
Composability for high-integrity real-time embedded systems

Daniela Cancila∗

CEA - LISE

Center of the Nuclear Energy, France

daniela.cancila@cea.fr

Tullio Vardanega

Dipartimento di Matematica Pura e Applicata

Università degli Studi di Padova, Italy

tullio.vardanega@math.unipd.it

Roberto Passerone

Dipartimento di Ingegneria e Scienza dell’Informazione

Università degli Studi di Trento, Italy

roberto.passerone@unitn.it

Abstract

The complexity of software systems rises with the
quest for better functionality and quality. The develop-
ment costs that result from it may also increase signif-
icantly. Software reuse is one of the directions pursued
by the engineering community to abate those costs. One
of the lessons learned in the pursuit of software reuse is
that composability is a central prerequisite to it. Com-
posability ensures that the properties proven for a com-
ponent in isolation continue to hold true at system in-
tegration. If component-based approaches are ever to
make it into the high-integrity domain, they have to
provide sufficient guarantees of composability. In this
paper we discuss the role played by composability in
a novel approach to model-driven engineering recently
devised for use in space applications.

1 Statement of the Problem

In recent years we have witnessed a large increase in
the deployment of software systems. The flexibility af-
forded by a software implementation, and its compara-
tively simpler design flow, have been key factors in this
shift, and have made a range of new devices that inte-
grate several complex functionalities possible. Software
productivity, however, does not keep pace with the de-
mand for new functions and with the time-to-market
and correctness requirements of modern electronic sys-
tems. In face of this changing market landscape, the
academic and industrial communities have looked at

∗This work was partially supported by the IMOFIS French
National Project, the ASSERT EU Project and by the University
of Udine (I).

software reuse as the winning strategy to improve de-
sign productivity. Such a strategy exploits a set of
architectural pre-designed components and aggregates
them by appropriate composition rules meant to ensure
that reuse occurs as intended. When successful, reuse
can dramatically shorten the development cycle, while
also ensuring high quality.

The increased adoption of software reuse method-
ologies is gradually shifting the cost linked to software
development from the design phase to the verification
and validation (V&V) phase. This occurs because com-
ponents are employed in contexts that may differ from
those initially intended. Thus, particular care must
be taken in ensuring that the interaction between the
reused components yields the correct results. The val-
idation of this interaction is typically more complex
than that of behavior alone, because of the potentially
inordinate number of interaction points incurred by the
execution. Numerous errors in software systems are in
fact the product of faulty interactions.

Correctness by construction (CbyC) has proved ef-
fective at reducing the verification cost of software [9,
13]: in fact, the techniques based on CbyC replace the
a posteriori validation methods [21] with a priori val-
idation methods, in that CbyC prevents the designer
from introducing errors in the early phases of a design,
where they cost the most. In the literature, CbyC is
defined in different ways with respect to the considered
contexts; see, for instance, [9, 21, 22, 7].

In this paper we discuss the use of CbyC techniques
for high-integrity real time embedded systems. In par-
ticular, we focus on the aerospace domain, and follow
the modeling methodology defined in [22]. The cited
methodology rests, among others, on three key pillars:
separation of concerns, thanks to a multiple-view de-



velopment style; declarative specification, with contrac-
tual interfaces realized via containers and automated
transformations; preservation of properties, to assure
that the contracts stipulated in the (declarative) spec-
ification are understood and actively preserved by the
execution platform.

One of the pillars of CbyC is the concept of com-
posability: the guarantee that the local properties of
architectural artifacts are preserved when the architec-
tural artifacts are aggregated or integrated together;
in other words: “the whole must preserve the parts”.
One of the main challenges we face in this endeavor is
to correctly capture and express the properties that are
to be preserved upon composition.

Contribution This paper discusses properties of in-
terest to composability and illustrates an approach to
guarantee it in a Model-Driven Engineering (MDE)
methodology. We discuss how model transformations
must guarantee composability and show how we can
achieve it.

