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Abstract— This paper describes the architecture and hard-
ware implementation of an embedded, low-cost and low-power
dense stereo reconstruction system, running at 30 fps at VGA
resolution. The processing pipeline includes an initial image
rectification stage, a cost generation unit based on the non-
parametric census transform, a state-of-the-art Semi-Global
cost optimization stage, and a final minimization and noise
suppression step. The hardware implementation is based on
a Xilinx ZynqTM System-on-Chip, which besides the FPGA
provides a physical dual-core ARM CPU, which is exploited
for control and to deliver output over the integrated Gigabit
Ethernet connection.

I. INTRODUCTION

A basic need in the robotics, automotive and industrial
fields is real-time 3D environment reconstruction, since it
allows safe navigation across multiple terrains, object de-
tection and classification and advanced visualization. Dense
stereovision is a popular solution to this problem, providing
as a result a dense point cloud containing hundreds of
thousands elements, each directly associated to exactly one
pair of pixels of the input imagery.

Stereovision-based depth mapping is a widely studied
subject, which has seen substantial research [1], [2], [3], [4],
[5] and benchmarking [6], [7], [8] efforts. The various algo-
rithms offer different trade-offs in terms of computational
complexity, reconstruction quality and robustness against
noise in the input images. In particular, the so-called Semi-
Global Matching minimization strategy first proposed in [9],
coupled with a census cost metric [10] has proven to be the
solution of choice in many demanding real-world applica-
tions [11], [12], [13], since it is insensitive to illumination
variations and can deal with significant untextured areas
while still being able to correctly handle challenging depth
discontinuities, such as those produced by small objects and
poles. These capabilities stem from the fact that the SGM ap-
proach optimizes the matching costs across the whole image
by adding a smoothness term to the computed values prior to
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minimization. The optimization step is computationally ex-
pensive and requires a lot of memory bandwidth to access the
costs, thus making real-time implementations challenging;
however, its massively parallel nature well adapts to a wide
range of modern hardware devices. In particular, PC-based
solutions can reach 20 fps at VGA resolution on a standard
desktop CPU [14] by exploiting both multi-core and SIMD 1

processing capabilities. GPU implementations exist as well,
reaching more than 60 fps at VGA resolution [15]; however,
they require high end, expensive devices, with more than
doubled power consumption.

All these solutions suffer from the fundamental flaw of
not being suitable for use in embedded hardware designs;
a viable alternative is the use of FPGA units, which well
adapt to the workloads typical of the SGM algorithm [16],
[17]. FPGAs offer low cost and power consumption, high
reliability and availability, even for demanding environments
(e.g. automotive) but require significantly longer develop-
ment times.

This paper proposes a design based on the Xilinx
Zynq

TM
System-on-Chip, which substantially reduces the de-

velopment effort by integrating a capable FPGA, a dual-core
ARM CPU and multiple I/Os in a single physical package.

Sec. II covers the basics of dense 3D reconstruction, while
Sec. III provides some details about the chosen hardware
platform and a description of the processing stage archi-
tecture. Finally, Sec. IV and V provide some performance
figures and the future developments roadmap.

II. DENSE STEREO MAPPING BACKGROUND

The processing steps involved in dense stereo reconstruc-
tion are presented in Fig. 1. First the combined effect of
lens distortion and cameras misalignment is removed from
the input images IL and IR using a look-up table (LUT): this
allows to operate on a pair of rectified images RL and RR,
which reduces the matching phase to a 1-D search along the
epipolar lines.

Each pair of integer coordinates p = (x, y) on the
rectified image is associated to the fractional location
i = (xi + α, yi + β) = LUT (x, y) on the input image.

Bilinear interpolation can be used to determine the recti-
fied pixel value:

R(p) = (1− β)((1− α)I(xi, yi) + αI(xi + 1, yi)) +

β((1− α)I(xi, yi + 1) + αI(xi + 1, yi + 1)) (1)

1Single Instruction Multiple Data
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Fig. 1. Stereo reconstruction pipeline.

