Using Multiple Levels of Abstractions in
Embedded Software Design

Jerry R. Burch!, Roberto Passerone!, and Alberto L. Sangiovanni-Vincentelli?

! Cadence Berkeley Laboratories, Berkeley CA 94704, USA
? Department of EECS, University of California at Berkeley, Berkeley CA 94720,
USA

Abstract. The methodologies that are in use today for software devel-
opment rely on representations and techniques appropriate for the ap-
plications (compilers, business applications, CAD, etc.) that have been
traditionally implemented on programmable processors. Embedded soft-
ware is different: by virtue of being embedded in a surrounding system,
the software must be able to continuously react to stimula in the desired
way. Verifying the correctness of the system requires that the model
of the software be transformed to include (refine) or exclude (abstract)
information to retain only what is relevant to the task at hand. In this
paper, we outline a framework that we inted to use for studying the prob-
lems of abstraction and refinement in the context of embedded software
for hybrid systems.

1 Introduction

Embedded Software (ESW) design is one, albeit critical, aspect of the more gen-
eral problem of Embedded System Design (ESD or just ES). ESD is about the
implementation of a set of functionalities satisfying a number of constraints rang-
ing from performance to cost, emissions, power consumption and weight. The
choice of implementation architecture implies which functionality will be imple-
mented as a hardware component or as software running on a programmable
component. In recent years, the functionalities to be implemented in ES have
grown in number and complexity so much so that the development time is in-
creasingly difficult to predict and control. The complexity increase coupled with
the constantly evolving specifications has forced designers to look at implemen-
tations that are intrinsically flexible, i.e., that can be changed rapidly. Since
hardware-manufacturing cycles do take time and are expensive, the interest in
software-based implementation has risen to previously unseen levels. The in-
crease in computational power of processors and the corresponding decrease in
size and cost have allowed moving more and more functionality to software.
However, this move corresponds to increasing problems in verifying design cor-
rectness, a critical aspect of ESD since several application domains, such as
transportation and environment monitoring, are characterized by safety consid-
erations that are certainly not necessary for the traditional PC-like software
applications. In addition to this aspect, little attention has been traditionally



paid to hard constraints on reaction speed, memory footprint and power con-
sumption of software. This is of course crucial for ES. These considerations point
to the fact that ESW is really an implementation choice for a functionality that
can be indifferently implemented as a hardware component, and that we cannot
abstract away hard characteristics of software as we have done in the traditional
software domain. No wonder then that we are witnessing a crisis in the ES do-
main for ESW design. This crisis is not likely to be resolved going about business
as usual but we need to focus at the root of the problems.

Our vision for ESW is to change radically the way in which ESW is developed
today by: 1) linking ESW upwards in the abstraction layers to system functional-
ity; 2) linking ESW to the programmable platforms that support it thus providing
the much needed means to verify whether the constraints posed on ES are met.

ESW today is written using low level programming languages such as C
or even Assembler to cope with the tight constraints on performance and cost
typical of most embedded systems. The tools available for creating and debugging
software are no different than the ones used for standard software: compilers,
assemblers and cross-compilers. If any difference can be found, it is that most
tools for ESW are rather primitive when compared to analogous tools for richer
platforms. On the other hand, ESW needs hardware support for debugging and
performance evaluation that in general is not a big issue for traditional software.
In most embedded software, operating systems were application dependent and
developed in house. Once more, performance and memory requirements forced
this approach.

When embedded software was simple, there was hardly need for a more so-
phisticated approach. However, with the increased complexity of ES application,
this rather primitive approach has become the bottleneck and most system com-
panies have decided to enhance their software design methodology to increase
productivity and product quality. However, we do not believe that the real rea-
sons for such a sorry state are well understood. We have seen a flurry of activi-
ties towards the adoption of object-oriented approaches and other syntactically
driven methods that have certainly value in cleaning the structure and the docu-
mentation of embedded software but have barely scratched the surface in terms
of quality assurance and time-to-market. Along this line, we also saw a grow-
ing interest towards standardization of Real-Time Operating Systems either de
facto, see for example the market penetration of WindRiver in this domain, or
through standard bodies such as the OSEK committee established by the Ger-
man automotive industry. Quite small still is the market for development tools
even though we do believe this is indeed the place where much productivity
gain can be had. There is an interesting development in some application areas,
where the need to capture system specifications at higher levels of abstraction is
forcing designers to use tools that emphasize mathematical descriptions, making
software code an output of the tool rather than an input. The leader in this
market is certainly the Matlab tool set developed by MathWorks. In this case,
designers develop their concept in this friendly environment where they can as-
semble their designs quickly and simulate their behaviour. While this approach