The paper is structured as follows. Section 2 is de-
voted to related work. In particular we introduce the
software reuse has its central mantra in all approaches
which provides a component-based design where an ar-
chitectural artifact is viewed as a set of components. In
Section 3 we give the analysis of the problem and we
introduce the case study. In Section 4 we discuss our
solution of the problem and we illustrate the overall
methodology by the case study. Section 5 is devoted
to introduce industrial valuation. Finally, in Section 6
we discuss some open-problems and on-going work.

2 Related Work

Although there are interesting developments in the
state of the art that address composability with respect
to time [16, 18, 2], in this paper we focus on compos-
ability with respect to architectural features.

A wealth of methodologies, techniques and for-
malisms have been proposed to formalize component-
based design [17, 5, 10, 3, 19, 12, 14, 22]. Most of them
can be classified by the dual taxonomy of abstract vs.
constructive approaches [17].

The abstract approach defines a formalism com-
prised of uninterpreted operations on abstract compo-
nents. A component in this context is often viewed
as an interface and the focus is placed on specifying
the conditions under which that interface can be sub-
stituted or refined by another interface. The abstract
formalism can be axiomatic, algebraic, based on graph
theories as well as grammars. In [17] the authors define

an axiomatic theory for (a-)synchronous models pop-
ulated by agents (components) the behavior of which
is defined by a set of fixed axioms. In [5] the authors
use graph theory to represent components (i.e., nodes)
and connection ports (i.e., edges) and to describe the
composition of components and their inner structure
(i.e., refinement). In [10] the authors introduce an in-
terface algebra that supports incremental analysis of
the system, caters for the dynamic introduction of new
components, permits independent implementation of
interfaces and simultaneous composition.

The constructive approach is dual to its abstract al-
ternative. It centers around a given language to express
components, a given platform to host and execute those
components at run time, and a set of positive (shall)
or negative (shan’t) constraints on what those compo-
nents can do in terms of run-time behavior and inter-
action. The constructive approach proves that some
properties descend from the specification, and subse-
quently attempts to extend the expressive power avail-
able to the designer by constructing a set of patterns
which can provably be realized by legal composition of
legal components and are sufficiently general to address
a large(r) set of problems in the domain of interest.
This is for instance the approach taken in [12], where,
with very large resonance in the software engineering
community, 23 patterns were introduced and classified.

The abstract approaches have the advantage of be-
ing able to capture a large set of application domains.
However, the moment a specific application needs to
be addressed, the abstract theory must be instantiated
to it (to permit concrete implementation) and the con-
sistency between the implementation and the original
theory must be proven, for example axiomatically. The
instantiation process may thus become problematic. It
may even require an inordinate amount of effort, with-
out the guarantee of success, depending on the distance
between what the theory requires and what the imple-
mentation technology actually provides.

The constructive approaches have the dual problem:
they often originate from a given application domain
and attempt to generalize beyond its frontier by aug-
menting the availed expressive power. There is no a-
priori guarantee however that the generalization can
actually succeed: the requirements from a given do-
main, normally expressed in terms of attributes and
constraints, may turn out to be incompatible with
those from another domain.

An intriguing contribution to the software-
development challenge has recently been brought
about by the model-driven engineering (MDE) move-
ment [19] promoted by the Object Management Group
(OMG) [15]. By namesake, MDE sets focus on the

2



use of models as the primary means for software
construction [19, 20].

In the MDE landscape a number of distinct and
non-overlapping model spaces are provided which allow
the designer to perform software specification at mul-
tiple levels of abstraction, from higher to lower, thus
progressing from conception to implementation and
deployment with the help of automated transforma-
tions. Models at higher level of abstraction are intrin-
sically and intentionally kept independent of the target
execution platform (and thus are termed “platform-
independent”, PIM) whereas those at lower level must
resolve all dependencies on the platform (and are conse-
quently termed “platform-specific”, PSM). One of the
key prerogatives of MDE is that the source code from
which the executable is to be produced should be ob-
tained from the PSM or directly from PIM.

Model transformations map elements in the PIM to
elements in the PSM following model-to-model trans-
formation rules the execution of which could and
should be extensively automated. MDE does not con-
cern itself explicitly with providing intrinsic assurances
over the correctness of model transformations. The
burden of which instead is shifted on those who de-
velop the transformation rules and the automation en-
gines, who must provide sufficient evidence (or just
plain proof) of correctness. A considerable wealth of
research is addressing that particular concern [19].

