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Abstract

In this paper we discuss the separation between at-

tributes on functionality and on structure following an ap-

proach based on Model Driven Engineering (MDE). We

adopt a methodological approach based on correctness-

by-construction for modeling high-integrity real-time em-

bedded systems. We illustrate how this separation is im-

plemented by a prototype, recently realized by our re-

search team. Software reuse is incremented by using the

prototype. This has been confirmed by the evaluation of

two teams from major European space industry. We con-

clude our work by discussing some open problems.

1 Introduction

The benefits of software reuse in terms of increased

productivity have attracted the attention of the scientific

and industrial community in recent decades, with a spe-

cial focus on component-based design techniques [7, 4,

27, 17, 20, 33, 32, 13]. In this context, new methodolo-

gies such as Model Driven Engineering (MDE) [27] and

Platform-Based Design (PBD) [26], have been proposed,

in which the different aspects of a design are considered

separately for efficiency, and only later brought together

according to precise rules that provide certain guarantees

of correctness. This separation of concerns allows design-

ers to develop specifications for function, timing, archi-

tecture and structure which can later be reused or adapted

to more quickly achieve the desired result.

Along these lines, researchers are devoting much effort

towards the identification, specification and implementa-

tion of attributes on functionality and structure in the de-

sign development process. Broadly speaking, attributes

on functionality have to do with the functional speci-

fication of methods, interfaces and classes. Attributes

on structure, instead, regard all non-functional features,

from concurrency management to security guarantee. For

this reason, they are also known in the literature as non-

functional attributes [16, 5, 24]. This separation is ex-

pected to provide an additional increase in software reuse:

the more a functional specification of a system is free from

structural aspects, the more it can be reused and/or inte-

grated in another functional specification. Two examples

of application of these concepts are the ASSERT Euro-

pean project [1] and, more recently, the IMOFIS French

project.

The main result of this paper is a conceptual separation

between attributes on the functionality and on structure in

the MDE approach in light of correctness-by-construction

(CbyC) [14], intended as the limitation of the designer’s

freedom to only specify “correct architectures” of system

components. As a result, designer cannot introduce errors

on the architecture. (See Section 2.1).

This separation is based on solid mathematical founda-

tions, which we sketch in Section 4.3 (see [10] for more

details). Such a separation has been implemented in two

views, one included in the other, in a prototype for high-

integrity real time systems, by following the approach in-

troduced in [33]. The prototype has been developed by

our research team at the University of Padova (Italy) and

has been successfully tested by two teams from major Eu-

ropean space industry.

1.1 Related Work

In the literature, attributes on the functionality are usu-

ally specified using formalisms based on UML2. But

for attributes on structure, we are faced with a changing

and non-homogeneous landscape. For example, Franch

and Botella subdivide non-functional attributes into three

macro categories [16]. The first category is about time

and space, reusability, maintainability and reliability, and

is defined according to the guidelines introduced by stan-

dardization bodies [19]. The second category concerns

the behavior and is identified with ports, connectors and

components. Finally, the last category is about “non-

functional requirements” viewed as software unit.

Quality of Service (QoS) attributes are taken under

consideration in the component-based approach intro-

duced by Bruni et al. [7]. The authors introduce and

discuss Architecture Design Rewriting (ADR), which is

based on graph theory and term rewriting. The notion of

architecture is intended as the (possibly dynamic) struc-

ture of a network of components. QoS attributes are

viewed as parameters of the connections between com-

809

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 27, 2009 at 10:27 from IEEE Xplore.  Restrictions apply. 



ponents and are modeled as edges in the network. More

in particular, they are considered as “soft” constraints, i.e.,

a constraint which can be satisfied with a certain quality.

Term rewriting is used to describe “legal” reconfigurations

of the network.

When the component-based design approach coincides

with the model-driven approach [27, 28], then the identi-

fication, specification and implementation of attributes on

structure becomes more complex, since a single model-

ing space is substituted with more modeling spaces (i.e.,

the platform independent model, or PIM, and the platform

specific model, or PSM). In most cases, the difference

between PIM and PSM reflects the separation between

functional and structural models [22, 21]. The functional

model abstracts from the requirements of the implementa-

tion. The structural model, instead, addresses the require-

ments placed on the run-time behavior to be exhibited on

the target platform and it must also undergo the verifica-

tion and validation activities that precede deployment. In

this context, attributes on functionality and on structure

have to be specified and managed.

