2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops

An industrial case study using an MBE approach:
from architecture to safety analysis

Stefano Dalpez, Roberto Passerone
Dipartimento di Ingegneria e Scienza dell’Informazione
University of Trento,

Italy,
roberto.passerone @unitn.it, stefano.dalpez@ gmail.com

Abstract—We discuss the initial phases of software de-
velopment of a real industrial safety-related device in the
railway application domain. In particular, to achieve greater
confidence in the system, we illustrate the development of the
system architecture (using a standard model domain-specific
language), the computation of the safety integrity level and
the calculation of the reliability of the whole system. We
reiterate the safety analysis on the sub-systems. The proposed
methodology has found immediate industrial applications.

Keywords-railway application domain; preliminary hazard
analysis; reliability analysis; model-based safety engineering

I. INTRODUCTION

The development of critical systems involves the interplay
of many different disciplines and, therefore, becomes partic-
ularly complex. In this context, the industrial and academic
communities are paying increasing attention to safety issues.
Because safety concerns may involve profound changes
in the architecture of a system, the values of the safety
attributes must be calculated as soon as possible during
development. This is the case, for example, for the Safery
Integrity Level (SIL) [1], wich is related to the degree of
failures that the system must be able to tolerate.

The industrial development of a critical system involves its
successive refinement until the program code. A refinement
produces logical sub-systems that are described by their
related documentation. Then, safety analysis is performed
iteratively on the subsystems, by following the norms related
to the considered application domain. The result is in the
form of documentation which includes the values of the
safety attributes. Finally, the whole process is certified by
a third authority.

Even excluding certification, this process presents many
difficulties. For example, it must guarantee that the produced
documentation on the architecture and the safety analysis
is coherent, and that the safety analysis documentation is
correct w.r.t. the architecture. In addition, safety norms
clearly point out the adoption of semi-formal languages as
a means to improve the safety analysis.

The main objective of this work, then, is a feasibility
study. We pay a special effort to be adherent to the standard

978-0-7695-4038-2/10 $26.00 © 2010 IEEE
DOI 10.1109/ISORCW.2010.11

116

Daniela Cancila, Francois Terrier
CEA, LIST,
Laboratory of model driven engineering for embedded systems,
Point Courrier 94, Gif-sur-Yvette, 91191,
France
cancila@gmail.com

languages for the architectural (sub)system specification and
for the corresponding safety analyses. More in particular, we
discuss the development of the so-called Event Recorder, a
real industrial case study in the railway application domain.
Its main functionality is to periodically memorize the state
of the system, so that, in case of an accident, the potential
causes could be extracted and analyzed. We focus on the
initial phases of architectural design of the Event Recorder
system, we perform the related safety analyses by computing
the Preliminary Hazard Analysis and the reliability analysis
of the whole system (that is, the safety analyses include the
architectural subsystems). Our adopted methodology adheres
to the current norms [1], [2], and reduces the cost linked
to the industrial application, because the safety analysis
is performed before the system is developed in all its
complexity. The main conclusion of our study is that existing
specification languages already provide constructs to spec-
ify the safety attributes during the architecture refinements
of a system - thus integrating the safety analysis results.
However, the main drawback is the lack of safety analysis
tools, which are directly integrated on an architectural model
specification.

II. METHODOLOGY

Table I shows our methodology. Each line shows a level of
the developed architectural system, the corresponding safety
analysis, the main safety attributes, which must be calculated
by the safety analysis, and the corresponding constraints
given by safety objectives.