In MDE, metamodel spaces must be provided to de-
scribe the elements that may populate the models, and
the allowable interrelations among those elements and
the applicable constraints. A metamodel space there-
fore provides a higher level of abstraction with respect
to the model space. In order to develop metamodel
spaces the OMG provides an abstract syntax based on
UML and some basic mechanisms to extend it by cre-
ating stereotypes, relationships and attributes.

3 Analysis of the Problem

We focus on using MDE for the development of high-
integrity real-time embedded systems, where extreme
attention is placed on the ability to deliver provable
evidence of predictability (among other desired proper-
ties) and CbyC and composability are paramount con-
cerns.

We define composability as follows. Let Γ1 be a
component such that the provided services of Γ1 meet
a given set of properties, φ1. Analogously, let Γ2 be a
component such that the provided services of Γ2 meet a
given set of properties, φ2. Then, a system composed
by components Γ1 and Γ2 satisfies the composability
property if it meets both sets of properties φ1 and φ2.

An essential feature of MDE is the separation be-
tween the space of specification and the space of the
implementation. In the space of specification, a de-
signer specifies attributes on the functionality and on
the structure of model-level components. Run-time
components instead reside in the space of implementa-
tion. In a CbyC-flavored approach, the run-time com-
ponents must be capable of: (1) implementing the com-
ponents specified in the designer’s space without incur-
ring semantic distortions; (2) executing in a property-
preserving manner on a target platform.

The main contention of this paper is then the fol-
lowing: composability in an MDE context is achieved if
and only if the population of the run-time components
allowed by the implementation space are provably able
to realize the components specified by the designer in
the model space, guaranteeing that no semantic dis-
tortions occur during model transformation from the
design space to the run-time space.

In the following we shall concentrate on properties
on the behavioral structure, also known in the litera-
ture as non-functional properties.

3.1 Case study

Let us discuss about composability in the context
of the fragment of a case study recently investigated
in the ASSERT Project [1]. Figure 1 is a high level
representation of a satellite subsystem. The TMTC
component is able to receive a ground command and,
according to its type, either update the current posi-
tion of the satellite or send a correcting command to
the propulsion system. The position component (POS)
is a shared resource. The guidance, navigation and
control component (GNC) is in charge of the motion of
the satellite. The propulsion component (PRO) peri-
odically controls its engine and it is also able to change
its default behavior on reception of ground command
by TMTC. (GNC is missing in the figure.)

For the sake of this discussion we assume that all
components individually meet their requirements. For
example: POS provides mutually-exclusive access to
its data; TMTC component guarantees the required
sporadic activation behavior. Figure 2 shows the ag-
gregation of the components introduced above into the
desired subsystem. The resulting system satisfies the
composability property if the properties local to indi-
vidual components still hold in the aggregation.

To constrain the implementation space we adopt the
Ravenscar Computational Model (RCM) [23, 22]. RCM
provides a modeling space that is compatible with the
restrictions of the Ada Ravenscar Profile [6]. RCM ad-
dresses two crucial issues for high-integrity real-time

3



Figure 1. The components of the example
system in isolation

Figure 2. The assembled subsystem

systems: how to manage concurrency through trust-
worthy architectural choices, and how to guarantee
static analyzability of a system [23].

4 Solution of the Problem

CbyC plays a central role when model transforma-
tions are to be automated [19]. In our vision, CbyC
enters the MDE landscape by preventing the introduc-
tion of errors in the model spaces and in the metamodel
spaces. We then proceeded as follows:

1. we impose that the PIM and the PSM shall de-
scend from one and the same metamodel space
which is adherent to RCM;

2. we formalize the model transformation from PIM

to PSM by rules; we term the resulting set of rules:
‘RCM Interface Grammar’.

In this paper we contend that, given any set of com-
ponents in PIM, composability is achieved by proving
that:

• model transformation does not introduce any se-
mantic distortion;

• PSM components obtained by model transforma-
tion are correct representations of their PIM cor-
respondents, and

• PSM components can be correctly realized on the
target platform and can execute in a property-
preserving manner.