The n×n census transforms CL and CR [18] of the rectified
images are then computed, and used to initialize the cost cube
C(p, d) for each pixel p and disparity level d by taking the
Hamming distance H of the resulting pixel pair:

C(p, d) = H(CL(x+ d, y), CR(x, y)) (2)

The subsequent SGM step allows to regularize the cost
cube by providing a tractable approximation of the optimal
depth map that minimizes the global energy function

E(D) =
∑

p

C(p, Dp) +
∑

q∈Np

P1T[|Dp −Dq| = 1]

+
∑

q∈Np

P2T[|Dp −Dq| > 1] (3)

with T [x] = 1 if x is true, 0 otherwise.
The Semi-Global matching approach approximates the

optimal solution by computing the costs arising along 1-D
paths from 8 directions towards each pixel. The costs Lr
along a given path r for each pixel p and disparity d are
computed as

Lr(p, d) = C(p, d) + min(Lr(p− r, d),

Lr(p− r, d− 1) + P1, Lr(p− r, d+ 1) + P1, (4)
min
i
Lr(p− r, i) + P2)−min

k
Lr(p− r, k)

The final aggregated cost cube S(p, d) is then computed as

S(p, d) =
∑

r

Lr(p, d) (5)

and the winning depth map D̄ becomes

D̄(p) = arg min
d

(S(p, d)) (6)

In order to reduce the number of spurious reconstructions,
a pixel p is considered valid only if the ratio between the
minimum and second-minimum costs is below a predefined
threshold (i.e. the minimum is strong enough).

A final equiangular interpolation step [19] is used to
estimate the fractional part of the winning disparity value
d̄ for each pixel p :

d̄frac =
S(p, d̄− 1)− S(p, d̄+ 1)

max(S(p, d̄− 1), S(p, d̄+ 1))− S(p, d̄)
(7)

III. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

A. Hardware platform

The Xilinx ZynqTM System-on-Chip family provides both
an FPGA Programmable Logic (PL) and a Programmable
System (PS) based on dual-core ARM R© CortexTM-A9 pro-
cessor in the same physical package. The PL and PS are
connected by a set of AXI interfaces; in particular, four
High Performance channels (HP0, HP1, HP2 and HP3)
have been used to handle intermediate data transfers to and
from main DDR memory. Each channel is full duplex and
has a maximum theoretical bandwidth of 1.2 GB/s in each
direction; burst transfers are supported in multiples of 4 or
8 bytes words. In order to store the final results (depth map
and rectified images) for use by the PS processor while
guaranteeing its cache coherency the available Accelerated
Coherence Port (ACP) has been used; the same channel also
handles the transfer of the census images CL and CR.

The ZynqTM SoC integrates a number of I/O peripherals,
and in particular:
• GigE – used to stream the results;
• I2 C – used to control the sensors and to interface with

the installed IMU unit;
• QSPI Flash – used to store the Linux OS image,

rectification LUT files and the PL bitstream;
• CAN – used for configuration and high-level output;
• UART – used for debug.

The depth mapping system presented in this paper is based
on the automotive-grade Z-7020 model, since it offers the
best compromise between available FPGA resources and
cost. Two 752×480 Aptina MT9V034 CMOS monochrome
sensors have been selected for image acquisition, since they
represent a cheap, easy-to-integrate and automotive grade
solution.

B. System architecture

Fig. 2 illustrates how the stereo reconstruction pipeline
presented in Sec. II has been mapped to the target hardware
platform; the inner workings of each module are described
in grater detail in Sec. III-C and Sec. III-D. It must be
noted that the path aggregation stage has been split in two
distinct passes, referred to as forward and backward in the
following; the forward pass corresponds to the 0◦, 45◦, 90◦

and 135◦ paths, while the backward pass covers the 180◦,
225◦, 270◦ and 315◦ paths, as shown in Fig. 3. Moreover, the
paths of the forward pass are summed together before being
transferred to external DDR memory to reduce the bandwidth
requirements. All the four HP AXI channels are used to write

1436



Forward 
aggregated 

costs 

External memory 

LUT 

Pixels 

Rectified image, 
census data 

Rectified image, 
census data 

Census data 

Cost 
generation 

unit 

Path costs 
processor 

Final stage 

Aggreg. 
costs Costs 

DSI 

Dedistorsion 
rectification 

census 

SGM 

LUT 

Pixels Dedistorsion 
rectification 

census 

Fig. 2. Hardware architecture. For the sake of simplicity, intermediate FIFOs and BRAM buffers have been omitted.

and read back the costs generated by the forward aggregation
pass, since the data produced at each clock cycle by the path
aggregation stage (32 bytes) is exactly 4 times the channels
word width (64 bits). The ACP channel, instead, handles the
transfer of LUT data, census and rectified images and the
final depth map.

r0 
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r2 r3 

r0 

r1 r2 

r3 

Forward pass 
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Fig. 3. Forward and backward passes to perform 8-way SGM path
aggregation.