In Step (al), designers specify the system architecture by
using a model-based engineering (MBE) approach [3], [4].
MBE provides the mechanisms to abstract away unnecessary
details and, hence, to facilitate the design phase, the valida-
tion and verification processes, reuse and evolution. In Step
(a2), safety designers annotate the architectural model with
safety attributes, according to the Preliminary Hazard Anal-
ysis (PHA) [2]. PHA is performed by traditional techniques,
but the results are annotated in the safety attributes, which
are already introduced in the architecture - thus integrating
PHA with the architecture. As a result, designers construct

IEEE
computer
psoaety

Architecture Safety Analysis

Achieved Safety Values

Constraints given by Safety Objectives

(al) (Safety-Related) Event-
Recorder System

(a2) Preliminary Hazard
Analysis

(a3) SIL

(a4) The architecture should be reduntant to
at least one fault

(bl) (Safety-Related) Event-
Recorder System with Archi-
tecture 1002

(b2) Reliability Analysis

(b3) PFH, MTBF

(b4) the PFH and MTBF values should cor-
respond to the SIL value; the architectures
(e.g. (bl) and (c1)) should always meet the
MTBEF value

(cl) (Safety-Related) Event-
Recorder Subsystems: Power
subsystem and Event-Recorder
Functional Subsystems

(c2) Reliability Analysis

(c3) MTBF for each analysed
subsystem (e.g. Power and
Event-Recorder
subsystems)

(c4) the pair of the MTBF values should
meet the MTBF value of Event-Recorder

Functional | system

Table 1
OVERAL METHODOLOGY

a complex model where the architecture is coupled with the
safety model and analysis.

The Safety Integrity Level (SIL) value for the safety-
related functionalities of the system is computed during
PHA (Step (a3)). SIL is a standard attribute required by the
IEC61508 standard [1]. At this point, the system designers
must refine the architecture to satisfy the SIL value (Step
(b1)). Such refinement is required by the IEC61508 stan-
dard [1] (Step (a4)). Then, reliability analysis calculates the
probability that a device will perform its required function
under stated conditions for a specific period of time (Step
(b2)) [5], and provides the value of Probability of Failure
per Hour (PFH) [1] and the corresponding value of Mean
Time Between Failure (MTBF) [1] (Step (b3)).

The system is in a safe state if the following two
conditions are guaranteed: the PFH and the corresponding
computed MTBF value belong to a real-number interval
derived from the SIL value (Step (b4)) [1]; and the archi-
tecture, together with its refinements, guarantees that the
MTBEF value is satisfied (Step (b4)) [1]. To ensure this,
the MTBF value is decomposed (Step (b3)) and allocated
(Step (cl)) to the subsystems, and each subsystem must
be shown to satisfy the allocated MTBF (Step (c4)). The
MBTF decomposition is a semi-qualitative analysis based
on the experience of the safety designers. A graphical
representation of the reliability analysis for the subsystems
is made difficult by the multi-dimensional nature of the
space, thus complicating the visualization of the result.
However, our methodology ensures consistency between the
different levels of abstraction during the system refinements
(Steps (al), (bl) and (cl)). The safety values, which are
calculated by the safety analyses (Steps (a3), (b3) and (c3)),
are annotated in the architecture (Steps (bl) and (c1)) and,
hence, they can be proved to be preserved (Steps (c4), (b4),
(a4)). In the next sections, we first discuss the related work
and, then, we detail each step by means of a case study,
based on a railway industrial application.

117

IIT. RELATED WORK

Of the extensive literature on safety-related issues, we
here discuss existing work that is closer to our approach and
which uses safety-related languages. The first three works in
this section adopt both UML and UML profiles, to specify
the architectural system, and they introduce a safety-related
domain-specific language as UML profile, to deal with safety
analysis.

De Miguel et al. propose a UML standard safety profile
that integrates safety analysis and a UML architecture [6].
The profile allows safety engineers to annotate a UML
architecture with safety attributes and, thanks to model trans-
formations, Fault-Tree Analysis (FTA) and Failure Mode
Effects and Criticality Analysis (FMECA) are automatically
generated. Currently, the work of de Miguel et al. does not
consider the recent trend to specify the architecture with the
two UML standard profiles: SysML and MARTE. Such a
trend is captured by SOPHIA [7].