is definitely along the right direction, we have to raise the flag and say that the
mathematical models supported by Matlab and more pertinently by Simulink,
the associated simulator, are somewhat limited and do not cover the full spec-
trum of embedded system design. The lack of data flow support is critical. The
lack of integration between the FSM capture tool (State Flow) and Simulink is
also a problem. As we will detail later, this area is of key interest for our vision.
It is at this level that we are going to have the best results in terms of functional
correctness and error free refinement to implementation. The understanding of
the mathematical properties of the embedded system functionality must be a
major emphasis of our approach.

We have advocated the introduction of rigorous methodologies for system-
level design for years, but we feel that there is still much to do. Recently we have
directed our efforts to a new endeavor that tries to capture the requirements of
present day embedded system design: the Metropolis project.

The Metropolis project, supported by the Gigascale Silicon Research Center,
started two years ago and involves a large number of people in different research
institutions. It is based on the following principles:

1. Orthogonalization of concerns: In Metropolis, behavior is clearly sep-
arated from implementation. Communication and computation are orthogonal-
ized. Communication is recognized today as the main difficulty in assembling
systems from basic components. Errors in software systems can often be traced
to communication problems. Metropolis was created to deal with communication
problems as the essence of the new design methodology. Communication-based
design will allow the composition of either software or hardware blocks at any
layer of abstraction in a controlled way. If the blocks are correct, the methodology
ensures that they communicate correctly.

2. Solid theoretical foundations that provide the necessary infras-
tructure for a new generation of tools: The tools used in Metropolis will
be interoperable and will work at different levels of abstraction, they will ver-
ify, simulate, and map designs from one level of abstraction to the next, help
choose implementations that meet constraints and optimize the criteria listed
above. The theoretical framework is necessary to make our claims of correctness
and efficiency true. Metropolis will deal with both embedded software and hard-
ware designs since it will intercept the design specification at a higher level of
abstraction. The design specifications will have precise semantics. The seman-
tics is essential to be able to: (i) reason about designs, (ii) identify and correct
functional errors, (iv) initiate synthesis processes.

Several formal models have been proposed over the years (see e.g. [6]) to cap-
ture one or more aspects of computation as needed in embedded system design.
We have been able to compare the most important models of computations using
a unifying theoretical framework introduced recently by Lee and Sangiovanni-
Vincentelli [9]. However, this denotational framework has only helped us to iden-
tify the sources of difficulties in combining different models of computation that
are certainly needed when complex systems are being designed. In this case, the
partition of the functionality of the design into different models of computation



is somewhat arbitrary as well as arbitrary are the communication mechanisms
used to connect the “ports” of the different models. We believe that it is possi-
ble to optimize across model-of-computation boundaries to improve performance
and reduce errors in the design at an early stage in the process.

There are many different views on how to accomplish this. There are two
essential approaches: one is to develop encapsulation techniques for each pair of
models that allow different models of computation to interact in a meaningful
way, i.e., data produced by one object are presented to the other in a consis-
tent way so that the object “understands” [4,5]. The other is to develop an
encompassing framework where all the models of importance “reside” so that
their combination, re-partition and communication happens in the same generic
framework and as such may be better understood and optimized. While we real-
ize that today heterogeneous models of computation are a necessity, we believe
that the second approach is possible and will provide designers a powerful mech-
anism to actually select the appropriate models of computation, (e.g., FSMs,
Data-flow, Discrete-Event, that are positioned in the theoretical framework in
a precise order relationship so that their interconnection can be correctly inter-
preted and refined) for the essential parts of their design.