Finally, Fig. 4 shows which units are active at any given
time during the processing of one frame. Readout and rectifi-
cation/costs generation are synchronous, and overlapped with
the forward SGM pass and streaming of the left and right
images. The return pass and depth map generation begin after
the forward pass is complete, and are overlapped with DSI
streaming and the exposure time of the subsequent frame.

C. Rectification and cost generation

Rectification and cost generation operate independently on
the images captured by each camera.

Rectification works by inverting the deformation intro-
duced by the lens distortion and the sensors misalignment,
which results in a misplacement of the pixels in the raw
cameras images. To correct this effect, a look-up table (LUT)
provides for each pixel of the rectified image the coordinates
of the corresponding pixel of the raw image from the camera.
This information is fractional, and requires the application of
a bilinear interpolation according to Eq. (1). To perform this
task, the system loads the pixels from the camera and stores
them in a circular buffer. To limit the internal memory usage,
a rectified pixel is assumed to be located no more than 32

lines above or below the corresponding raw pixel, an amount
which is sufficiently large to handle optics with a focal length
greater than 3.8 mm. Therefore, the storage requirements for
the raw image are limited to only 64 lines centered around
the current position; a set of indices is maintained to keep
track of the current memory location.

The LUT data is stored in the external DDR memory,
using a compressed, incremental format. After loading each
pixel, the system computes the address of the rectified
pixel by using the LUT data, and fetches the corresponding
four pixels from raw memory. Fixed point arithmetic with
two fractional digits is being used; for this reason, the
interpolation block has been custom designed to compute
the result without the use of expensive multipliers.

The rectified pixels are stored in an internal memory buffer
for census computation. Because the census is limited to a
neighborhood of only 2 lines above and below the current
line, only five lines of the image have to be stored at any time,
using a sliding window approach similar to the one employed
for the raw image. New pixels are loaded directly into
the census computation block, while the previously loaded
pixels slide through a 5 × 5 shift register representing the
neighborhood. A simple combinational bit counting circuit
is used to compute the transform, which is then stored in the
external DDR memory and made available for the subsequent
Semi-Global Matching step.

D. Semi-Global Matching

The Semi-Global Matching (SGM) stage starts from the
census costs stored in the external DDR memory, and gen-
erates the disparity image, using a forward pass followed
by a backward pass. The partial cost cube computed during
the initial forward pass is progressively saved in the external
DDR memory, while initial costs are re-computed (identical)
for both passes, as it is less expensive than storing them. The
implemented algorithm scans the images row by row, and
from the leftmost pixel to the rightmost one within a row.

The SGM implementation is functionally decomposed into
three separate modules, internally connected through FIFOs
and communicating with the other blocks using the external
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Fig. 4. System timing diagram. The colors of the various stages match those of the corresponding units in Fig. 2.

DDR memory. The modules, which are described in more
detail in the following, respectively compute:
• The initial costs, i.e. the pixelwise Hamming distances
C(p, d);

• The aggregated path costs Lr(p, d) of 4 paths for
forward or backward processing;

• The aggregated cost cube for all paths and the minimum
disparity image.

1) Cost generation unit: scans the left and right census
images, and computes the Hamming distance for up to 128
disparities. Pixel data for the left image is stored in a 128
elements shift register, and the cost is computed by counting
the number of bits set out of the 24 bits obtained by XORing
together each pair of census pixels. Counting is implemented
by accumulating the results of 4 6-input 1-output LUTs, each
operating on a 6-bit long segment of the value.

At each clock cycle, costs for 32 disparity levels are
generated and stored into the output FIFO. After 4 clock
cycles, all the 128 disparity levels for a pixel are completed,
and the processor moves to the next one. Forward and
backward algorithms are very similar, and share most of the
hardware implementation except for the initialization of the
shift register.