SOPHIA provides a modeling language to integrate safety
in a model-based approach [7]. The work introduces a meta-
model and a profile by intentionally reusing the pre-existing
MARTE stereotypes - thus ensuring compositionality be-
tween the language, which is used to specify the architecture,
and the language, which is used to specify safety models and
safety analysis. Moreover, SOPHIA allows safety designers
to achieve a model representation of safety issues, for exam-
ple a model of the accidents to be avoided. The safety model
couples with the architectural model - thus guaranteeing
the coherence between the architectural system and safety
analysis of that architectural model. Currently, SOPHIA does
not calculate the SIL and the tests are only given on a
flat (real industrial) system (that is, without considering the
refinement of a system in its subsystem). Unfortunately, we
were not authorized to use SOPHIA on (a subset of) our
example, due to intellectual property limitations.

DAM profile introduces a UML profile for quantitative
dependability analysis of architectural systems [8]. DAM
extends MARTE and contains three main models: the Sys-
tem Core model, the Thread model and the Maintenance
model. In the DAM Thread model, the information on error

propagation from a faulty component to another component
is transmitted via the corresponding connector. Then, safety-
related annotations are specified on components and on
connectors. Some safety-related attributes, which we use, are
included in the Thread model, but the DAM model is not
complete for our needs. Moreover, a tool that implements
the safety analysis starting from the model specification is
not currently available.

Our approach is closer to the mentioned work because it
adopts UML?2 and UML profiles. Despite some differences,
which we will discuss in the sequel, we point out that
all these approaches are potentially compatible and might
therefore be used in combination.

The primary objective of our methodology is to perform
safety analysis of an architectural system and propagate
the results back in the architectural model. Indeed, safety
analysis results are directly introduced in their corresponding
safety attributes, which are specified in the architecture.
This ensures that safety analysis results are available in the
architectural system, by preserving the safety values during
the refinement of the system in its subsystems. We are
not interested in introducing a new safety-related domain-
specific language, but we wish to reuse as much as possible
pre-existing UML standard profiles. More in particular, we
adopt the following specification languages: UML2, SysML
and MARTE (the UML2 standard profile for Modeling
and Analysis of Real-Time Embedded systems, packages
VSL and NFP) to specify the architectural model, and
MARTE::VSL to specify safety attributes and their values
on the architectural system components.

We conclude this section by discussing three standards:
Architecture Analysis & Design Language (AADL), AU-
TOSAR and EAST-ADL .

Error propagation is captured by the standard Architecture
Analysis & Design Language (AADL) [9]. AADL is a
formalism which is particularly suitable for high-integrity
embedded systems, like spatial applications. AADL provides
relevant features on deployment and error propagations.
Other relevant standards are AUTOSAR (the European
industrial standard to specify component-based software
infrastructures in automotive applications [10]) and EAST-
ADL [11], which is used by the scientific community to de-
fine an architecture description language and to complement
AUTOSAR. EAST-ADL focuses on automotive applications.
The main advantages of these standards are the adherence
to the automotive norms, and their methodology to software
development. We have not addressed the AADL, AUTOSAR
and EAST-ADL standards because we do not deal with the
same application domain. Indeed, our main effort is in the
safety analysis of a real industrial railway system such that
the safety analysis is compliant to the railways norms, e.g.,
the IEC61508 standard [1], and the architectural system is
based on a MBE approach and it is specified in UML and
UML profiles.

118

IV. CASE STUDY

We study an Event Recorder system whose main func-
tionality is to periodically memorize the state of the system.
The recorded information plays a crucial role in case of
an accident, because it allows engineers to recover the
system state immediately before the accident happened,
and to reconstruct the causes of the accident. According
to the requirements, which are given us by the industry,
we deploy in the Event Recorder system two safety-related
functionalities: the deadMan functionality, which ensures the
safety of passengers in case the machinist should become
unable to operate the commands, due for instance to a
sudden illness; and the zeroVelocity functionality, which
ensures that the doors are locked whenever the train speed
is slightly higher than zero.

We call Safety-Related Event Recorder the Event Recorder
system that implements the two mentioned functionalities.

