is gener-
ated to guarantee certain properties (which will be discussed
in Section IV-B), the temporal properties are statically and
automatically analyzed using MAST+ [15]. The results of the
analysis are propagated back and made available to the designer
in the Interface view. The designer can then change the timing
attributes and iteratively reanalyze the system until all temporal
requirements are met.

In order to properly generate the final code, the designer must
specify the physical structure of the system, i.e., the computa-
tional nodes and their interconnections, in the Deployment view.
At this level, the designer also specifies the logical structure of
the system, by aggregating the components of the Interface view
in one or more partitions, which corresponds to a fault-contain-
ment region. He/she then deploys the logical structure on the
physical one, by specifying which computational node executes
which partition, and the system is scheduled using hierarchical
scheduling techniques (see Section V).

Fig. 3 summarizes the attributes of the Functional, Interface,
and Implementation view and shows them in relation to the
classic V-model.

Table I complements Fig. 3 by summarizing which kind ver-
ifications we apply to individual views as well as in the transi-
tions among them.

In the next two sections we describe these attributes in
detail as well as the verification techniques we use to ensure
correctness.

IV. STRUCTURAL PROPERTIES

We first analyze the structural properties of a design and show
that every thread activation always completes without entering

1The names OBCS and OPCS derive historically from HRT-HOOD [42].

Fig. 3. Design flow with views, attributes and verification techniques.

TABLE I
RELATION BETWEEN MODELING VIEWS AND VERIFICATION STEPS

TAKEN IN OUR APPROACH

infinite cycles of service invocation. To do so, we build a for-
malization of the model which is more convenient for reasoning.
Later, in Section V, we address the problem of checking timing
and performance attributes.

A. RCM Mathematical Foundations

We define a mathematical formulation based on graph theory
for the Functional and Interface views. We then use this formu-
lation to prove correctness properties in Section IV-B. We illus-
trate our formalism through the example shown in Fig. 4, a high
level representation of a simplified satellite subsystem which
has been proposed, experimented with and successfully tested
in the ASSERT project by two major European space indus-
tries [43]. In the figure, Position Store (POS) is a data storage,
used in read/write mode by Guidance, Navigation and Control
(GNC) and Telemetry and Telecommand (TMTC). TMTC re-
acts to two possible ground commands: it either writes to POS
a new value, or it sends a boost correction request to Propulsion
(PRO). GNC first reads the current value stored in POS; it then
computes the required adjustment and finally updates the initial
value accordingly.

1) Functional View: In the Functional view, the designer
specifies the functional services provided by system compo-
nents by using a formalism similar to a UML class diagram.
Fig. 5 shows an example of part of the Functional view for the
Satellite system, illustrated in Fig. 4. (Here, and in the following,
we generally do not show the names of the RIs, to avoid clutter,
as these details are usually not important to the discussion.) In

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

186 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

Fig. 4. Satellite system.

Fig. 5. Functional view for the Satellite system.

the following, we use to denote the set of PIs specified in an
RCM system, and for the set of RIs.

We characterize the Functional view as a weighted directed
hypergraph , where (vertices) is a finite
set of services and (hyperedges) are relations over services.
Fig. 6 shows an example hypergraph. The set of vertices is
obtained as the union of the set of provided and the set of
required interfaces in the system, i.e., . Each

and has a weight specified by a combination of
attributes which collectively characterize the assumptions and
guarantees attached to the request and provision of services in
an RCM system [20]. The attributes at this level include:

• the signature of the method;
• the state, or the static variables operated on by the method;
• the visibility of a method (public, private or restricted);
• the local WCET (worst case execution time) of a method,

excluding the time required by RIs that may be involved in
the execution of the PI.

We write PI . to denote that PI includes weight
. The RIs at the level can only be decorated with

the signature, which is checked for consistency with that of
attached provided service, and with the number of times that
the corresponding PI invokes the RI (required to compute the
global execution time of the PI).

Fig. 6. A hypergraph.

Fig. 7. Functional view and corresponding hypergraph for Dispatcher.

The set of edges is made of two disjoint subsets: hyper-
edges and simple edges . A hyperedge relates a
single PI to a (possibly empty) list of RIs. We denote a hyper-
edge that links vertex PI with vertices as

The hyperedge identifies the dependency between a provided
service and its required services. Hyperedges are depicted as
triangles in Fig. 6. For instance, hyperedge links one PI to a
list of two RIs, whereas links one PI to an empty list of RI.
In Fig. 6, we use a rectangle to represent an empty list of RIs
and a circle to represent a PI or a nonempty RI. The list of RIs
specifies what services are needed from other components to
fulfil the guarantees of the PI.

Conversely, an edge links a single RI to a single PI and
represents the binding of a required interface (function call) to
its corresponding provided service. An edge is denoted simply
as

Edges are shown in Fig. 6 as arrows.
Hypergraph is constructed from the Functional view

to formalize the components and their structural relationships
as specified by the designer. To illustrate these concepts,
consider Fig. 7 which shows the Functional view of the Dis-
patcher component on the left. Class Dispatcher realizes
interface Dispatch and publishes two private required
methods: s1:Writer_Sender and s2:PRO_Boost.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 187

Fig. 8. Hypergraph for the satellite system.

Fig. 9. Hypergraph for the Interface view for the satellite system.

On the right, the figure shows the corresponding mathemat-
ical representation. A hyperedge links Dispatch to RI
s1:Writer_Sender and s2:PRO_Boost. The other
edges link the RIs and PIs to some other interface in the system.

The hypergraph corresponding to the system of Fig. 5 is
shown in Fig. 8.

2) Interface View: We represent the Interface view as a hy-
pergraph which extends with the addition of the
extra set of attributes contained in the Interface view and with
an explicit representation of the external environment which is
expected to drive the execution of the system. Fig. 9 shows ex-
cerpts of the Interface view for the example system. Here, we
introduce a new vertex , a new set of hyperedges and addi-
tional attributes on the structure and on the time (the temporal
attributes, described below, are not shown on the figure to avoid
clutter). Formally, , where and

. Vertex represents the underlying interrupt
service infrastructure of the runtime platform, which invokes all

whose activation depends on external events. For ex-
ample, all PIs that have a attribute are activated (enabled
for execution) by the clock interrupt and therefore, in our for-
malization, are activated by . In our case, also the PI
Dispatch is controlled by , since it receives the activation
from a ground signal. The additional edges in represent these
bindings, which are all of the form for some .