The approach described in this paper was the the-
oretical foundation to the development of a prototype
MDE tool environment realized in ASSERT [1] under
the coordination of the European Space Agency and
the participation of major European space industry,
along with small and medium enterprises, tool vendors,
research centers and universities across Europe. Repre-
sentatives of the space industry successfully performed
pilot testing of the prototype and returned very en-
couraging feedback on their use experience. Section 5
provides more details on the industrial experiments and
their feedback.

4.1 Overall Strategy

Consider Figure 2: every method of every system
component is to be decorated by a set of non-functional
contracts. For example, method PRO op declares a
fixed-period activation requirement.

The essence of our approach to attaining compos-
ability and CbyC requires the definition of a mathe-
matical structure that underpins the designer’s model
and formalizes the automatic transformation of it into
the solution space, where run-time components reside.

The designer is not required to use the mathematical
formalism, but the decoration of the functional meth-
ods actually uses values that emanate from the formal-
ism. The RCM Interface Grammar is thus fully trans-
parent to designer. Let us now delve in the technical
aspects of it.

We introduce two formal languages LI and LC . For-
mal language LI expresses the non-functional contracts
on each method in the designer’s space. Formal lan-
guage LC puts non functional contracts together in a
way conform to RCM production rules. Furthermore
each set of non-functional contracts is realized by one

4



run-time component correct with respect to RCM en-
tities. (Right part of a production rule.)

More specifically, every production rule has the fol-
lowing form:

non terminal token in LC → set of terminal token in LC

that is, a PSM run-time component is fully described
by a set of terminal tokens.

We introduce a non ambiguous grammar: each non
terminal literal appears in only one production rule and
always in the left-hand side.

A set of attributes on the functionality and on the
structure decorates each literal. For example, it gives
us information on visibility, deadline and protocol in-
volved by a method. (See [7] for more details.) To
take these attributes into account, we are forced to
introduce a grammar with attributes. Therefore, we
associate a semantic rule to each production rule.

The same set of attributes specifies a literal in LI ,
i.e., it specifies a provided method in a PIM compo-
nent. Some of those attributes are set by the designer.
This is for instance the case of attributes on visibility,
deadline or concurrent type (cyclic, sporadic, protected
and passive). Other attributes are automatically gen-
erated by model transformation.

LI is included in LC by design, and, more specif-
ically, tokens in LI are a subset of non terminal to-
kens in LC . Therefore, given a token in LI we can
always find one production rule (because the grammar
is non ambiguous) and then a PSM run-time compo-
nent which is able to realize the method specified by
the designer in the PIM space.

Model transformations are fully described by the in-
clusion of LI in LC and the production and seman-
tic rules. The attributes shared between LI and LC ,
and the non-ambiguity of the RCM Interface Grammar
warrant that the ensuing model transformations incur
no semantic distortion.

We discuss our claims by returning to the case study
introduced in section 3.1.

4.2 Application to the case study

In the following we illustrate how our strategy ap-
plies to the PRO and TMTC components respectively,
and then, in section 4.2.3, we discuss two specific situ-
ations where composability issues arise.

In section 4.2.1 we see how two methods provided
by the PRO component (PRO op and Boost Order)
are realized by one and the same run-time component.
This is a significant case because it involves one of the
most complex rules in the RCM Interface Grammar.

In section 4.2.2 instead we see that three distinct
run-time components are needed to realize the TMTC
component, as a result of the application of two other
grammar rules.

(Owing to space limits, we only discuss production
rules without giving all the corresponding semantic
rules. Overall, the RCM Interface Grammar includes
ten rules.)