2) Path costs processor: implements the SGM core com-
putation of Lr(p, d). It concurrently computes the path costs
for 32 disparity levels and 4 paths, using a 7-stage pipeline.
The four paths are then aggregated and the sum is stored
in the output FIFO. Similarly to the pixelwise Hamming
distance processor, the throughput is one pixel every 4 clock
cycles.

The implementation of the elementary block of the path
cost computation is shown in Fig. 5, which follows the for-
mulation already presented in Eq. 4. The block is replicated
32 times for each of the 4 paths, for a total of 128 blocks, to
concurrently process 32 disparity levels. While most inputs
depend on the disparity d, the minimum over all disparities
for the previous pixel in the path does not, so it doesn’t
need registers in the pipeline because it is a constant, and it
is updated only every 4 clock cycles. The bottom multiplexer
selects the output between the initial cost for the beginning
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Fig. 5. Elementary block for path costs. In blue, combinational logic
blocks, in red, delay blocks.

of a path, and the currently computed value along a path.
Costs computed for the r1, r2 and r3 paths in Fig. 3 are

temporarily stored in on-chip BRAMs to be used in cost
computation of pixels of the successive row. On the other
hand, costs computed for the r0 path are directly forwarded
to the proper pipeline stage for the adjacent pixel in the
horizontal direction.

Besides being summed to compute the partial cost cube
to be stored in the output FIFO, all costs are also fed to a
tree of minimum functions, to extract the minimum over all
the disparity levels (used for the subsequent pixels of each
path). The tree is pipelined to increase its performance.

Forward and backward computation steps are identical,
the only difference being the order of pixels. Whereas the
forward pass starts at the upper-left corner of the image,
the backward assumes that the lower-right pixel is processed
first. However, it is not necessary to know which pass is
currently executing, as pixel order is handled by the DDR
interface blocks directly.
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TABLE I
STEREO RECONSTRUCTION IMPLEMENTATIONS COMPARISON

Implementation Hardware platform Algorithm Image size
[px]

Time
[ms]

Disparity
rate

[106/s]

Gehrig ECVW10 [20] Intel R© CoreTM i7 975 EX @ 3.3 GHz CT + SGM (8) + MF + L/R 640× 320 @ 128 224 117
Broggi IROS11 [14] Intel R© CoreTM i7 920 @ 3.20 GHz CT + SGM (8) + L/R 640× 320 @ 128 27 970

Hirschmüller ISVC10 [21] NVIDIA R© GeForceTM 8800 Ultra HMI +SGM (8) +MF +L/R 640× 480 @ 128 238 165
Nedevschi IV10 [19] NVIDIA R© GeForceTM GTX 280 CT + SGM (8) + L/R + MF 512× 383 @ 56 19 578
Banz ICCV11 [15] NVIDIA R© Tesla C2050 RT + SGM (8) +MF 640× 480 @ 128 16 2457

Gehrig ICVS09 [16] Xilinx R© Virtex-4 FX140 ZSAD + SGM (8) + L/R 2× 340× 200 @ 64 40 218
Banz SAMOS10 [17] Xilinx R© Virtex-5 LX 220T-1 RT + SGM (4) + L/R + MF 640× 480 @ 128 9.7 4053

this paper Xilinx R© ZynqTM 7020 CT + SGM (8) + 2ndmin 640× 480 @ 128 33 1192

Overview of current SGM implementations; in parentheses, the number of aggregation paths. Different cost functions are used, namely the census transform
(CT), rank transform (RT), hierarchical mutual information (HMI), and zero-mean sum of absolute differences (ZSAD). L/R denotes the left-right consistency
check, MF median filtering and 2ndmin the minimum vs 2nd minimum ratio check.
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Fig. 6. Final stage block diagram

3) Final stage: computes the optimal depth map with
subpixel accuracy, and invalidates pixels with weak minima,
as illustrated in Fig. 6.

During the forward pass it receives data from the path
processor and forwards them to the DDR memory for stor-
age. During the backward pass it adds data from the path
processor (32 costs per clock cycle) to those fetched from
the memory into a unique aggregate cost vector S(p, d) for
each pixel p, and computes the disparity d̄ as the index
of the value of the vector with the minimum value (see
Eq. 6). These two tasks are performed by block A, which
also provides at its output the value of the minimum cost
and the value of the costs for disparities d̄ − 1 and d̄ + 1.
This data is then processed by unit B, which increases the
resolution of the pixel disparity by performing an equiangular
interpolation between the values of the supplied costs, as
described in Eq. 7.