We introduce several additional attributes in the Interface
view. The designer must select exactly one attribute from the
following list:

• passive, which identifies a PI that provides no synchroniza-
tion guarantees on access to data, executing in the caller
thread;

• protected, which identifies a PI that provides exclusion
synchronization guarantees on access to data, executing in
the caller thread;

• transactional, which identifies a PI that provides a exclu-
sion synchronization guarantees on access to data, exe-
cuting in the caller thread, transitively across all RIs in-
volved in the execution of the PI;

• cyclic, which identifies a PI that is periodically invoked by
the clock interrupt;

• sporadic, which identifies a PI that is sporadically invoked
by a software call;

• modifier, which denotes a PI attached to a thread in the
same runtime component of another PI, and which takes
the cyclic or sporadic nature corresponding to that of the
other PI.

In the case of , the designer further
characterizes the PI by:

• the importance, which identifies the urgency of the thread;
• the deadline of the task;
• the period of activation in case of cyclic method;
• the Minimum Interarrival Time (MIAT) between two sub-

sequent activations of a sporadic execution.
Besides the attributes set by the designer, other attributes are

made available as the result of the analysis aid the user in making
design decisions. They are:

• the ceiling (priority) of a protected operation; and
• the global WCET of a thread, that is, the maximum duration

that the execution of the invoked PI may take including the
cost of any operations invoked by the RIs exposed by the
PI;

• the priority of a thread.
For the RIs, the attributes include a global WCET which, un-

like for PIs, is specified by the designer, and constitutes the as-
sumption made by a component with respect to the maximum
running time of the required services. Our tool computes the
global WCET guaranteed by the attached PI, and compares the
values to verify their consistency. This computation, which in-
volves traversing the graph, is described in Section V.

Let us now elaborate a little more on the rationale for the mod-
ifier attribute. In general, the fewer the threads, the easier it is
to analyze the system, since the number of possible parallel in-
teractions grows exponentially with the number of threads. A
reduced number of threads, however, could make it hard to de-
scribe complex systems. To this end, RCM allows the designer
to assign the execution of a number of statically defined oper-
ations to one and the same underlying runtime component. We
model this situation using the set of hyperedges . Here, we
distinguish between the nominal behavior of a component, and
a finite number of possible alternatives. The PI that corresponds
to the nominal behavior, which can be either or ,
is characterized by the attribute . The others are given
attribute . Hyperedges in link the nominal PI to its set
of possible modifiers. All modifiers and the nominal operation
share the same access protocol (OBCS), whose role is to avoid
synchronization between the “calling” thread which invokes a

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

188 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

nominal PI or a modifier and the callee thread which executes
that PI.

By definition, hypergraph is a fully-faithful extension
(in the categorical sense) of hypergraph by an inclusion
preserving homomorphism (an embedding), i.e., preserves
the vertices (with their weights), the hyperedges and the edges
of hypergraph . Thus, the only additional information con-
veyed by consists essentially of attributes on the structure
and on the time of the vertices. Despite this, the distinction be-
tween and its extension is important. In particular,
the same Functional view may be extended by multiple
and distinct Interface views, each specifying alternative commu-
nication and synchronization architectures. Different Interface
views may also be useful to express different deployments for
design space exploration. We use the separation between these
two levels of abstraction to help the user maintain a clear distinc-
tion between the functionality of the system and the way that it
is to be implemented on the execution platform. However, main-
taining such separate views is an aspect that we do not address
in this work.

To illustrate the Interface view, consider method Dispatch
in Fig. 7. In the Interface view, this method can be specified for
example either as protected (to signify that its execution must
be performed in a mutually exclusive manner by the caller), or
as sporadic (to signify that its execution must be performed by
a thread of control other than the caller).

3) Implementation View: The attributes set in the Interface
views allow us to determine which kind of runtime components
realize a given service correctly with respect to both the imple-
mentation platform and the specification [20].

The attributes in the Implementation view are all attributes in
the Functional and Interface view with the addition of:

• the Access Protocol to the method (none, mutually-ex-
clusive access, avoidance synchronization);

• the Concurrent weight , which specifies whether the
RCM component, which realizes the method, has a control
flow;

• the Transactional access , which, when set to 1, guaran-
tees transactional access to state(s) across the execution of
all of the invoked RIs;

• the global WCET, ceiling and priority, which are also au-
tomatically calculated in this view.
a) Model Transformations and RCM Interface Grammar:

As described in Section III, there are only three types of RCM
runtime components in the Implementation view: passive, pro-
tected and threaded. Each runtime component has an external
and inner part. Provided and required interfaces characterize the
external part. Attributes specify the inner structural part.
For example, in case the designer sets a PI to , then is au-
tomatically set to a protocol with guard, set to 1 (which means
that the runtime component has one THREAD, as per the tax-
onomy shown in Fig. 2) and set to 0 (which means “no trans-
actional access”). The RCM Interface Grammar fully defines
model transformations from the Interface to the Implementation
view that preserve the intended meaning of PIs in the Interface
view [20], [44]. More in particular, we define two formal lan-
guages: a Specification Language and an Implementation
Language . Both languages share the same set of attributes.

Fig. 10. Function call invocation between RCM runtime components.

Intuitively, a token in languages and represents a type of
PI (e.g., cyclic, sporadic, passive, protected). Language only
includes terminal token, while includes terminal and nonter-
minal tokens. We give a set of production and semantics rules
in of the form

The left-hand side of a production rule represents the external
part of an RCM runtime component (that is, one type of PI) and
the right-hand side represents the inner one. The RCM Interface
Grammar is deterministic and non ambiguous, so that given a
token in we can always find one (and only one) production
rule which identifies the runtime component able to realize the
method specified by the designer in the Interface view. Model
transformations are fully described by the inclusion of in
and the production and semantic rules. The attributes shared be-
tween and , and the nonambiguity of the RCM Interface
Grammar, ensure that the model transformations incur no se-
mantic distortion [20], hence they are correct with respect to
the user specification and the RCM.

b) Message Passing in RCM Runtime Components: The
way runtime components interact, and the semantics of function
invocation for each class of components in particular, plays an
essential role in determining the safe termination of tasks in the
system. In order to study the behavior of a thread at runtime
level, we distinguish between two kinds of interface services:

and .
The set of PIs corresponds to the set of all

and PIs in the Interface view.
Each PI in the Interface view is realized in the
Implementation view by an RCM runtime component whose
structural part has no own thread (component E and P in Fig. 2).
Therefore, the thread that invokes an PI executes
such PI directly.