4.2.1 PRO component

<<APLcontainer>>

<<ProvidedPortCluster>>

PRO_AP

<<modifier>>Boost_Order
<<cyclic>>PRO_op

<<ProvidedPortCluster>>
<<modifier>>Boost_Order

:pro Boost

p:PRO

Figure 3. PRO component in the PIM space

Figure 3 shows the PRO component in the PIM
space. The designer specifies the concurrent behaviour
of method Boost Order by setting a modifier attribute
on the corresponding method. Moreover, she labels
the method by adding temporal constraints (e.g., dead-
line). Once the ‘modifier’ is set, a list of attributes are
also automatically set. (A preliminary draft is given
in [7]). The Modifier corresponds to terminal token
PAER in LI . Since LI is a subset of LC , we look
at the production rules. Since the grammar is non
ambiguous, only one rule can be selected. The choice
depends on syntax (PAER) and semantics (the list of
attributes). Then we have:

cyclic run-time component with modifiers

PAER → (ASATCc, CER, PSER)

In the rule, ASATCc, CER,PSER are terminal to-
kens. Rule states that a modifier (ASATC) can be in-
troduced only if the cyclic default operation (CER) has
been already specified. Therefore, the designer needs
to set also the cyclic default operation (PRO op). The
provided methods by PRO are realized by only one run-
time component and more precisely by a cyclic run-
time component with modifiers. PSER expresses a
state-dependent condition controlled by a synchroniza-
tion protocol. PSER is automatically added when a
CER attribute is set. Modifiers and the default cyclic
operation use the same PSER.

5



4.2.2 TMTC component

Figure 4 represents the TMTC component. It provides
three methods: dispatch, sendBoost and updatePos.
Method dispatch is a protected resource and it is able
to receive ground commands. If the ground command
specifies the new position that the satellite must take,
then updatePOS is activated. If the ground command
is directed to the propulsion component, then send-
Boost is activated. updatePos and sendBoost are both
methods with sporadic activation. Both have private
visibility, that is only method dispatch is authorized to
invoke them.

Figure 4. TMTC component in the PIM space

Dispatch corresponds to literal PAER+ in LI .
When the designer sets dispatch to protected, some
attributes are automatically set on the method. For
example, the type of protocol which warrants mutual
exclusion on access to data. Since LI is included in LC

and the grammar is non ambiguous, only one rule can
be applied to dispatch.

protected run-time component

PAER+ → (PAERst) | (PAERst, PAER+)

On the left-hand side of the production rule, PAER+

is a terminal token in LI and non terminal token in
LC and represents the dispatch method. PAER+ can
generate either a protected PSM component which re-
alizes only one method (PAERst) or a protected PSM
component which is able to realize a finite list of meth-
ods. The production rule is related to a semantic rule
which formalize the following statement: a protected
component can realize a finite list of PAER+ only if
they share the same local resources (functional state).
We recall that resources in RCM are statically fixed a
priori and no resource can be create at run-time. For
this reason, the list of methods is always finite.

Method sendBoost corresponds to literal PAER in
LI . PAER is a terminal token in LI and non terminal

token in LC . Following the strategy described above,
we select the following production rule:

sporadic run-time component

PAER → (START,PSER)

Method sendBoost is realized by a sporadic compo-
nent. Its attribute are inherited by the START lit-
eral (semantic rule). PSER is a guarded entry which
is opened by the invocation of START. Method up-
datePos is treated analogously to method Sender1.

Unlike the PRO component, the TMTC component
is realized by three PSM components: one protected,
and two sporadic. As a result of the application of
these rules, model transformations do not introduce
any semantic distortion and consequently the resulting
set of PSM components is a correct representation of
TMTC component.

4.2.3 Composability

The realization of the TMTC component provides an
example of how composability is achieved: the designer
specifies methods in the TMTC component and inter-
connects them (sendBoost and updatePos are invoked
by dispacth) with the guarantee that the attributes on
set on the individual methods are not failed during
model transformations. For example, attribute “pro-
tected” on method dispatch is not affected by its in-
teraction with sendBoost and attribute “deadline” on
sendBoost is likewise not affected by the interaction
with dispatch. Model transformation acts on individ-
ual methods so that composability is guaranteed when
they are integrated together.