Röttger and Zschaler adopt a model-driven architecture

approach [24]. Attributes on structure capture QoS and se-

curity aspects. The authors focus on QoS only with partic-

ular attention to response time, delay and memory usage.

Designers give a first functional representation of a system

by using primarily UML2. Then, s/he refines the given

representation by non-functional attributes, which carry

time and space measurements on connectors and ports and

add new model elements which decompose the functional-

ity of a component in several subcomponents. The whole

process is iteratively refined at different levels of abstrac-

tion. The proposed methodology is influenced by a hier-

archical top-down approach to software design. However,

the top-down approach has the (questionable) property of

violating the principle of encapsulation [30, 17]. It is not

clear how the approach discussed in [24] resolves the vio-

lation of encapsulation.

In our work, we follow the approach proposed by Var-

danega [33] and, more in general, the one developed

within the ASSERT EU Project [1]. Unlike the previous

work described above, in our approach we build a tool by

starting from a mathematical formalization of a computa-

tional model which is particularly suitable to study high-

integrity real-time systems [8, 34, 10]. Moreover, such

a formalization and the tool integrate the MDE approach

with CbyC. The impact of the theoretical and methodolog-

ical study on real applications with the development of

supporting software is also considered by the teams which

study BIP, Metropolis, AADL and MARTE [4, 3, 25, 23].

A first comparison in this direction is given in [10, 6].

In the following sections we will first define the area

of the problem and present in Section 3 a real example of

application which includes a description of our adopted

technology. Section 4 discusses our approach in more de-

tail, followed by the industrial assessment.

2 Scope and Overview

We are interested in modeling high-integrity real-time

embedded systems, in which extreme attention is placed

on the ability to deliver provable evidence of predictabil-

ity and correctness. To delimit the scope of our work, we

assume that the functional specification of each compo-

nent is correct, i.e., the component does what it is sup-

posed to. Instead, we focus on how components are aggre-

gated to form a system and investigate, in particular, the is-

sue of “structural correctness”. Our methodology follows

the MDE approach, where components are composed in

a platform independent model (PIM), and then realized in

a platform specific model (PSM). Thus, the problems we

are mostly concerned with are, for instance, related to the

kind of run-time entities that may exist with respect to the

adopted platform, the attributes that should be specified

on the components at the PIM level for a correct imple-

mentation, and how to guarantee that model transforma-

tions from PIM to PSM preserve the local properties of

the components.

To address these problems, we adopt the Ravenscar

Computational Model (RCM) [34, 33]. RCM provides

a model space that is compatible with the restrictions of

the Ada Ravenscar profile [8]. It is aimed at addressing

two crucial questions for high-integrity real-time systems:

how to manage concurrency through trustworthy architec-

tural choices, and how to guarantee static analyzability of

a system. Because of these features, RCM may be re-

garded as an attractive model space for the design of this

kind of embedded systems.

The functional attributes are specified by designers

with respect to the functional requirements. These in-

clude, for instance, the signature of the methods and their

visibility. In oder to increase reuse, the functional speci-

fication of a system should be independent from both the

platform and the technology. Likewise, the designer spec-

ifies attributes related to the structure of the system. These

attributes are of two kinds: attributes on performance met-

rics, e.g., deadline of a process, and attributes on the in-

tended behavior at run-time, for example a periodic acti-

vation of a flow of control or a mutually exclusive access

to a resource. Unlike functional attributes, structural at-

tributes are not completely independent from run-time en-

tities. In the model-driven approach, components in the

designer’s space (PIM) are automatically transformed in

run-time components (PSM). As a result, some informa-

tion must be “promoted” from the PSM to the PIM, so

that a designer can “correctly” specify the components by

selecting attributes on the system structure. This is sim-

ilar to a platfrom-based design approach, where an ab-

stract version of the lower level platform is exported to

the higher levels of abstraction to facilitate mapping and

performance evaluation. As a consequence, the run-time

entities at the PSM level should also be able to sepa-

rate functional and structural attributes, without altering

their semantics. This particular case of correctness-by-
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construction is outlined in [33].