The set of PIs corresponds to the set of all ,
and PIs in the Interface view. Each

PI in the Interface view is realized in the Implementation view
by a threaded RCM runtime component whose structural part
has both an access protocol (OBCS) and a THREAD (compo-
nent T in Fig. 2). A threaded RCM runtime components is either
a cyclic or a sporadic RCM runtime component, depending on
whether the triggering event that releases the thread comes off
a hardware clock or a software activity [14].

Consider, for instance, the example shown in Fig. 10, where a
component first invokes from component , and
then from the protected component . A
PI attached to a sporadic thread models an asynchronous
data-oriented communication between the caller and the callee.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 189

When the thread of invokes , it deposits the exe-
cution request with the OBCS of , which returns immediately,
so that the requested service is not executed in the context of
the calling thread. Instead, the thread of is activated as soon
as computational resources are available. In fact, following [5],
[13], RCM disallows the dynamic creation of threads. Instead,
all threads are created at system initialization, and wait for an
activation event on a special interface connected to the OBCS
[14], [5], for the flow of control of an interface when realized
in a runtime components of the Implementation view.

Finally, when the thread of invokes , it imme-
diately executes that PI in its own context.

B. Correctness Properties

In this section, we study the structural correctness of the au-
tomatically generated system. As discussed in the previous sec-
tion, attributes on the provided and required services are used to
determine the structure of the runtime components [20], [44]. In
this section, we analyze the behavior of the threads of the run-
time components. We show that, assuming terminating services,
the interaction between the components always results in the
corresponding jobs to safely terminate. Because services are as-
sumed to terminate, safe termination can be reduced to checking
that no cycles are introduced in the call graph. In fact, certain cy-
cles produce no harm, as they involve the activation of different
jobs. We show next that we can use the graphs to check these
conditions.

To do so, we must analyze all the possible sequences of in-
vocations that are induced by the call graph, which in our case
corresponds to the hypergraph of the Interface view. We
start by looking at the possible ways in which each of the PIs
in the system might be invoked. We can obtain this information
starting from a PI and traversing the edges in the hypergraph
backwards to follow the sequence of invocations. We call this a
walk in the hypergraph.

Definition 1 (Walk): A walk is a sequence of the form

such that and .
In other words, a walk is a path in the hypergraph that repre-

sents the transitive closure of calls from service to service
.

Walks are always finite (by definition), but their length is
potentially unbounded, because of cycles, whose presence de-
nounces a nonterminating behavior. This situation in our system
is prevented by the design tool, which analyzes the relevant
walks in the specification to detect and proactively prevent re-
cursion. We focus on the number of walks to be considered to
only those that are potentially harmful. In fact, as discussed in
Section IV-A3, when a deferred PI is invoked, the calling thread
never executes the sequence of calls originating from the de-
ferred service, which are initiated by the called thread. We can
account for this condition by considering only those walks that
terminate as soon as they traverse a deferred PI (with the excep-
tion of, possibly,). We call this a call sequence.

Defnition 2 (Call Sequence): A call sequence is a walk
such that to are all is

, and is either , or otherwise an

PI with no related RIs, i.e., there is no such that
for some .

Thus, a call sequence may include PIs (which are
associated to threads) only at the beginning and at the end of
the sequence. In addition, a call sequence is maximal and can
not be extended, since if is , then it has an empty
set of RIs.

In some cases, cycles in a call sequence can be erroneously
introduced by designers. However, they are always detected as
soon as they occur and reported to the designer that should
modify the design until it is cycle-free. Code is always auto-
matically generated from a cycle-free design.

Lemma 1: If a cycle is present in a call sequence, then it is
possible to detect it.

Proof: Let be a call sequence. We have two
cases.

In the first case, a cycle is present in the call sequence if a PI
is traversed twice. This occurs whenever there exist PIs and

in the sequence, such that and . This condi-
tion can be detected by traversing the call sequences originating
from all PIs in a depth-first manner, and verifying if an
interface service has already been traversed. This process termi-
nates since RCM has a statically defined number of PIs and RIs.

A cycle may still be present if is and .
This case, however, does not pose any problem since the flow
of control is broken by the presence of the OBCS access control
structure in the RCM runtime component.

A “harmful” cycle is therefore one that involves only
services. When a cycle is detected, an error is

automatically reported in the Interface view and the system is
not validated until the cycle is removed by designers.

Given a PI, we identify a subgraph of the hypergraph
that includes all the services reachable from that PI.

Definition 3 (Thread Graph): Let be a hy-
pergraph and let be a nominal PI. A Thread
graph for is the subgraph of

such that and include all and only the vertices and
the edges that either belong to a call sequence that terminates in

or belong to at least one call sequence that ter-
minates in and there is a hyperedge such
that . Like call sequences,
harmful cycles in a thread graph are always detected.

Proposition 1: If a cycle is present in a thread graph, then it
is possible to detect it.

Proof: The proof follows the same “structure” as that of
Lemma 1. Each call sequence in a thread graph is analyzed.
Harmful cycles, if any, are then detected by Lemma 1. Note that
hyperedge does not introduce harmful cycles in a thread graph
since it only links two deferred methods.

Once harmful cycles are detected (if any), errors are automat-
ically reported in the Interface view. The system is not validated
until the designer removes all harmful cycles in the thread graph.
Therefore, every thread activation always terminates without cy-
cles, and threads are always able to return to their initial condi-
tion and be ready to service a new invocation.