The Safety-Related Event Recorder has five main compo-
nents. The Zero Velocity (ZV) component guarantees that
the doors are locked whenever the train speed is slightly
higher than zero. ZV records the velocity sent by two sensors
placed at the opposite ends of the train. ZV checks that
the two measures have the same value. If the values are
different, it sends an error message to the Emergency Break
component, which must stop the train. Otherwise, if the
velocity is zero, it inhibits the DeadMan component. Finally,
it periodically updates its state in the Buffer component.

The Dead Man (DM) component guarantees the safety
of passengers in the case the machinist becomes unable to
operate the commands, due for instance to a sudden illness.
The DM component provides three services: machinistCon-
troller, inhibitor and errorDetection. The machinistController
service receives a signal from a sensor, which interfaces with
the machinist. If the signal is not periodically received, then
the DM component sends an error message to the Emergency
Break component, which must immediately stop the train.
The inhibitor signal, on the other hand, inhibits the machin-
istController service; that is, when the train is stopped, for
example at a platform, the machinist does not have to give
the vital signal to the sensor. The errorDetection signal is
generated by the Diagnostic component and is used to send
an error message to Emergency Break component, which
must stop the train. Finally, the DM component periodically
updates its state in the buffer component. The Diagnostic
component periodically executes three actions. First it reads
the states of the ZV component and DM component in the
buffer. Then, it verifies the critical functionalities of the
system and, finally, it sends the information to the external
components via a bus. If the Diagnostic component detects
an error, it sends an error signal to the DM component via
the errorDetection service.

The Buffer component simply records the system state,
and is written by the DM and ZV components, and read by

SafetyRelatedEventitecorderSubsystem

emergengyBrakeCommand

i [— seBeginvelocity

g T seEnovelotity
SatenatedEvemAecordertystem r anassSignal
sRER: .

emergencyBrakeCommandzy
&[T | seEnaveincity

b: Buffer
selVelogity

riSeVelacity. p—
eadMan:

inhibiterCormmand] inhibitor

emergencyBrakeCommandDM

p: Pawer

dlagnosticOefault

diagnosticPr: Diagnastic

ermorSignalCommand |

— | setneness

HSILIvENEsS
errorSignal

—
[composie sbsystem;
.

diagnosticDefau

rikeadLiveness

Figure 1.

the Diagnostic component.

Finally, the Power component supplies power to the
Safety-Related Event Recorder system. In order to meet
safety requirements, the Power component must receive the
power from external components instead of the backplane, to
the safety-related Event Recorder system and, then, transfer
the received power to the internal components.

A. Architecture - Steps (al), (bl), (cl)

MBE is supported by a large variety of model-based
languages [12], [13], [14]. In order to specify a systems, we
must account for the interplay of several features, including
architecture, safety, and temporal attributes. Moreover, our
modeling language should be supported by tools that allow
us to analyze if the system meets the systems requirements.

Several methodologies and approaches to introduce a
modeling language can be found in the literature. Some
languages are introduced from scratch for specific needs.
Their main advantage is to be optimally studied to the
problem at hand. The price to pay is a higher cost for
interfacing (meta)models and, especially, tools. This cost
potentially increases in the verification and validation phase,
to avoid the syntax and semantics overlapping between
modeling languages [15]. Other modeling languages intro-
duce only one metamodel, which must be as ‘“general”
as possible. Domain-specific languages are then formed as
profiles, which extend and specialize the given metamodel.
The main advantage is to reuse pre-existing plug-in and tools
and, moreover, to guarantee compatibility when new plug-
in and tools are integrated, leading to a lower cost of the
verification and validation phase. The main drawback is the
requirement to have a good knowledge of the metamodel to
be extended and of the pre-existing profiles to appropriately
reuse existing plug-ins [15]. In order to develop the Safety-
Related Event Recorder architecture, we choose this latter
approach. More in particular, we use UML2 to specify the
architecture and MARTE to specify temporal attributes and
non-functional properties [16], [13]. Since its introduction,
MARTE has been successfully applied in several research
industrial projects, especially for specifying non-functional
properties. Our underlying strategy is to exploit MARTE
as much as possible, in order to evaluate its expressive-
ness and its limitation in the specification of safety-related

transfarSystemState |

119

readLivEnEss

transferSysterState

Composite Diagram for Safety-Related Event Recorder System

issues. Our results show that MARTE provides a set of
constructs that are sufficient to specify safety-related values
on architectural components during the first stages of the
architectural development.