2.1 Assumptions of CbyC

In [33], CbyC is defined with respect to architectural

correctness of a high-integrity real-time embedded sys-

tem. In the sequel, with the terms correctness and correct,

we mean architectural correctness and architecturally cor-

rect. CbyC must be defined to guarantee that:

• a designer specifies only correct components;

• the correctness of a component is preserved by model

transformations;

• the composition of individually correct components

preserves the correctness of each component;

• the correctness of the system is directly derived by

the operation of composition.

3 Example and Methodology

Figure 1 shows an example studied in the ASSERT

project [1]. The system, a simple abstraction of a satel-

lite, is composed of four components: POS (short for

position store); GNC (guidance, navigation and control);

TMTC (telemetry and telecommand); and PRO (propul-

sion). POS is a data storage, used in R/W mode by GNC

and TMTC. TMTC acts according to one of the two com-

mands that it may receive from the outside environment:

it either writes to POS the value specified in the received

telecommand, or sends PRO a boost correction request

(also specified in the received telecommand). GNC per-

forms a periodic feedback-control loop on POS: it first

reads the current value; it then computes the required ad-

justment; and it finally updates the initial value accord-

ingly. The operation of GNC is locally correct if and only

if the value written to POS is consistent with the value

read from POS at the beginning of the operation. PRO

periodically executes either a default operation or else the

command required by TMTC.

Figure 1. Simple satellite system

There are three aspects that need to be addressed. The

first is how to achieve a correct management of concur-

rency. We want to abstract from ad-hoc solutions and be

based on architectural choices. Second, we wish to sepa-

rate the specification of functional attributes of a compo-

nent, for example the visibility of the methods, from the

specification on the structure, for example the deadline of

flow of control. We need therefore to understand which

attributes are of type functional and which of type struc-

tural and how a designer can manipulate them. Finally,

we need to guarantee that the automatic model transfor-

mation from PIM to PSM realizes the intended meaning

of the specification.

In order to manage the concurrency, RCM adopts a

priority-based preemptive scheduling, based on the Pri-

ority Ceiling Protocol [18, 29]. In an RCM system, all

resources are statically allocated. The flows of control

do not interact directly but through (protected) resources,

which provide a mutually-exclusive access to data. Pri-

ority is statically assigned to each flow of control, so that

the flow with the highest priority is scheduled for execu-

tion. The priority of a protected resource that is shared

between two or more flows of control is greater than or

equal to the highest priority of all calling flows of control.

When a flow of control invokes a protected resource, it

acquires the priority of the protected resource, also called

the active priority. Consequently, it cannot be preempted

by other flows which use the same protected resource. In

our example, POS has priority greater than or equal to the

priority of both GNC and TMTC components. This pol-

icy avoids deadlocks and provides an optimal bound for

the worst-case duration of priority inversion [29, 34].

Functional and structural attributes are attached to each

single method of an RCM component. RCM de-structures

an interface (as classically intended, for example a UML

interface) into elementary interfaces, each of them formed

by one single method. An elementary interface of an RCM

component can be either provided (PI) if it defines the

provided contractual obligations associated with the ser-

vice, or required (RI) if it defines the services which are

required from other components to fulfill the contractual

obligations. By de-structuring the interface we can anno-

tate each method with attributes that specify its intended

run-time implementation. For example, the same method

can be decorated as cyclic, if it is periodically activated

by a hardware interrupt from the execution environment,

or sporadic, if it is sporadically activated by a call com-

ing from either a software component or a hardware in-

terrupt. The cyclic or sporadic attribute forces the real-

ization of the associated method by a cyclic or a sporadic

RCM run-time components. Tables 1 and 2 show the list

of possible low-level functional and structural attributes

that can be specified for each PI and RI. In addition, when

W = 1, additional parameters are required to specify tim-

ing requirement such as deadlines, activation period, min-

imum separation between successive sporadic activations

and priority.