We can extend our discussion to a composition of subsystems,
in which required interfaces from one subsystem are linked to
provided interfaces in the other. Cycles that begin and terminate

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

190 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

at the same deferred PI are again harmless in that they represent
the call flow of a sporadic thread whose execution produces the
release event for its own next activation. The remaining possible
cycles are ruled out by the tool, which immediately invalidates
the composition if it detects a cycle in a call sequence within
the same thread of control. In this case, the check can be done
incrementally, by considering only the call sequences that span
across the subsystems. There are, in particular, two cases of in-
terest. In the first, a designer composes two open systems
and so that each RI of one subsystem invokes a PI
of the other subsystem. While cycles may be generated, they are
again harmless, because the thread that belongs, for instance, to

never executes directly any of the PIs of , but always pro-
ceeds through the OBCS control structure (and vice-versa). In
this case, the correctness of the system composition can be in-
ferred compositionally from the correctness of the components,
and no further verification is required. The second case is more
complex, and involves the invocation of an PI of one
subsystem from one RI of the other. The compositionality prin-
ciple cannot be applied in this case, and the tool is employed
to detect and report the presence of potential cycles before the
system can be validated.

The attributes set on the Functional and Interface view are
sufficient for our tool to conduct the analysis and validate a
system. The Implementation view is then automatically gen-
erated according to our RCM Interface Grammar [44], which
guarantees the implementation of the services with the appro-
priate runtime components. The generated code is by construc-
tion guaranteed to be free of harmful cycles (see Proposition 1).

V. TEMPORAL PROPERTIES

Structural correctness, as discussed in the previous section,
already provides certain guarantees, such as correct structural
implementation and task termination. In the following, we will
address the problem of ensuring that the timing of the tasks satis-
fies the specification defined by the temporal attributes, by using
static analysis. Static analysis, however, critically depends on
the assumptions made on execution time and rate of invocation
specified in the Interface view. In order to ensure that the stipula-
tions validated in the static analysis stay true at run time we must
adopt an execution platform capable of actively monitoring the
preservation of runtime properties and thus prevent violations.

A. Execution Platform

The software architecture we target is the priority-band ar-
chitecture [27], a lightweight approach to partitioned systems
based on novel features of the Ada 2005 language [45]. Our
target platform of choice is GNATforLEON2 by the Technical
University of Madrid, an Ada 2005 cross-compilation system
for the LEON23 processor.

In the priority-band architecture, the priority range is divided
in a set of contiguous nonoverlapping intervals called priority
bands. The priority of a task determines the priority band in
which it is deployed. The architecture features a two-level hier-
archical scheduling. A global fixed-priority preemptive sched-
uler elects for execution the highest priority band with at least

2http://polaris.dit.upm.es/~york/
3http://www.gaisler.com

one ready task (active priority band). The choice of the new run-
ning task is performed among the ready tasks of the active pri-
ority band according to a local scheduling policy which may
be fixed-priority preemptive or nonpreemptive, earliest deadline
first or round-robin. Each priority band is the implementation of
a system partition and the architecture requires to establish a rel-
ative order between them in order to stack them in the priority
range. The architecture also: (a) enforces the minimum inter-
arrival time (MIAT) of sporadic tasks; (b) monitors with execu-
tion-time timers the worst-case execution time (WCET) of tasks
to detect overruns; and (c) provides mechanisms to cope with
task overruns according to application-specific policies. Hence,
temporal isolation between partitions is asserted via schedula-
bility analysis, monitored at run time, and enforced with those
mechanisms.

B. Timing Attributes

The strand of schedulability analysis theories that are directly
related to the Ravenscar Profile are centered around the con-
cept of periodic workload model [46] and its extensions (mainly
the sporadic model). These workload models describe a system
as a fixed set of tasks that are executed by the processing re-
source according to a specific scheduling policy. In the case of
the Ravenscar Profile, the adopted form of schedulability anal-
ysis is response time analysis [47] for fixed-priority preemptive
scheduling (FPPS). In particular, each task is represented by:
(i) a period, if it has a cyclic activation pattern, or a MIAT if it has
a sporadic activation pattern; (ii) a WCET; (iii) a relative dead-
line; and (iv) a priority. Shared resources are accessed under the
priority ceiling protocol [48], and their minimum ceiling can be
calculated using the list of resources accessed by each task.

The timing behavior of the system is analyzed using our own
specific extension of the MAST tool originally developed by the
University of Cantabria, which we named MAST+ [15]. MAST
features an event-driven real-time model which has a greater ex-
pressive power than the classical sporadic model; for this reason,
any system represented in the sporadic model can be represented
as a MAST model. To make MAST+ fit our development par-
adigm and infrastructure we first built a new metamodel for
MAST+, and then developed a model transformation that turns
the Implementation view into a model that conforms with the
MAST+ metamodel. The use of a separate, MAST+ specific,
metamodel that is the target and the source of automated trans-
formations from the user model raises the problem of proving
semantic preservation across borders. At the current status of
our development, correctness is asserted, but not proven. The
closeness between the RCM and the event-driven nature of the
MAST+ execution semantics makes us confident that our as-
sertion holds. We are however aware that our future use of this
infrastructure will require formal proof of this correspondence.

The MAST+ model is used to feed the analysis tool; the re-
sults of the analysis are propagated back, first to the MAST+
model, and later attributed to the corresponding RCM runtime
components in the Implementation view. Since the transforma-
tion that turns the Interface view into the Implementation view is
deterministic [20], it is possible to follow its logic backward and
propagate the results to the components of the Interface view
and show them as attributes of their interfaces (see Fig. 1).

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 191

We devised an extension of response time analysis which is
based on and extends two independent works on server-based
hierarchical scheduling: in [49] the authors devise a schedula-
bility analysis theory for servers with fixed-priority preemptive
local scheduling under a FPPS global scheduler; in [50] the
authors devise equations for periodic servers with EDF local
scheduling under an EDF global scheduler. Our extension [51]
is able to account for intra and interpartition shared resources, it
is specifically tailored to the priority-band architecture we target
[27] and specialized to analyze Ravenscar systems. In fact, the
adoption of RCM is very convenient during the timing analysis
of the system, since runtime kernels abiding by RCM exhibit a
deterministic timing behavior and provide fine-grained timing
metrics that accurately characterize the kernel contribution to
the timing behavior [14]. We also developed a specialization
of holistic analysis that is able to account for those metrics to
provide a more accurate form of schedulability analysis for dis-
tributed systems [52]. MAST+ was extended to model systems
compliant with RCM and equipped with an implementation of
those extended schedulability analysis equations.