Figure 1 shows the UML2 composite diagram for the
Safety-Related Event Recorder System. On the left, Figure 1
highlights the two components of the Safety-Related Event
Recorder System (i.e., Power and the Safety-Related Event
Recorder Subsystem), their relationship via the connector
bewteen powerSignal port and receiveSignal port. The power
component receives the power from external components via
port powerSignal and, then, it transfers the power to the
Safety-Related Event Recorder Subsystem via the connector
between powerSignal and receiveSignal ports. On the right,
Figure 1 highlights the relationship between the components
within the Safety-Related Event Recorder Subsystem. The
four components (also called properties in UML2 terminol-
ogy) correspond to ZV component, diagnostic component,
DM component and Buffer component. Consider the DM
component. The DM component provides three functional-
ities: machinistController, inhibitor and errorDetection. The
machinistController functionality is specified by a method
in a provided interface, which is realized by livenessSignal
port. Such provided interface is periodically invoked by a
sensor, which interfaces with the machinist by sending a
livness signal. If the signal is not periodically received, then
the DM component sends an error message to the Emergency
Break component via a delegation between the emergency-
BrakeCommandDM port and the emergencyBrakeCommand
port. The inhibitor signal inhibits the machinistController
functionality and it is realized by inhibitor port. Like the
machinistController functionality, The errorDetection signal
is specified by a method in a provided interface, which
is realized by errorSignal port. The method is invoked by
the Diagnostic component to send an error message to
Emergency Break component. Finally, the DM component
periodically updates its state in the buffer component via
setLiveness ports and the corresponding connector. More
in general, in Figure 1, a port in the left-hand side of
each component realizes a provided interface; a port in
the right-hand side of each component realizes a required
interface. Thereby, from a methodological point of view,

Co

Serious accident

Cop

Safe condition

L

Safe condition

(3

Accident

Y Y h h

YES

02

NO
08

Doors opened by passengers

1

Vel >V, not measured

Auto emergency brake
don't activated

(5) (7)

Figure 2.

we strictly forbid that a single port realizes both provided
and required interfaces. It straightforwardly follows because
our methodology is based on to the “Interface Automata”
Theory [17], [18].

B. Preliminary Hazard Analysis - Steps (a2) and (a3)

The Preliminary Hazard Analysis (PHA) of a system is a
preliminary analysis used to determine the Safety Integrity
Level (SIL) value of each safety function of the system. The
SIL is a semi-qualitative value that indicates the severity of
the safety function, and is expressed as an integer number
between 0 and 4 (where 4 is associated with the highest
severity). Once the SIL is calculated for each safety function
of the system, the safety engineers calculate the SIL value
that the whole (sub)system must meet during all design
refinements. For this reason, the new SIL value is often and
improperly called “the SIL of the system”. It is derived by
studying the interdependences between the mechanisms (or
barriers) that are introduced in the system to mitigate the
severity of potential accidents.

The Safety-Related Event Recorder system has only
two main safety-related functions: the machinistController,
which is realized by the DeadMan component, and setVe-
locity, which is calculated by the ZeroVelocity component
by comparing the setBeginVelocity and the setEndVelocity
values.

In the sequel, we briefly discuss the semi-qualitative
analysis to calculate the SIL. First of all, we study the
probability that when a given accident has just happened,
the mechanisms that the systems should provide to mitigate
the accident are effectively used. On the left, Figure 2
shows the consequence diagram for two critical events that
could happen when the train is moving: the sudden illness
of the engine driver (noted by (5) in the Figure) and the
incorrect measure of the velocity (noted by (7)). Consider
the consequence diagram (5). The underlying context is
the following: the train is moving and no other machinist
is present (that is, only one engine driver is in charge of
the train and one live sensor takes the machinist’s liveness
signals). Such a context is realistic in many cases. The safety

120

Safety-function

i Vel0 :DeadMan

—» Safe condition

y Working

H5

Working

Fault

L H7
—p L——p Serious accident

Fault

H5
L————— Serious accident

L— Safety-function status

The consequence diagram, the SIL analysis, the functional interdependences analysis

engineers then study the probability that a passenger or other
personnel pull the emergency brake as soon as the engine
driver has an illness - thus reaching a safe state for the
system. The probability is calculated to be less than 1%.