In this paper, we focus on this very aspect of the approach: a framework
where formal models can be rigorously defined and compared, and their inter-
connections can be unambiguously specified. We use a kind of abstract algebra to
provide the underlying mathematical machinery. We believe that this framework
is essential to provide the foundations of an intermediate format that will pro-
vide the Metropolis infrastructure with a formal mechanism for interoperability
among tools and specification methods.

This framework is a work in progress. Our earlier work [2, 3] does not provide
a sufficiently general notion of sequential composition, which is essential for
modeling embedded software. The three models of computation described in
this paper (which all include sequential composition) are examples of the kinds
of models that we want to have fit into the framework. After the framework has
been thoroughly tested on a large number of different models of computation,
we plan to publish a complete description of the framework.

2 Overview

This section presents the basic framework we use to construct semantic domains,
which is based on trace algebras and trace structure algebras. The concepts
briefly described here will be illustrated by examples later in the paper. This
overview is intended to highlight the relationships between the concepts that
will be formally defined later.

More details of these algebras can be found in our earlier work [2, 3]. Note,
however, that our definitions of these algebras do not include sequential compo-
sition. For this reason, and other more technical reasons, the models of compu-
tation used in this paper do not fit into our earlier framework.



We maintain a clear distinction between models of processes (a.k.a. agents)
and models of individual executions (a.k.a. behaviors). In different models of
computation, individual executions can be modeled by very different kinds of
mathematical objects. We always call these objects traces. A model of a process,
which we call a trace structure, consists primarily of a set of traces. This is anal-
ogous to verification methods based on language containment, where individual
executions are modeled by strings and processes are modeled by sets of strings.
However, our notion of trace is quite general and so is not limited to strings.

Traces often refer to the externally visible features of agents: their actions,
signals, state variables, etc. We do not distinguish among the different types,
and we refer to them collectively as a set of signals W. Each trace and each
trace structure is then associated with an alphabet A C W of the signals it uses.

We make a distinction between two different kinds of behaviors: complete
behaviors and partial behaviors. A complete behavior has no endpoint. A partial
behavior has an endpoint; it can be a prefix of a complete behavior or of another
partial behavior. Every complete behavior has partial behaviors that are prefixes
of it; every partial behavior is a prefix of some complete behavior. The distinction
between a complete behavior and a partial behavior has only to do with the
length of the behavior (that is, whether or not it has an endpoint), not with
what is happening during the behavior; whether an agent does anything, or
what it does, is irrelevant.

Complete traces and partial traces are used to model complete and partial
behaviors, respectively. A given object can be both a complete trace and a partial
trace; what is being represented in a given case is determined from context. For
example, a finite string can represent a complete behavior with a finite number
of actions, or it can represent a partial behavior.

In our framework, the first step in defining a model of computation is to con-
struct a trace algebra. The trace algebra contains the universe of partial traces
and the universe of complete traces for the model of computation. The alge-
bra also includes three operations on traces: projection, renaming and concate-
nation. Intuitively, these operations correspond to encapsulation, instantiation
and sequential composition, respectively. Concatenation can be used to define
the notion of a prefix of a trace. We say that a trace z is a prefix of a trace z if
there exists a trace y such that z is equal to z concatenated with y.

The second step is to construct a trace structure algebra. Here each element
of the algebra is a trace structure, which consists primarily of a set of traces from
the trace algebra constructed in the first step. Given a trace algebra, and the set
of trace structures to be used as the universe of agent models, a trace structure
algebra is constructed in a fixed way. Thus, constructing a trace algebra is the
creative part of defining a model of computation. Constructing the corresponding
trace structure algebra is much easier.

A conservative approzimation is a kind of mapping from one trace structure
algebra to another. It can be used to do abstraction, and it maintains a precise
relationship between verification results in the two trace structure algebras. The
two trace structure algebras do not have to be based on the same trace alge-



bra. Thus, conservative approximations are a bridge between different models
of computation. Conservative approximations have inverses, which can be used
to embed an abstract model of computation into a more detailed one. Conser-
vative approximations can be constructed from homomorphisms between trace
algebras.