User-level attributes are defined as particular combina-

tions of the low-level attributes. For example, the cyclic

attribute corresponds to having S = avoidance synchro-
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Functional Meaning

Profile method signature

State static variables operated on by the

method

Visibility V public, private, restricted

Structural Meaning

Cl worst-case execution time, excluding the

cost of all invoked RI

Cg worst-case execution time including the

cost of all invoked RI (automatically cal-

culated)

Ceiling priority ceiling (automatically calcu-

lated)

S synchronization guarantee: none (S =

∅); exclusion synchronization; avoid-

ance synchronization.

W control flow: execution in caller thread

(W = 0); execution in callee thread

(W = 1)

τ τ = RI1, . . . , RIk, guarantees transac-

tional access to state(s) across the exe-

cution of all of the invoked RIs; τ = 0

no guarantee

Table 1. Meaning of attributes on a PI

Functional Meaning

Invocations number of times that the RI may be in-

voked in the execution of the PI

Structural Meaning

Cg maximum duration that the execution of

the invoked PI may take including the

cost of any operations invoked by the RIs

exposed by that PI (automatically deter-

mined)

Table 2. Meaning of attributes on an RI

nization, W = 1, V = private, τ = 0. The period is spec-

ified as an additional value of the W parameter. The com-

bination of attributes that are compliant to RCM [8, 34]

are discussed in [12].

The correctness of model transformations from PIM to

PSM has been discussed in [12]. The underlying idea is

the following. An RCM run-time component is an indivis-

ible entity resulting from an aggregation of five elements:

provided and required interfaces (PI, RI); a functional part

that represents the functional and sequential specification

associated to a single PI and the RI needed to fulfill it;

at most one synchronization protocol which guarantees

mutual-exclusive and state-dependent access to internal

data or no guarantee at all; at most one flow of control.

The same set of attributes (Tables 1 and 2) is applied at

both the PIM level (RCM components) and the PSM level

(RCM run-time components). These attributes influence

how the five elements are aggregated together and which

Attribute Meaning

cyclic PI periodically invoked by hardware in-

terrupt. S = avoidance synchronization,

W = 1, V = private, τ = 0.

sporadic PI sporadically invoked by hardware or

software interrupt. S = avoidance syn-

chronization, W = 1, V = any, τ = 0.

modifier PI sporadically or periodically invoked

by hardware or software interrupt. It

changes the behavior of, and it is exe-

cuted by the flow of control associated

with either a cyclic or a sporadic oper-

ation. S = avoidance synchronization,

W = 1, V = any, τ = 0.

protected PI which provides a mutually-exclusive

access to data, executing in the caller

thread. S = mutually exclusive access,

W = 0, V = any, τ = 0.

transactional PI which provides a mutually-exclusive

access to data, executing in the caller

thread, without interruption. S = mutu-

ally exclusive access, W = 0, V = any,

τ = 1.

passive PI which provides no guarantee to access

to data, executing in the caller thread.

S = empty, W = 0, V = any, τ = 0.

Table 3. User-level attributes

RCM run-time entity is generated. A designer has then

a powerful way to influence RCM run-time components,

without the need to know the details of their correct ag-

gregation.

3.1 Tool support

As part of the ASSERT EU project [1], our research

team at the University of Padova has realized a software

tool prototype, based on [33], to design high-integrity

real-time embedded systems. The objectives of the pro-

totype were to: (1) provide a software design devel-

opment tool based on the model-driven engineering ap-

proach, (2) provide a design environment which guar-

antees correctness-by-construction; (3) statically validate

a system together with a round-trip engineering process

which automatically propagates the results of the analy-

sis throughout the entire model, from views in PSM to

views in PIM; (4) automate certain operations to facilitate

designers who do not necessarily know the RCM method-

ology, without penalizing experienced users.

Goal (2) has been widely discussed in the ASSERT

technical documentations and more recently in [12, 10].