On the middle, Figure 2 shows how the SIL is calculated
for the machinistController functionality, which is realized
by the DeadMan component. The adopted methodology is
based on the IEC61508 and EN50126 standards [1], [2] and
can be only used in “simple or self-evident” systems [2]. The
Safety-Related Event Recorder system is a typical example
in which we can apply such a methodology. In the figure, C
specifies the severity of the accident associated to the case in
which an engine driver has an illness; F’ specifies the impact
of the accident on passengers; P is the probability that a
passenger uses a given mechanism to reduce the severity
of the accident; finally W specifies if the system provides
mechanisms (barriers) that should be used by passengers to
mitigate the accident. The value of the mentioned parameters
is set with respect to the EN50126 standard [2]. We apply
the same methodology to calculate the SIL of the second
safety-related function. And then we set the SIL value to 2.

In order to calculate the SIL value that the whole
(sub)system must meet during all design refinements (Steps
(al), (b1) and (cl)), the safety engineers analyze the inter-
dependencies between the safety-related functions [1] and
the mechanisms (or barriers) that are introduced in the
system to mitigate the severity of potential accidents. On
the right, Figure 2 shows such an analysis for the Safety-
Related Event Recorder system. The system could involve a
potential accident if one of the following scenarios happens:
the setVelocity functionality and the machinistController
have a failure (line: H7 fault +H5 fault); the setVelocity
functionality works but the machinistController has a failure
(line: H7 working +HS5 fault). The safety-related function-
alities of the Safety-Related Event Recorder system have
different SIL values (SIL 4 and SIL2). But the analysis of
the interdependencies shows that the system is in a safe state
only if the “SIL of the system” is set to 4.

1) Architectural Constraints given by Safety Objectives -
Steps (a4) and (bl) : SIL4-functionalities must be realized by

a redundant architecture to guarantee fault tolerance to at
least one failure - according to the IEC61508 standard [1]
(Step (a4)).

Architecture 1002 provides an example of a redundant ar-
chitecture, which is compliant to the IEC61508 standard [1].
The architecture owns two subsystems, each able to realize
the safety-related functionalities. Since the Safety-Related
Event Recorder System is made of one single hardware unit,
we need two such units (Step (bl)).

We adopt Architecture 1002 for three main reasons. First
of all, it is easy to realize. Secondly, we skip the well-known
problems due to the critical circuits when three or more units
are deployed on the same system. Finally, Architecture 1002
is an economically viable solution because it consists of only
two identical subsystems.

Of course, in Architecture 1002 we should pay attention
to the common failures that crash the whole system. We
discuss such an analysis in the next section.

C. Reliability Analysis - Steps (b2)-(b4)

Reliability is defined as the probability that a device
will perform its required function under stated conditions
for a specific period of time [5]. Reliability is quantified
as Mean Time Between Failures (MTBF) and is based on
the combination of three main parameters: detected faults;
undetected faults and common faults.

Detected faults are detected by the diagnostic components,
which are integrated, in our case, in the Architecture 1002.
Undetected faults are not detected by the diagnostic compo-
nents - thus they increase the hazard of a potential accident.
Then, the probability of failure per hour of the undetected
faults should be guaranteed to be under a threshold, specified
by the norms. Finally, the common faults potentially crash
the whole system.