Let us now discuss the applicable timing attributes and show
that we actually calculate as many of those attributes as possible
during model transformations. The reader shall notice that this
automatic calculation is a further contribution to our pursuit of
correctness in the handling of non-functional attributes.

WCET information is specified in a descriptor attached to
each functional service in the Functional view. In order to pro-
mote reuse of functional specifications across distinct platforms,
it is possible to declare a WCET entry for each distinct execu-
tion platform declared in the Deployment view. After the Imple-
mentation view is generated, the global WCET of each deferred
operation is calculated by summing up the local WCET of oper-
ations that belong in the Thread Graph which has that
PI as root. This calculation can always be safely performed be-
cause call cycles are prevented as discussed in Section IV.B.

A period (or MIAT) and a deadline are specified in the In-
terface view as attributes of each cyclic or sporadic PI. Those
values are later propagated on to the appropriate RCM runtime
components upon creation of the Implementation view.

A task priority is an implementation-level attribute and we do
not want to pollute the design space with such low-level con-
cerns. We therefore require the designer to only provide a rel-
ative order of importance between the deferred operations that
belong to components assigned to one and the same partition
in the Interface view. When the Implementation view is cre-
ated, the relative order is used together with the relative order
between partitions to calculate the effective priority for the gen-
erated RCM runtime component. The Thread graphs are then
used to calculate the ceiling priority of the OBCS in cyclic, spo-
radic and protected components.

The results of the analysis that are propagated to the com-
ponents in the Interface view comprise the worst-case response
time (WCRT) and worst-case blocking time (WCBT) for each
periodic or sporadic operation. We decided to show the pri-
ority of each periodic and sporadic operation and the ceiling pri-
ority of protected operations, even if the designer cannot modify
them: albeit those attributes are automatically given in the Im-
plementation view, the designer should be aware of the decisions
of the automatic transformations directly in the design space.

TABLE II
WORST-CASE EXECUTION TIME (WCET) OF EACH OPERATION

TABLE III
TIMING ATTRIBUTES AND RESULTS OF THE ANALYSIS FOR OUR EXAMPLE.

WORST-CASE RESPONSE TIME (WCRT);
WORST-CASE BLOCKING TIME (WCBT)

C. Example of Schedulability Analysis

In the following, we perform a schedulability analysis of the
example depicted in Fig. 4. The example as described therein
represents a closed system; we analyze a scenario which rep-
resents the arrival of a telecommand from the ground segment
of the system (i.e., its operation center); we thus include an ad-
ditional sporadic Receive TC operation, which solely serves to
call the Dispatch operation (see Fig. 8). In this specific scenario,
the telecommand is then dispatched to the Send operation, so
the PRO component performs according to its nominal behavior
(there is no call to the modifier operation Boost Order). First, in
Table II, we assign the WCET in milliseconds to all operations.
When the entry reads 0, it means that the local cost of the op-
eration is negligible and thus its total WCET is just the sum of
the WCET of the operations it calls. For the sake of simplicity,
we also assume that the cost to put and fetch requests from an
OBCS is null. In a real application scenario however, the mod-
eling of those costs is important, since it may contribute to the
blocking factor of tasks.

In Table III, we summarize the threaded runtime components
that result from the model transformation of the example,
including TC Receiver, an additional sporadic RCM runtime
component originated from the Receive TC sporadic operation.
For each runtime component we list its period or MIAT and
overall WCET in milliseconds, Priority, and Deadline.

If we perform a schedulability analysis on this system, we
determine that the system is not schedulable. (See Table III.) In
particular, the GNC and PRO runtime components would miss
their deadlines. For the latter, we may notice that the blocking
time of 20 ms, which is part of the worst-case response time, is
one of the factors that are making the task not schedulable.

A first possible solution to make the system schedulable
would be to reduce the release period of the GNC: a release
period of 125 ms would make the system feasible as depicted
in Table IV. However, this kind of modification can be quite
delicate since it implies a renegotiation of the requirements

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

192 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

TABLE IV
TIMING ATTRIBUTES AND RESULTS OF THE ANALYSIS.

WORST-CASE RESPONSE TIME (WCRT);
WORST-CASE BLOCKING TIME (WCBT)

TABLE V
RESULTS OF THE ANALYSIS WITH THE COMPUTATION TIME OF OPERATION

WRITE SHORTENED TO 15 MS. WORST-CASE RESPONSE TIME (WCRT);
WORST-CASE BLOCKING TIME (WCBT)

at system level (in this case it would imply to change the
frequency of the GNC control law from 10 Hz to 8 Hz).

In Table V, we propose instead the analysis results for a
system in which the WCET of operation Write is optimized
from 20 ms to 15 ms, while the rest of the system parameters
stay fixed. From the results, we can appreciate that this opti-
mization reduces the overall WCET of both GNC and Sender 1
and since Write is an operation of POS, we also reduce the
blocking factor induced by the synchronization protocol on
GNC. The combined effect of these factors leads to a schedu-
lable system.

VI. INDUSTRIAL EVALUATION

To assess the viability and effectiveness of the MDE approach
outlined in this paper, a team based at the University of Padova
(UPD) developed a prototype tool as an Eclipse plug-in. Two in-
dustrial teams used and assessed that prototype independently
for a total elapsed time in excess of 6 months in three incre-
mental installments. GMF, ATL, and MOFscript [53] were used
to develop the engines behind the graphical interface, the model
transformations and the code generation, respectively. The full
prototype development at UPD took 5.3 person/years from June
2006 to July 2007 to produce: 90 metaclasses, conceptually
identical to UML stereotypes, to implement the RCM meta-
model common to all modeling views; 13 000 lines of ATL to
drive model transformations implemented in accord with the
RCM Interface Grammar rules discussed in this paper; 8000
lines of MOFscript to implement code generation; 7500 lines
of Java to complete the graphical editor (in addition to 150 000
lines generated automatically by GMF). See [54] for wink clips
on how our tools operate. These figures indicate that the mag-
nitude of the effort that was needed to implement our process
concept is definitely affordable and that the productivity of the
MDE components of the Eclipse environment is convincingly
promising.