Goals (3) and (4) concern technological choices. The ed-

itor is a plug-in for Eclipse [15], an open-source frame-

work realized in Java. There are two main advantages in

using Eclipse: a wide academic and industrial community,

and a large number of plug-ins which can be freely used.
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Among them: EMF, to formalize the metamodels; GEF to

define graphical diagrams; ATL to specify model transfor-

mation and MOFscript to automatically generate code.

EMF uses a formalism based on Ecore. A model in

Ecore has approximately the same expressiveness of a

UML2 diagram: a designer can create classes, their re-

lationship, signature, and so on. Constraints are expressed

using OCL [35]. In addition, EMF exploits XMI Ecore

files and gives the ability to generate a plug-in for Eclipse

to create models using an API. Finally, EMF provides an

editor with a tree-representation. In order to have a graph-

ical representation we have used GMF, since it combines

features of both EMF and GEF, and the generated code

can easily be enriched with results from the analysis.

4 Solution

To simplify our presentation we discuss a simplified

version of the tool. In particular, we focus on the relation-

ship between the Functional view and the Interface view

together with their realization in the Implementation view.

The prototype provides additional views. A guide is avail-

able in the RCM tutorial [11].

4.1 Functional view

In the Functional view, the designer specifies the func-

tional services provided by system components and ex-

presses their sequential behavior in terms of classes and

interfaces by using a language similar to UML2. An ex-

ample of Functional view is shown in Figure 2 (the dis-

patcher is omitted for lack of space). The designer speci-

fies six interfaces (the PIs) and five classes (specifications

for the components): POS, GNC, PRO and two senders.

Each PI provides exactly one method. For example, PI

Writer Sender includes the method public Send(). RIs are

specified as attributes. For example private p:POS Writer

is an RI of Sender 1. However, no structural attributes is

introduced at this level of design. For example it is not

specified if the Compute operation requires a mutually-

exclusive access to it.

4.2 Interface view

In the Interface view, the designer specifies all PIs with

two kinds of attributes: performance metrics, such as

deadlines, and interaction semantics between two meth-

ods, such as cyclic or sporadic. First, the designer draws a

box to define the components, and names it, for example

POS AP (Figure 3). Then the designer imports its func-

tional specifications from the Functional view. The sig-

nature of all methods is syntactically and semantically re-

tained in the Interface view [10]. For example, the visibil-

ity attribute of method Write in POS has been set to public

in the Functional view. The same method in POS AP (In-

terface view) is automatically set to public. Furthermore,

the designer decorates all PIs with structural attributes.

For example, in GNC AP Compute is specified by a de-

signer as a unprotected operation and GNC op as a cyclic

Sender_2

public Send()

private v:PRO_Boost

POS
private c:Computer

private v:Integer

public Write(v:Integer)

public Read()

public Read_X_Write()

public Write()

<<interface>>
POS_Writer

<<interface>>
POS_Reader_X_Writer

public Read_X_Write() public Compute(p:Integer)

Computer
<<interface>>

GNC

private POS_Reader_X_Writer

public Compute(p:Integer)

private GNC_op

provided interfaces

public Send()

<<interface>>
Write_Sender

Sender_1

private p:POS_Writer

public Send()

public Send()

Boost_Sender
<<interface>>

method

public Boost_Order()

private PRO_op

PRO

public Boost_Order()

PRO_Boost
<<interface>>

required interfaces

Figure 2. Functional view

operation. Finally, designer links all PI with the corre-

sponding RIs. Figure 4 shows a screen-shot where the

designer sets the attributes on performance metrics.

Figure 3. Interface view with attributes

4.3 Functional and Interface views

The Functional and Interface views both reside in the

designer’s space (PIM). One requirement of the Interface

view is to preserve the information of the functional spec-

ification given in the Functional view. As a result, in the

prototype the Functional view is imported in the Interface

view. We have formalized this inclusion in [10] . The

Functional view is characterized as a weighted directed

graph HGF in which the vertices are a finite set of PI and

RI , and the edges are a finite set of their relationships.