Another example of composability is the follow-
ing. By functional requirements, an invocation by
the TMTC component may change the operational be-
havior of the propulsion component (PRO). We have
shown that TMTC and PRO preserve their own at-
tributes upon model transformation. When we inte-
grate TMTC and PRO components in a single system
(see Figure 2), we are guaranteed that each of them
preserves their own original properties on composition.
The key is that the transformation rules we have seen
operate on individual methods in isolation. Therefore,
TMTC methods dispatch, sendBoost and updatePos as
well as PRO methods Bootst Order and PRO op are
all correctly realized by fitting and appropriate PSM
components as before integration. Attributes specified
on methods in PIM are inherited by methods in PSM
and then realized by PSM components with no seman-
tic distortion (because LI ⊂ LC and the non ambiguity
of the interface grammar). Model transformations ap-
plied to TMTC and PRO components enable them to

6



continue to meet the original properties when TMTC
and PRO are integrated together.

5 Current Status

To assess the viability and effectiveness of the MDE
approach outlined in this paper, a team based at
the University of Padua (UPD) developed a concept
demonstrator as an Eclipse plug-in. Two industrial
teams used and assessed that prototype independently
for a total elapsed time in excess of 6 months in three
incremental instalments.

GMF, ATL and MOFscript [11] were used to develop
the engines behind the graphical interface, the model
transformations and the code generation respectively.

The full prototype development at UPD took 5.3
person/years from June 2006 to July 2007 to pro-
duce: 90 metaclasses, conceptually identical to UML
stereotypes, to implement the RCM metamodel com-
mon to all modeling views; 13, 000 lines of ATL to drive
model transformations implemented in accord with the
RCM Interface Grammar rules discussed in this paper;
8, 000 lines of MOFscript to implement code genera-
tion; 7, 500 lines of Java to complete the graphical ed-
itor (in addition to 150, 000 lines generated automati-
cally by GMF). See reference [8] for wink clips on how
our tools operate.

The demonstrator was used by two industrial part-
ners to re-design sizeable subsets of internal reference
on-board systems of theirs. The essential requirements
that the industrial teams placed on the case studies
included:

• active enforcement of separation of concerns: the
user must be able to concentrate on functional as-
pects and to (only) declaratively specify the non-
functional requirements that must be met by the
contractual interfaces of system components

• proof of correctness of the automated transforma-
tions that turn the user model (the PIM) into the
run-time component space (the PSM) and then
into the source code to be submitted to compi-
lation and binding to the platform-specific mid-
dleware: the user must be able to place justified
confidence in the correctness of the transformation
process and in the ultimate economy of the resid-
ual stage of verification and validation required on
the end product

• expressiveness and coverage of the non-functional
(including, of course, real-time) requirements set-
table on the contractual interfaces

• ability to explore the solution space in the PSM
in a round-trip feedback-based manner originating
from the user model space at PIM. The interested
reader is referred to [4] for details on the forms of
static real-time analysis supported in the proposed
approach.

Both experiments earned us authoritative confirma-
tion that our vision addresses the industrial require-
ments outlined above and that it does meet some of
them fully. (i) Separation of concerns in a PIM-centric
user space was found to be both desirable and achiev-
able. (ii) The declarative and platform-independent
specification permitted in the PIM space has potential
for decreasing the development time considerably by
sparing the burden of decomposing the system down
to primitive run-time entities and then having to prove
their local and global correctness. (iii) The provision of
proof support for transformations and verification, in
the form, for instance, of the RCM Interface Grammar
was considered extremely important, though major ef-
fort is required of industrial practitioners to acquire full
control of it. (iv) Increase reliance on automation is
considered a key asset of the future development style.

6 Conclusions and Outlook

The need to assemble increasingly critical and com-
plex functionalities in high-integrity production sys-
tems requires developers to attain more aggressive lev-
els of software reuse as well as unprecedented levels of
automated code generation.

Composability and CbyC are essential features in
techniques oriented to software reuse. Their impor-
tance is further increased in the high-integrity domain
where extreme attention is placed on the ability to de-
liver provable evidence of the satisfaction of the re-
quired properties.

In this paper we have discussed a strategy to ensure
composability and CbyC in an MDE approach. PIM
and PSM components are described by two languages,
which share syntax and semantics. By design, the lan-
guage for PIM components (named LI) is included in
the language for PSM components (named LC). This
is possible because we impose that PIM and PSM shall
descend from one and the same metamodel.