In parallel, unit C removes from S(p, d) the minimum
cost and the costs for disparities d̄ − 1 and d̄ + 1, then
computes a new minimum value among the remaining costs.
A comparison is then performed between the first minimum

multiplied by 128 and the second minimum multiplied by
a constant value K and upon this comparison a multiplexer
outputs as a final value either the disparity in fixed point
format or an invalid disparity code corresponding to all ”1”s.

The final disparity value is stored into an output FIFO,
which manages the synchronization between the final stage
and the external DDR memory into which the final disparity
image is stored.

IV. RESULTS
A performance comparison between the proposed sys-

tem and other publicly available SGM implementations is
presented in Tab. I. While two solutions exhibit a higher
disparity rate [15], [16], and one has an essentially identical
performance [14], all of them run on hardware devices of
considerably higher cost and power consumption.

Memory traffic is detailed in Tab. II. Most of the band-
width is consumed to store and read back the partial summed
costs produced during the forward aggregation pass: while
the system can be configured to run without performing the
backward pass – thus eliminating the need for intermediate
data storage, much like it is done in [17] – having a two-pass
approach is essential to produce consistent results.

The FPGA resources usage of the system is reported in
Tab. III; it is worth to note that 43 % of the available BRAMs
is occupied by the SGM path costs processor buffers, 14 %
are used by the rectification stage, 9 % for memory com-
munication and just 1 % to compute the census transform.
SGM BRAMs are mostly employed to store the previous
cost values along each path, and their number depends both
on the image width and the supported disparity levels. Also,
each additional 18 kbit BRAM devoted to rectification allows
to increase the corresponding buffer size by about 6 image
rows.

The implementation phase produced the following fre-
quencies for the three main clock sources in use:
• 26.7 MHz – dedistorsion, rectification and census stage,

synchronous with the input camera pixel clock;
• 130 MHz – SGM processing pipeline;
• 150 MHz – memory communication logic.

these values are compatible with the underlying hardware,
and allow the system to smoothly run at 30 fps.
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TABLE II
TRAFFIC TO AND FROM EXTERNAL DDR MEMORY.

Forward pass Backward pass
Data Read Write Data Read Write

HP0 Sfwd(p, [0− 31]) - 0.58 GB/s (41%) Sfwd(p, [0− 31]) 0.58 GB/s (47%) -
HP1 Sfwd(p, [32− 63]) - 0.58 GB/s (41%) Sfwd(p, [32− 63]) 0.58 GB/s (47%) -
HP2 Sfwd(p, [64− 95]) - 0.58 GB/s (41%) Sfwd(p, [64− 95]) 0.58 GB/s (47%) -
HP3 Sfwd(p, [96− 127]) - 0.58 GB/s (41%) Sfwd(p, [96− 127]) 0.58 GB/s (47%) -
ACP LUTs,RL,RR,CL,CR 0.27 GB/s (22%) 0.27 GB/s (22%) CL,CR, D̄ 0.21 GB/s (18%) 0.053 GB/s (4%)
DDR All 2.6 GB/s (60%) 2.6 GB/s (60%) All 2.5 GB/s (59%) 0.053 GB/s (1%)

Maximum bandwidths for each AXI channel and the DDR controller are respectively 1.2 GB/s and 4,3 GB/s in both directions.

TABLE III
FPGA RESOURCES USAGE.

Resource Total Percentage
LUT 23600 44 %

BRAM (18 kbit) 189 68 %
DSP 48 21 %

V. CONCLUSIONS AND FUTURE WORK
The proposed system (depicted in Fig. 7) can produce

dense depth maps with a resolution of 640 × 480 pixels
at 30 frames per second on a low-power, low-cost and
automotive-grade SoC. Eight aggregation paths have been

Fig. 7. Prototype board for the proposed system, with a baseline of 15 cm.

used to improve the reconstruction quality in challenging
situations (e.g. poor illumination conditions, lack of texture),
at the cost of a significant traffic to and from the external
DDR memory.

In order to increase the system robustness against occlu-
sions and mismatches a left-right consistency check will be
introduced in future system revisions, together with adaptive
mean and a gap-filling filters [4], which have proven suitable
to further enhance the depth map quality.
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