Each PI and RI has a weight specified by a combination
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Figure 4. Attribute selection

of the functional attributes listed in tables 1 and 2. Edges

are of two types: either an edge identifies a PI and its

dependence on other RI , or an edge links a single RI to

a single PI . The second one represents the binding of a

required interface (function call) to its corresponding pro-

vided service. Thus, this is similar to a UML assembly

between two RCM run-time components.

Analogously, the Interface view is characterized as a

weighted directed graph HGI which extends HGF with

the addition of the extra set of attributes and with an ex-

plicit representation of the external environment which is

expected to effect the execution of the system.

By definition, graph HGI is a fully-faithful exten-

sion of graph HGF (by an inclusion preserving homo-

morphism), i.e., HGI preserves the vertices (with their

weights) and the edges of the graph HGF . Thus, the only

additional information conveyed by HGI consists of the

concurrent and temporal attributes of the vertices. (More

details can be found in [10]).

Despite the inclusion, the distinction between the

Functional and the Interface view is important. In partic-

ular, the same Functional view may be extended by mul-

tiple and distinct Interface views, each specifying alter-

native communication and synchronization architectures.

Thus, in general, the relationship between the Functional

and the Interface view is one to many. The designer can

reuse the same (functional) diagram by simply decorat-

ing the PIs in different ways. For example, the Compute

method in the GNC component can be specified in the In-

terface view as “protected” as well as as “unprotected”.

The choice reflects the intended behavior of the method at

run-time (see Figure 5).

4.4 Interface and Implementation views

As discussed, cyclic is an organic and synthetic rep-

resentation of a list of attributes to increase the usabil-

ity of the prototype. Unlike attributes on functionality,

however, attributes on the structure (PIM) depend on the

run-time entities (PSM). In order to achieve correctness-

by-construction, the components in the Interface view

(PIM) must not only be consistent with the classes and

public Compute(p:Integer)

Computer
<<interface>>

GNC

private POS_Reader_X_Writer

public Compute(p:Integer)

private GNC_op

<<ProvidedPortCluster>>

<<APLcontainer>>

<<ProvidedPortCluster>>

<<protected>>Compute

g:GNC

<<protected>>Compute

GNC_AP

<<cyclic>>GNC_op

<<RequiredPortCluster>>
<<any>>Read_X_Write

pos:POS_Reader_X_writer
{GNC}

<<APLcontainer>>

<<ProvidedPortCluster>>

<<ProvidedPortCluster>>
<<unprotected>>Compute

<<unprotected>>Compute

GNC_AP

g:GNC

<<cyclic>>GNC_oppos:POS_Reader_X_writer

<<RequiredPortCluster>>

<<any>>Read_X_Write

{GNC}

FUNCTIONAL VIEW

INTERFACE VIEW

Figure 5. GNC specification with two repre-
sentations in the Interface view

interfaces in the Functional view (PIM) but also with the

run-time components (PSM). In the model-driven engi-

neering approach, a run-time component is “generated”

from information specified at the PIM level. To guaran-

tee correctness-by-construction, we must have only legal

run-time components, i.e., only components which are ex-

ecuted in the adopted platform. As a result, attributes on

the structure must originate in the PSM. The main prob-

lem is therefore how to propagate information from PSM

to PIM.

Our solution has been to share the same metamodel be-

tween all views so that we would have:

• consistency in the information by using the same

syntax and semantics;

• propagation of information from PSM to PIM by us-

ing constraints in the metamodel.

We represent the PSM level in the Implementation view.

The separation between the Functional and the Interface

view must be preserved in the Implementation view. Con-

straints in the metamodel must propagate only informa-

tion on the structure of the run-time entities. Otherwise,

we could have a conflict with information imported by the

Functional view. We have therefore partitioned run-time

components in five constituent elements (discussed earlier

in Section 3), defining the aggregation rules with respect

to RCM [34], using the same metamodel and constraints

on it to propagate information. Finally, we have defined

atomic elements which are “pivot” of all views. Such ele-

ments are the PI.

814

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 27, 2009 at 10:27 from IEEE Xplore.  Restrictions apply. 