Resting on a single metamodel however is not prac-
tical for the development of heterogeneous systems,
which rather require the use of multiple metamodels.
Our current work explores the problem space in this
particular direction.

7



References

[1] http://www.assert-project.net.

[2] E. Bini and G. Lipari. A methodology for de-
signing hierarchical scheduling systems. Journal
of Embedded Computing, 2005.

[3] S. Bliudze and J. Sifakis. The Algebra of Con-
nectors - Structuring Interaction in BIP. In Int.
Conf. EMSOFT, pages 11–20, 2007.

[4] M. Bordin, M. Panunzio, and T. Vardanega. Fit-
ting Schedulability Analysis Theory into Model-
Driven Engineering. In Euromicro Conference on
Real-Time Systems (ECRTS 08), pages 135–144.
IEEE, July 2008.

[5] R. Bruni, A. Lluch Lafuente, U. Montanari, and
E. Tuosto. Style Based Reconfigurations of Soft-
ware Architectures. Technical Report TR-07-17,
Università di Pisa, 2007.

[6] A. Burns, B. Dobbing, and T. Vardanega.
Guide to the Use of the Ada Ravenscar
Profile in High Integrity Systems. Techni-
cal Report YCS-2003-348, University of York
(UK), 2003. http://www.cs.york.ac.uk/ftpdr/
reports/YCS-2003-348.pdf.

[7] D. Cancila and R. Passerone. Functional and
Structural Properties in the model driven engi-
neering. In Int. Conf. ETFA, IEEE, 2008.

[8] D. Cancila, M. Trevisan, and T. Vardanega.
A gentle introduction to the HRT-UML/RCM
methodology. http://www.math.unipd.it/

~tullio/Research/ASSERT/Tutorial.

[9] R. Chapman. Correctness by Construction: A
Manifesto for High-Integrity Software. volume 162
of ACM Int. Conf.Proc. Series, 2006.

[10] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. In-
cremental Schedulability Analysis of Hierarchical
Real-Time Components. In Proc. EMSOFT 2006,
pages 272–281, 2006.

[11] http://www.eclipse.org/modeling.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[13] A. Hall. Realising the Benefits of Formal Meth-
ods. Journal of Universal Computer Science,
13(5):669–678, 2007.

[14] M. Kircher and M. Volter. Software Patterns.
IEEE Software, July-August 2007.

[15] OMG. http://www.omg.org/.

[16] J. Pulido, S. Uruena, J. Zamarro, T. Vardanega,
and J. D. L. Puente. Hierarchical Scheduling with
Ada 2005. In 11 Ada Europe Int. Conf. LNCS,
2006.

[17] A. Sangiovanni-Vincentelli and R. Passerone.
Contract-based formalisms for heterogeneous and
hybrid systems. http://www.artist-embedded.

org/docs/Events/2007/Components/Slides/

RobertoPasserone.pdf, 2007.

[18] A. Sangiovanni-Vincetelli and M. D. Natale. Em-
bedded system design for automative applications.
Computer, IEEE Computer Society, 2007.

[19] D. Schmidt. Model-driven engineering. IEEE
Computer, pages 25–31, February 2006.

[20] B. Selic. From Model-Driven Development to
Model-Driven Engineering. Keynote talk at
ECRTS’07. http://feanor.sssup.it/ecrts07/

keynotes/k1-selic.pdf.

[21] J. Sifakis. Embedded Systems - Challenges and
Work Directions. In LNCS, editor, Principles of
Distributed Systems, volume 3544, 2005.

[22] T. Vardanega. A Property-Preserving Reuse-
Geared Approach to Model-Driven Development.
In 12th IEEE Int. Conf. on Embedded and Real-
Time Computing Systems and Applications, pages
223–230. IEEE, August 2006.

[23] T. Vardanega, J. Zamorano, and J. de la Puente.
On the Dynamic Semantics and the Timing Be-
haviour of Ravenscar Kernels. In Real-Time Sys-
tems, Springer-Science, 29:58–89, 2005.

8