The prototype tool was used as the baseline development
environment by two industrial partners who undertook the re-
design of representative subsets of proprietary reference sys-

tems. The experimental evaluations conducted by the industrial
teams investigated the practicality of the development concept
promoted by ASSERT. As all the technology in use was pro-
totypical, attention was not placed on performance factors, but
concentrated on the viability of the fundamental principles of
the ASSERT vision, in particular:

i) active enforcement of separation of concerns: the de-
signer must be able to concentrate on functional aspects
and to (only) declaratively specify the non-functional re-
quirements that must be met by the contractual interfaces
of system components;

ii) expressiveness and coverage of the non-functional re-
quirements settable on the contractual interfaces, in order
to decrease development time;

iii) proof of correctness of the automated transformations that
turn the user model (the Functional and Interface view)
into the Implementation view and then into the source
code to be submitted to compilation and binding to the
platform-specific middleware: the user must be able to
place justified confidence in the correctness of the trans-
formation process and in the ultimate economy of the
residual stage of verification and validation required on
the end product;

iv) ability to explore the solution space in the Implementation
view in a round-trip feedback-based manner originating
from the designer model space. The interested reader is
referred to [52] for details on the forms of static real-time
analysis supported in the proposed approach.

Both experiments confirmed that our vision does indeed
address the industrial requirements enumerated above and that
it actually meets some of them to full satisfaction. In particular:
(i) Separation of concerns in the designer space was deemed to
be both desirable and achievable. (ii) The declarative specifica-
tion permitted in the designer space has potential for decreasing
the development time considerably by sparing the burden of
decomposing the system down to primitive runtime entities
and then having to prove their local and global correctness.
The reader should notice that this specific observation largely
matches the focus of this paper. (iii) The provision of proof
support for transformations and verification, in the form, for
instance, of the RCM Interface Grammar [20], [44] was con-
sidered extremely important, though major effort is required of
industrial practitioners to acquire full control of it. (iv) Increase
reliance on automation is considered a key asset of the future
development style.

The industrial evaluations decreed the success and the
strategic relevance of the project vision, including all aspects
discussed in this paper, but also concluded that its actual de-
ployment in the current industrial process critically depends
on the availability of robust, reliable, and mature development
technology. The positive conclusion of the project created
sufficient momentum to launch two distinct initiatives aimed
to further the project proceedings in complementary direc-
tions: (i) the European Space Agency undertook a series of
focused investments to strengthen the quality of the ASSERT
technology base and make it known to its own set of industrial
suppliers: the overarching goal of that initiative is to turn the
resulting infrastructure and process into the standard practice
for all developments resulting from future ESA procurements,

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

CANCILA et al.: TOWARD CORRECTNESS IN THE SPECIFICATION AND HANDLING OF NON-FUNCTIONAL ATTRIBUTES 193

cf. [43] for more details and (ii) a core subset of the ASSERT
project team, among which two of the authors of this paper,
instigated a successor project (nicknamed CHESS and funded
in the ARTEMIS JU program framework) to pursue two ad-
ditional goals in a broadened cross section of high-integrity
industry, which spans railway, space, telecommunications, and
automotive: the extension of the ASSERT approach to address
dependability properties; and the preservation of composition-
ality in the presence of heterogeneous development chains.

In fact, the latter objective forms one of main strands of
research that follow from the results discussed in this paper:
whereas the approach we presented is essentially built bottom
up by being rooted in RCM, so that the user specification can
always be understood, realized and validated in terms of seman-
tically consistent runtime components, the intent to make that
approach apply across distinct industrial domains require that
one and the same user specification should allow for multiple
transformations, thus strengthening its compositionality.

VII. CONCLUSION

In this paper, we have presented a model-driven approach to
component-based development whose aim is to enable the cor-
rect expression, interpretation, realization, and verification of
non-functional attributes in high-integrity real-time embedded
systems. We have discussed correctness in terms of safe task in-
teraction protocols, and of fully predictable, hence statically ver-
ifiable, execution behavior. We have presented an algebraic for-
malization of the RCM model space and used it to derive proofs
of structural correctness and safe termination. The vision, con-
cepts, and notions discussed in this paper were actually realized
in the implementation of a prototype tool that was successfully
test-cased in the context of the ASSERT project [43] under the
coordination of the European Space Agency and the participa-
tion of major space industries, along with small and medium en-
terprises, tool vendors, research centers and universities across
Europe. The reader is referred to [54] for details, including wink
clips, on how the prototype tool operates.

One limitation of our work is that transformation rules be-
tween the Implementation view and MAST+ are not formalized.
The lack of formalization prevents us from proving the semantic
integrity of the transformations like we have done between the
Interface and Implementation views. We will address this limi-
tation as part of future work.

As we discussed at the end of the previous section, our cur-
rent work addresses the current industrial trend that demands
the integration of heterogeneous functionality within the same
system. This requires that our notion of correctness, the con-
cept of compositionality, and the separation between attributes
on functionality and on the structure be extended to cross the
boundaries between heterogeneous models. For this reason, we
are investigating the interpretation of different profiles in the
context of the model-driven engineering methodology to model
a given system.

REFERENCES

[1] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: Formal models, validation, and syn-
thesis,” Proc. IEEE, vol. 85, no. 3, pp. 366–390, Mar. 1997.

[2] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli, R. Passerone,
and M. Sgroi, “System level design paradigms: Platform-based design
and communication synthesis,” ACM Trans. Design Autom. Electron.
Syst., vol. 11, no. 3, pp. 537–563, Jul. 2006.

[3] F. Doucet, S. Shukla, M. Otsuka, and R. Gupta, “BALBOA: A com-
ponent-based design environment for system models,” IEEE Trans.
Comput.-Aided Design of Integr. Circuits and Syst., vol. 22, no. 12,
pp. 1597–1612, Dec. 2003.

[4] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Trans. Comput.-Aided Design of Integr.
Circuits and Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[5] A. Burns, B. Dobbing, and T. Vardanega, Guide to the use of the
Ada Ravenscar Profile in high integrity systems, University of York,
York, U.K., Tech. Rep. YCS-2003-348, 2003. [Online]. Available:
http://www.cs.york.ac.uk/ftpdr/reports/YCS-2003-348.pdf

[6] M. Glinz, “On non-functional requirements,” in Proc. 15th IEEE Int.
Conf. Requirements Eng., Oct. 21–26, 2007.