In Figure 6, the Functional and Interface view of the

PRO component has been partnered with its representa-

tion in the Implementation view. At the bottom, the RCM

run-time entity is able to capture attributes on functional-

ity and on the structure. The inner part of the RCM run-

time entity is subdivided in two parts: the first retains the

methods specified in the Functional view (called OPCS,

Operational Control Structure [8, 9]); the other retains

the methods specified in the Interface view (the synchro-

nization protocol, OBCS, Object Control Structure [8, 9]),

and the flow of control (THREAD in the figure). OPCS,

OBCS and THREAD are stereotypes in the RCM meta-

model. The attributes on the structure specified in one

method determine how an RCM run-time entity is aggre-

gated. For example, the attribute cyclic determines one

synchronization protocol with state dependent access and

one THREAD.

<<modifier>>Boost_Order

p:PRO

<<ProvidedPortCluster>>

<<APLcontainer>>

PRO_AP

<<modifier>>Boost_Order
<<ProvidedPortCluster>>

<<cyclic>>PRO_op

:PRO_Boost

<<interface>>
PRO_Boost

public Boost_Order()

PRO

private PRO_op
public Boost_Order()

PI RI

OBCS THREAD OPCS

RIPI

RI

<<modifier>>Boost_Order

<<cyclic>>PRO_op

PI

FUNCTIONAL VIEWINTERFACE VIEW

IMPLEMENTATION VIEW

Figure 6. Functional, Interface and Imple-
mentation view

5 Industrial Assessments

The full software prototype that supports our method-

ology has been developed by our research team and re-

quired a total of 5.3 person/years from June 2006 to July

2007. Overall, the prototype consists of 90 metaclasses,

conceptually identical to UML stereotypes, used to im-

plement the RCM metamodel common to all modeling

views; 13, 000 lines of ATL to drive model transforma-

tions implemented according to the RCM Interface Gram-

mar rules [12]; 8, 000 lines of MOFscript to implement

code generation; and 7, 500 lines of Java to complete the

graphical editor (in addition to 150, 000 lines generated

automatically by GMF).

Two industrial teams from the aerospace industry used

and assessed the prototype independently for a total of

more than 6 months in three incremental instalments. In

particular, one team intensively used the prototype to re-

design satellite on-board systems. Both industrial teams

positively assessed the separation between functional and

structural views. Their studies indicate an increase in soft-

ware reuse [31, 2].

Both industrial teams also indicated a reduction of the

cost in the validation and verification (V & V) phase,

due to the shortening of each individual step of the soft-

ware development cycle. Such a reduction is a conse-

quence of the adopted approach, based on the model-

driven engineering (MDE) together with correctness-by-

construction.

The reader, interested in the study of these results, must

explicitely required the authorization to the coordinator of

the ASSERT Project.

6 Conclusion and Future Work

In this paper, we have discussed how the separation be-

tween attributes on the functionality and on the structure

can be represented in the model-driven engineering ap-

proach in light of correctness-by-construction. This sep-

aration is based on a solid mathematical formalization.

The designer specifies components in PIM by first set-

ting the functionality of PIs and then by further decorat-

ing them with attributes on the structure. In the litera-

ture, researchers agree with using formalism like UML2

to specify attributes on functionality and with abstract-

ing as much as possible from technology and platform.

However, we must remember that in order to ensure the

correctness-by-construction, attributes on the structure are

not completely independent from the run-time compo-

nents, which are residing in the Implementation view.

This is different from what happens in the attributes on

functionality. Our solution is to define two views, the

Functional view and the Interface view, in which the latter

includes the first. Moreover, in order to propagate the in-

formation from the Implementation view to the Interface

view, we have defined only one metamodel for all views.

This is how the designer can specify only correct compo-

nent in the Interface view. This is why, the run-time com-

ponents (PSM) must be able to preserve the separation be-

tween attributes on the functionality and on the structure.

In order to assess the viability of our methodology, our

research team has realized a prototype to develop high-

integrity real-time embedded systems. This prototype has

been successfully tested by two teams of major European

spatial industries. The main result confirms an increase of

software reuse.

One of our next major challenges in the design of these

systems is how to make the several different and hetero-

geneous formalisms coexist and interact by guaranteeing

correctness-by-construction.
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