3 Trace algebras for embedded software

In this section we will present the definition of three trace algebras at progres-
sively higher levels of abstraction. The first trace algebra, called metric time,
is intended to model exactly the evolutions (the flows and the jumps) of a hy-
brid system as a function of global real time. With the second trace algebra
we abstract away the metric while maintaining the total order of occurence of
events. This model is used to define the untimed semantics of embedded soft-
ware. Finally, the third trace algebra further abstracts away the information on
the event occurences by only retaining initial and final states and removing the
intermediate steps. This simpler model can be used to describe the semantics of
some programming language constructs. The next section will then present the
definition of the homomorphisms that we use to approximate a more detailed
trace algebra with the more abstract ones.

3.1 Metric Time

A typical semantics for hybrid systems includes continuous flows that represent
the continuos dynamics of the system, and discrete jumps that represent instan-
taneous changes of the operating conditions. In our model we represent both
flows and jumps with single piece-wise continuous functions over real-valued
time. The flows are continuous segments, while the jumps are discontinuities
between continuous segments. In this paper we assume that the variables of the
system take only real or integer values and we defer the treatment of a complete
type system for future work. The sets of real-valued and integer valued variables
for a given trace are called Vz and V), respectively.

Traces may also contain actions, which are discrete events that can occur at
any time. Actions do not carry data values. For a given trace, the set of input
actions is My and the set of output actions is Mo.

Each trace has a signature y which is a 4-tuple of the above sets of signals:

Y= (VRaVNaMDMO)-

The sets of signals may be empty, but we assume they are disjoint. The alphabet
of v is
A=Vx UV UDM;UMo.
The set of partial traces for a signature 7 is Bp(7y). Each element of Bp(vy)

is as a triple z = (7,4, f). The non-negative real number ¢ is the duration (in
time) of the partial trace. The function f has domain A. For v € Vg, f(v) is a



function in [0, §] — R, where R is the set of real numbers and the closed interval
[0, 6] is the set of real numbers between 0 and §, inclusive. This function must be
piece-wise continuous and right-hand limits must exist at all points. Analogously,
for v € V), f(v) is a piece-wise constant function in [0, 5] — N, where A is the
set of integers. For a € M; U Mo, f(a) is a function in [0,8] — {0,1}, where
f(a)(t) = 1 iff action a occurs at time ¢ in the trace.

The set of complete traces for a signature v is Bo(y). Each element of Bo(7)
is as a double z = (v, f). The function f is defined as for partial traces, except
that each occurence of [0, 6] in the definition is replaced by R”, the set of non-
negative real numbers.

To complete the definition of this trace algebra, we must define the operations
of projection, renaming and concatenation on traces. The projection operation
proj(B)(z) is defined iff M; C B C A. The trace that results is the same
as x except that the domain of f is restricted to B. The renaming operation
z' = rename(r)(z) is defined iff r is a one-to-one function from A to some
A" C W. If z is a partial trace, then ' = (', 4, f') where 4’ results from using
r to rename the elements of y and f' =ro f.

The definition of the concatenation operator x3 = x; - x3, wherer z; is a
partial trace and z is either a partial or a complete trace, is more complicated.
If 2o is a partial trace, then z3 is defined iff v; = 75 and for all a € A,

f1(a)(81) = f2(a)(0)

(note that d;, d2, etc., are components of z; and z» in the obvious way). When
defined, z3 = (1,03, f3) is such that 3 = §; + 02 and for alla € A

f3(a)(8) = f1(a)(6) for 0 <6 < 4,
fg(a)(ﬁ) = fg(a)(§ — (51) for 51 S ) S (53.

Note that concatenation is defined only when the end points of the two traces
match. The concatenation of a partial trace with a complete trace yields a com-
plete trace with a similar definition. If 3 = 1 - z2, then z; is a prefix of x3.

3.2 Non-metric Time

In the definition of this trace algebra we are concerned with the order in which
events occur in the system, but not in their absolute distance or position. This
is useful if we want to describe the semantics of a programming language for
hybrid systems that abstracts from a particular real time implementation.
Although we want to remove real time, we want to retain the global ordering
on events induced by time. In particular, in order to simplify the abstraction
from metric time to non-metric time described below, we would like to support
the case of an uncountable number of events'. Sequences are clearly inadequate
given our requirements. Instead we use a more general notion of a partially

! In theory, such Zeno-like behavior is possible, for example, for an infinite loop whose
execution time halves with every iteration



ordered multiset to represent the trace. We repeat the definition found in [12],
and due to Gischer, which begins with the definition of a labeled partial order.