[7] B. Selic, “From model-driven development to model-driven en-
gineering,” Keynote Talk at ECRTS’07. [Online]. Available:
http://feanor.sssup.it/ecrts07/keynotes/k1-selic.pdf

[8] D. Schmidt, “Model-driven engineering,” IEEE Computer, pp. 25–31,
Feb. 2006.

[9] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proc. 9th
Annu. Symp. Foundations of Softw. Eng., 2001, pp. 109–120, ACM
Press.

[10] A. Benveniste, B. Caillaud, and R. Passerone, “A generic model of con-
tracts for embedded systems,” Institut National de Recherche en Infor-
matique et en Automatique, Rapport de Recherche 6214, Jun. 2007.

[11] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R. Passerone, and
C. Sofronis, “A contract-based formalism for the specification of het-
erogeneous systems,” in Proc. Forum on Specification & Design Lan-
guages (FDL’08), Stuttgart, Germany, Sep. 23–25, 2008.

[12] D. Cancila and R. Passerone, “Functional and structural properties in
the model-driven engineering approach,” in Proc. 13th IEEE Int. Conf.
Emerging Technol. Factory Autom. (ETFA08), Hamburg, Germany,
Sep. 15–8, 2008.

[13] T. Vardanega, “A property-preserving reuse-geared approach to model-
driven development,” in Proc. 12th IEEE Int. Conf. Embedded and
Real-Time Comput. Syst. Appl., Aug. 2006, pp. 223–230.

[14] T. Vardanega, J. Zamorano, and J. de la Puente, “On the dynamic se-
mantics and the timing behaviour of Ravenscar kernels,” in In Real-
Time Systems. New York: Springer, 2005, vol. 29, pp. 58–89.

[15] M. Gonzáles Harbour, J. J. Gutiérrez, J. C. Palencia, and J. M. Drake,
“MAST: Modeling and analysis suite for real-time applications,” in
Proc. Euromicro Conf. Real-Time Syst., Delft, The Netherlands, Jun.
2001. [Online]. Available: http://mast.unican.es

[16] R. Chapman, “Correctness by construction: A manifesto for high in-
tegrity software,” in Proc. 10th Australian Workshop on Safety Critical
Syst. Softw., , 2006, Australian Computer Society, Inc..

[17] A. Hall, “Realizing the benefits of formal methods,” J. Universal
Comput. Sci., vol. 13, no. 5, pp. 669–678, 2007.

[18] J. Sifakis, “Embedded systems—Challenges and work directions,” in
Principles of Distributed Systems LNCS, 2005, vol. 3544.

[19] OMG. [Online]. Available: http://www.omg.org/
[20] D. Cancila, R. Passerone, and T. Vardanega, “Composability for high-

integrity real-time embedded systems,” in Proc. 1st Workshop on Com-
positional Theory and Technology for Real-Time Embedded Systems
(CRTS 08), Barcelona, Spain, Nov. 30, 2008.

[21] A. Sangiovanni-Vincentelli and R. Passerone, “Contract based for-
malisms for heterogeneous and hybrid systems.” 2007. [Online].
Available: http://www.artist-embedded.org/docs/Events/2007/Com-
ponents/Slides/RobertoPasserone.pdf

[22] R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto, “Style based
reconfigurations of software architectures,” Università di Pisa,, Pisa,
Italy, Tech. Rep. TR-07-17, 2007.

[23] F. Arbab, “Reo: A channel-based coordination model for component
composition,” Mathematical. Structures in Comp. Sci., vol. 14, no. 3,
pp. 329–366, 2004.

[24] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee, “Incremental schedu-
lability analysis of hierarchical real-time components,” in Proc. EM-
SOFT 2006, 2006, pp. 272–281.

[25] A. Easwaran, M. Anand, I. Lee, and O. Sokolsky, “On the complexity
of generating optimal interfaces for hierarchical systems,” in Proc. 1th
Int. Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), 2008.

[26] M. Panunzio and T. Vardanega, “A metamodel-driven process
featuring advanced model-based timing analysis,” in Ada-Europe
2007. Berlin, Germany: Springer-Verlag, 2007.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

194 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 2, MAY 2010

[27] J. A. Pulido, S. Urueña, J. Zamorano, T. Vardanega, and J. A. de la
Puente, “Hierarchical scheduling with Ada 2005,” in Proc. 11th Ada
Europe Int. Conf. , Porto, Portugal, Jun. 5–9, 2006, LNCS 4006, pp.
1–12, ISBN: 978-3-540-34663-0.

[28] E. Bini and G. Lipari, “A methodology for designing hierarchical
scheduling systems,” J. Embedded Comput., vol. 1, no. 2, pp. 257–269,
Apr. 2005, ISSN:1740-4460.

[29] S. Bliudze and J. Sifakis, “The algebra of connectors—Structuring in-
teraction in BIP,” in Proc. Int. Conf. EMSOFT, 2007, pp. 11–20.

[30] K. Lundqvist, J. Srinivasan, and S. Gorelov, “Non-intrusive system
level fault-tolerance,” Reliable Software Technologies—Ada-Europe,
pp. 156–166, 2005.

[31] K. Lundqvist and L. Asplund, “A Ravenscar-compliant run-time
kernel for safety-critical systems,” Real-Time Systems, vol. 24, no. 1,
pp. 29–54, 2003.

[32] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proc. IEEE, vol. 91, no. 1, Jan.
2003.

[33] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Z. , Het-
erogeneous concurrent modeling and design in Java Univ. California,
Berkeley, Tech. Rep. UCB/ERL M05/21, Jul. 2005, vol. 1, Introduction
to Ptolemy II.

[34] F. Balarin et al., “Metropolis: An integrated electronic system design
environment,” Comput. Mag., pp. 45–52, Apr. 2003.

[35] H. D. Patel, S. K. Shukla, and R. A. Bergamaschi, “Heterogeneous
behavioral hierarchy extensions for system C,” IEEE Trans. Comput.-
Aided Design of Integr. Circuits and Syst., vol. 26, no. 4, pp. 765–780,
2007.