Equation (1) defines the Probability of Failure per Hour
(PFH) in accord to the IEC61508 standard [1] . The meaning
of the acronyms of the equation is extracted by the IEC61508
standard [1] and introduced in Table 1:

PFH = 2((1-Bp)App+(1—-B)Apv)*tce+BpIpp+BApr
ey

The last column of Table 1shows the safety values, which
the architecture must meet. They represent our industrial
safety requirements. In the table, the first four values are
determined on the basis of the safety engineer experience.
They are qualitative values that range in a fixed interval,
given by the IEC61508 standard [1]. The last four values
depend on the value of the MTBF, which is equal to § in
most cases.

Figure 3 shows the MTBF value that the Safety-Related
Event Recorder system must meet to be safe. The MTBF
value is obtained for the values in Table 1 (last column), and
it is given from the intersection of the curve line with the
threshold between the SIL3 and SIL4 [1]; that is, 1,100,000.
The MTBF value and the values in Table 1 are used in

121

[Param. Meaning | Value
PFA Probability of Failure par Hour
Jé] The fraction of undetected failures that have | 5%
a common cause
Bp The fraction of those failures that are detected | 2%
by the diagnostic tests, the fraction that have
a common cause
DC Diagnostic coverage 95%
MTTR Mean time to restoration (hour) 1h
MTBF Mean Time Between Failure
A Failure rate (per hour) of a channel in a ﬁ
subsystem
ADD Detected dangerous failure rate (per hour) of %DC
a channel in a subsystem
ApU Undetected dangerous failure rate (per hour) % (1-DC)
of a channel in a subsystem
AD Dangerous failure rate (per hour) of a channel | Apy + App
in a subsystem,
Table II
THE IEC61508 STANDARD PARAMETERS [1] AND THEIR INDUSTRIAL
VALUES

Equation 1 - thus calculating the PFH value. The IEC61508
standard [1] introduces suitable mappings between PFH and
SIL: The system satisfies the quantitative requirements of
SIL level if the MTBF value belongs to the PFH real interval
corresponding to SIL 4 [1].

1) Subsystems - Steps (c2)-(c4): The MTBF value is spec-
ified in the corresponding attribute of the Safety-Related
Event Recorder architectural system. The system must guar-
antee that the architecture will meet the MTBF value during
across its refinements [1]. In order to do so, the MTBF is
decomposed and allocated to the subsystems. Figure 3 shows
the value of the MTBF for the whole system, as a function
of the MTBF of the subsystems (the Power subsystem and
the Safety-Related Event Recorder Subsystem, see Figure 1).
The shaded area corresponds to the area of MTBF values
for which the overall safety constraint is satisfied. We
point out that in order to satisfy the overall system safety
requirements, the MTBF values for the two subsystems are
necessarily correlated. For example, if the MTBF for the
Power component is set to 1.5e+006, then the MTBF for the
Safety-Related Event Recorder subsystem must be a value
between 1e+007 and 4e+006. The pair of the MBTF values
represents the MTBF decomposition and it is set by the
safety designers (semi-qualitative analysis). Once the MTBF
values are set, these values are specified and annotated in
the architectural subsystems (Figure 1).

V. DISCUSSION AND CONCLUSION

In this paper, we have discussed a real industrial example
in the railway application domain. We have focused on the
early stages of the software development. To specify the
system architecture, we have adopted a MBE approach; the
safety analysis has been performed on the system and its
subsystems, and conforms to the standards EN50126 [2]
and IEC61508 [1]. The main conclusion of our study is that

2,0£-08
1,9€-08
1,8£-08
1,76-08
1,66-08
1,5€-08
1,4€-08 -
1,3£08
1,26-08
1,1€-08
1,0€-08 -
9,0E-09
8,009
7,06-09
6,0E-09 -
5,06-09 -
4,0£-09
3,06-09
2,009
1,0£-09
500.000

SIL3

PFH [h]
Total MTBF [h]

SiL4

1.000.000 1.500.000 2.000.000 2.500.000 3.000.000

MTBF [h]

Figure 3.
and the MTBF values for its subsystems

UML and its profiles already provide constructs to specify
the safety attributes during the architecture refinements -
thus integrating the safety analysis results. However, the
main drawback is the lack of safety analysis tools from
the architectural model. Indeed, for the safety analysis, we
have always exploited other tools to ensure conformance
with the mentioned standards [2], [1]. Moreover, some safety
attributes, such as the MTBF values, are correlated in the
subsystems: if one MTBF value changes, e.g., in the Power
subsystem, it can involve a change in the MTBF value of the
other subsystem (and, hence, on the architecture). To capture
such features, instead of modifying the UML language (and
its profiles), our future work includes the development of a
safety analysis tool (e.g., a plug-in in Eclipse) such that the
two values are guaranteed to match.