Definition 1 (Labeled partial order). A labeled partial order (Ipo) is a 4-
tuple (V, X, <, u) consisting of

1. a vertex set V, typically modeling events;

2. an alphabet X' (for symbol set), typically modeling actions such as the arrival
of integer 3 at port Q, the transition of pin 13 of IC-7 to 4.5 volts, or the
disappearance of the 14.3 MHz component of a signal;

3. a partial order < on V, with e < f typically being interpreted as event e
necessarily preceding event f in time; and

4. a labeling funciton y : V. — X assigning symbols to vertices, each labeled
event representing an occurence of the action labeling it, with the same action
possibly having multiple occurence, that is, u need not be injective.

A pomset (partially ordered multiset) is then the isomorphism class of an lpo,
denoted [V, X, <, u]. By taking lpo’s up to isomorphism we confer on pomsets a
degree of abstractness equivalent to that enjoyed by strings (regarded as finite
linearly ordered labeled sets up to isomorphism), ordinals (regarded as well-
ordered sets up to isomorphism), and cardinals (regarded as sets up to isomor-
phism).

This representation is suitable for the above mentioned infinte behaviors: the
underlying vertex set may be based on an uncountable total order that suits
our needs. For our application, we do not need the full generality of pomsets.
Instead, we restrict ourselves to pomsets where the partial order is total, which
we call tomsets.

Traces have the same form of signature as in metric time:

Y= (VRaVNaMDMO)-

Both partial and complete traces are of the form z = (-, L) where L is a tomset.
When describing the tomset L of a trace, we will in fact describe a particular Ipo,
with the understanding that L is the isomorphism class of that Ipo. An action
o € X of the lpo is a function with domain A such that for all v € Vg, o(v) is a
real number (the value of variable v resulting from the action o); for all v € V),
o(v) is an integer; and for all a € M;U Mo, o(v) is 0 or 1. The underlying vertex
set V, together with its total order, provides the notion of time, a space that
need not contain a metric. For both partial and complete traces, there must exist
a unique minimal element min(V). The action p(min(V')) that labels min(V)
should be thought of as giving the initial state of the variables in Vz and V). For
each partial trace, there must exist a unique maximal element maz (V') (which
may be indentical to min(V)).

Notice that, as defined above, the set of partial traces and the set of complete
traces are not disjoint. It is convenient, in fact, to extend the definitions so that
traces are labeled with a bit that distinguishes partial traces from complete
traces, although we omit the details.



By analogy with the metric time case, it is straightforward to define projec-
tion and renaming on actions ¢ € Y. This definition can be easily extended to
lpo’s and, thereby, traces.

The concatenation operation x3 = x; - z» is defined iff z; is a partial trace,
71 = v2 and p1(maz (V1)) = pe(min(Va)). When defined, the vertex set V3 of 3
is a disjoint union:

Vs = V1 W (Vs — min(V2))

ordered such that the orders of V; and V5 are preserved and such that all elements
of V; are less than all elements of V5. The labeling function is such that for all
vEVs

us(v) = py(v) for min(V7)
us(v) = pe2(v) for maz(Vy)

3.3 Pre-Post Time

The third and last trace algebra is concerned with modeling non-interactive
constructs of a programming language. In this case we are interested only in an
agents possible final states given an initial state. This semantic domain could
therefore be considered as a denotational representation of an axiomatic seman-
tics.

We cannot model communication actions at this level of abstraction, so sig-
natures are of the form v = (Vz, V) and the alphabet of v is A = Vg U V).
A non-degenerate state s is a function with domain A such that for all v € Vg,
s(v) is a real number (the value of variable v in state s); and for all v € V), s(v)
is an integer. We also have a degenerate, undefined state L..