[36] MeMVATEX French Project, “Méthodologie Pour la Modélisation,
Lavalidation et la Tracabilité Des Exigences (MeMVaTEx).” [Online].
Available: http://www.memvatex.org

[37] SATURN Project, “SysML bAsed Modeling, Architecture Explo-
Ration, Simulation and SyNthesis for Complex Embedded Systems.”
[Online]. Available: http://www.saturnsysml.eu

[38] OMG, “Systems Modeling Language SysML.” [Online]. Available:
www.sysml.org

[39] OMG, “UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, Beta 2.” [Online]. Available: www.omg-
marte.org

[40] R. Bendraou, P. Desfray, M. Gervais, and A. Muller, “MDA tool com-
ponents: A proposal for packaging know-how in model driven devel-
opment,” Software and Systems Modeling, vol. 7, no. 3, pp. 329–343,
Jul. 2008.

[41] R. Passerone, I. B. Hafaiedh, S. Graf, A. Benveniste, D. Cancila, A.
Cuccuru, S. Gérard, F. Terrier, W. Damm, A. Ferrari, L. Mangeruca, B.
Josko, T. Peikenkamp, and A. Sangiovanni-Vincentelli, “Metamodels
in europe: Languages, tools, and applications,” IEEE Design & Test of
Computers, vol. 26, no. 3, pp. 38–53, May/Jun. 2009.

[42] A. Burns and A. Wellings, HRT-HOOD A Structural Design Method
for Hard Real-Time Ada Systems. York, U.K.: Elsevier, 1995, Uni-
versity of York .

[43] ASSERT Project, [Online]. Available: http://www.assert-project.net
[44] D. Cancila and T. Vardanega, RCM Interface Grammar University of

Padova, Padova, Italy, Tech. Rep., 2009. [Online]. Available: http://
www. math.unipd.it/tullio/ASSERT/RcmInterfaceGrammar.pdf

[45] ISO SC22/WG9, “Ada Reference Manual. Language and Standard Li-
braries. Consolidated Standard ISO/IEC 8652:1995(E) With Technical
Corrigendum 1 and Amendment 1,” 2005, .

[46] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[47] M. Joseph and P. K. Pandya, “Finding response times in a real-time
system,” Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[48] J. B. Goodenough and L. Sha, “The priority ceiling protocol: A method
for minimizing the blocking of high priority Ada tasks,” in Proc. 2nd
Int. Workshop on Real-Time Ada Issues, 1988, pp. 20–31.

[49] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in Proc. 26th IEEE Real-Time Syst. Symp., 2005, pp.
389–398.

[50] J. L. Lorente and J. C. Palencia, “An EDF hierarchical scheduling
model for bandwidth servers,” in Proc. 12th Int. Conf. Embedded and
Real-Time Comput. Syst. Appl., 2006, pp. 261–266.

[51] M. Panunzio and T. Vardanega, “An approach to the timing analysis
of hierarchical systems,” in Proc. 13th Int. Conf. Embedded and Real-
Time Comput. Syst. Appl., 2007.

[52] M. Bordin, M. Panunzio, and T. Vardanega, “Fitting schedulability
analysis theory into model-driven engineering,” in Proc. IEEE Eu-
romicro Conf. Real-Time Syst. (ECRTS 08), Jul. 2008, pp. 135–144.

[53] [Online]. Available: http://www.eclipse.org/modeling

[54] D. Cancila, M. Trevisan, and T. Vardanega, “A Gentle Introduction to
the HRT-UML/RCM Methodology.” [Online]. Available: http://www.
math.unipd.it/tullio/~Research/ASSERT/Tutorial

Daniela Cancila received the Laurea master degree
in philosophy from “La Sapienza,” the first Univer-
sity of Roma, Rome, Italy, and the Ph.D. degree in
theoretical computer science from the University of
Udine, Udine, Italy, where she has studied with C.
Bohm and F. Honsell.

Since 2002, she has been teaching computer
science at Italian and French universities. Since
2008, she is a Research Engineer at the “Com-
missariat à l’Energie Atomique et aux Energies
Alternatives” (CEA), France. Her research interests

include methodologies, design and tools for model-based safety engineering
of real-time systems.

Roberto Passerone (S’96–M’05) received the
Laurea degree (summa cum laude) in electrical
engineering from the Politecnico di Torino, Torino,
Italy, in 1994, and the M.S. and Ph.D. degrees in
electrical engineering and computer sciences from
the University of California, Berkeley, in 1997 and
2004, respectively.

From 1998 to 2005, he was with Cadence Design
Systems, Berkeley, CA, where he held various posi-
tions from Senior Member of Technical Staff in the
System Level Design Product Group, to Research

Scientist in the Cadence Berkeley Laboratories. Since 2006, he has been an
Assistant Professor with the Department of Information and Communication
Technology at the University of Trento, Trento, Italy. His research interests
include the design and implementation of high-performance microprocessors,
system level design, communication design and formal methods. In particular,
his research has focused on the development of methods for the automatic
synthesis of protocol converters and transactors, and for the analysis of the
semantic foundations of heterogeneous systems.

Tullio Vardanega (M’95) graduated with a degree
in computer science at the University of Pisa, Pisa,
Italy, in 1986 and the Ph.D. degree in computer
science from the Technical University of Delft,
Delft, The Netherlands, in 1998, while working
at the European Space Research and Technology
Centre (ESTEC), Noordwijk, The Netherlands.

At ESTEC, over the period 1991–2001, he held
responsibilities for research and technology transfer
projects as a lead person in the area of onboard
embedded real-time software. In January 2002, he

was appointed Lecturer in Computer Science, Faculty of Science, University
of Padova, Italy, before becoming Associate Professor in October 2004. At
Padova, he took on teaching and research responsibilities in the areas of
high-integrity real-time systems, quality-of-service under real-time constraints
and software engineering methods, including model-driven engineering, and
processes for such environments. He has authored numerous papers and
technical reports on these subjects. He runs a range of research projects in these
areas on funding from international and national organizations.

Marco Panunzio received the Laurea Specialistica
(M.Sc.) degree in Computer Science (cum laude)
from the University of Padova, Padova, Italy, in
2006. He is currently working towards the Ph.D.
degree in computer science at the University of
Padova, Padova, Italy.

He is collaborating with the European Space
Agency in the scope of the Networking/Part-
nering Initiative (NPI). His main research interests
are schedulability analysis of real-time systems,
model-driven engineering, component-based soft-

ware engineering, and software reference architectures.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 28,2010 at 11:36:55 UTC from IEEE Xplore. Restrictions apply.