REFERENCES

[1] 1EC, 61508:1998 and 2000, part 1 to 7. Functional Safety of
Electrical, Electronic and Programmable Electronic Systems.,
2000.

[2] CENELEC, EN-50126: Application ferroviaires -

Spécification et démonstration de Fiabilité, Disponibilité,

Maintenabilité et Sécurité (FMDS), 1999.

[3] D. Schmidt, “Model-driven engineering,” IEEE Computer, pp.

25-31, February 2006.

[4] B. Selic, “From Model-Driven Development to Model-Driven

Engineering,” http://feanor.sssup.it/ecrtsO7/keynotes/k1-selic.

pdf.

[5] S. Speaks, “Reliability and MTBF Overview,”

cdn.vicorpower.com/documents/quality/Rel_MTBF.pdf,

Vicor Reliability Engineering, Tech. Rep.

[6] M. de Miguel, J. Briones, J. Silva, and A. Alonso, “Integration

of satety analysis in model-driven software development,”

2008.

[7] D. Cancila, E. Terrier, F. Belmonte, H. Dubois, H. Espinoza,

S. Gérard, and A. Cuccuru, “SOPHIA: a Modeling Language

for Model-Based Safety Engineering,” in Inter. Work. ACES-

MB, 2009.

2.8e+006
2.4e+006

2e+006
1.6e+006
1.2e+006

122

4e+006
Func MTBF [h]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

2e+006

1.9e+006
1.8e+006
1.7e+006
1.6e+006
1.5e+006
1.4e+006
1.3e+006
1.2e+006
1.1e+006

2.56+006

264006

1.56+006

1e+006
Power MTBF [h]

0.5e+006

0

On the left, the MTBF value for the Safety-Related Event Record System. On the right, relationship between the MTBF value for the system

S. Bernardi, J. Merseguer, , and D. Petriu, “Adding Depend-
ability Analysis Capabilities to the MARTE Profile,” in Inter.
Conf- MODELS, 2008.

P. Feiler and A. Rugina, “Dependability Modeling with the
Architecture Analysis & Design Language (AADL),” Soft-
ware Engineering Institute, Carnegie Mellon, Tech. Rep.,
2007.

AUT@SAR, “Automotive Open System Architecture,” www.
autosar.org.

ATESST Project, “Advancing Traffic Efficiency and Safety
through Software Technology. ATESST STREP - FP6
project,” http://www.atesst.org.

SAE, “Architecture Analysis and Design Language (AADL),”
www.aadl.info/aadl/currentsite/.

OMG, “Unified Modeling Language UML Resource Page,”
www.uml.org.

S. Bliudze and J. Sifakis, “The Algebra of Connectors -
Structuring Interaction in BIP,” in Int. Conf. EMSOFT, 2007,
pp. 11-20.

H. Espinoza, B. Selic, D. Cancila, and S. Gérard, “Challenges
in Combining SysML and MARTE for Model-Based Design
of Embedded Systems,” in Int. Conf. ECMDA, vol. 5562.
LNCS, 2009.

OMG, “UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded systems, v1,” www.omgmarte.org.

L. de Alfaro and T. A. Henzinger, “Interface automata,” in
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering. ACM Press, 2001, pp. 109-120.

D. Cancila, R. Passerone, T. Vardanega, and M. Panunzio,
“Toward Correctness in the Specification and Handling of
Non-Functional Attributes of High-Integrity Real-Time Em-
bedded Systems,” May 2010.