A partial trace Bp(y) is a triple (7, s;, s¢), where s; and sy are states. A com-
plete trace B (7y) is of the form (v, s;, L), where L, indicates non-termination.
This trace algebra is primarily intended for modeling terminating behaviors,
which explains why so little information is included on the traces that model
non-terminating behaviors.

The operations of projection and renaming are built up from the obvious
definitions of projection and renaming on states. The concatenation operation
r3 = x1 - T2 is defined iff z; is a partial trace, v;1 = 2 and the final state of z;
is identical to the initial state of z5. As expected, when defined, z3 contains the
initial state of z; and the final state of z5.

3.4 Trace Structure Algebras

The basic relationship between trace algebras, trace structures and trace struc-
ture algebras was described earlier (see section 2). This section provides a few
more details.

A trace algebra provides a set of signatures and a set of traces for each
signature. A trace structure over a given trace algebra is a pair (v, P), where



7 is a signature and P is a subset of the traces for that signatures. The set P
represents the set of possible behaviors of an agent.

A trace structure algebra contains a set of trace structures over a given
trace algebra. Operations of projection, renaming, parallel composition and serial
composition on trace structures are defined using the operations of the trace
algebra, as follows.

Project and renaming are the simplest operations to define. When they are
defined depends on the signature of the trace structure in the same way that
definedness for the corresponding trace algebra operations depends on the sig-
natures of the traces. The signature of the result is also analogous. Finally, the
set of traces of the result is defined by naturally extending the trace algebra
operations to sets.

Sequential composition is defined in terms of concatentation in an analogous
way. The only difference from projection and renaming is that sequential com-
position requires two traces structures as arguments, and concatenation requires
two traces as arguments.

Parallel composition of two trace structures is defined only when all the traces
in the structures are complete traces. Let trace structure 7" be the parallel
composition of T and T". Then the components of T" are as follows (M; and
Mo are omitted in pre-post traces):

V= VR UV

Vi =V UV,

MY = Mo U M,

My = (M;U M) — Mg

P" ={z € Bc(y") : proj(A)(z) € P A
proj(A')(z) € ).

4 Homomorphisms

The three trace algebras defined above cover a wide range of levels of abstraction.
The first step in formalizint the relationships between those levels is to define
homomorphims between the trace algebras. As mentioned in section 2, trace
algebra homomorphisms induce corresponding conservative approximations be-
tween trace structure algebras.

4.1 From metric to non-metric time

A homomorphism from metric time trace algebra to non-metric time should
abstract away detailed timing information. This requires characterizing events
in metric time and mapping those events into a non-metric time domain. Since
metric time trace algebra is, in part, value based, some additional definitions are
required to characterize events at that level of abstraction.



Let = be a metric trace with signature v and alphabet A such that

Y= (VRavNaMlaMO)
A=Vx UVNyUDM;UMop.

We define the homomorphism A by defining a non-metric time trace y = h(z).
This requires building a vertex set V and a labeling function yx to construct an
Ipo. The trace y is the isomorphism class of this Ipo. For the vertex set we take
all reals such that an event occurs in the trace x, where the notion of event is
formalized in the next several definitions.

Definition 2 (Stable function). Let f be a function over a real interval to R
or N. The function is stable at t iff there exists an € > 0 such that f is constant
on the interval (t — e,t].

Definition 3 (Stable trace). A metric time trace x is stable at t iff for all
v € VrUV) the function f(v) is stable at t; and for alla € M;UMp, f(a)(t) = 0.

Definition 4 (Event). A metric time trace © has an event at t > 0 if it is not
stable at t. Because a metric time trace doesn’t have a left neighborhood att = 0,
we always assume the presence of an event at the beginning of the trace. If © has
an event at t, the action label o for that event is a function with domain A such
that for all v € A, o(a) = f(a)(t), where f is a component of x as described in
the definition of metric time traces.

Now we construct the vertex set V and labeling function yx necessary to define
y and, thereby, the homomorphsim h. The vertex set V is the set of reals ¢ such
that = has an event at t. While it is convenient to make V' a subset of the reals,
remember that the tomset that results is an isomorphism class. Hence the metric
defined on the set of reals is lost. The labeling function p is such that for each
element ¢ € V, u(t) is the action label for the event at ¢ in z.

Note that if we start from a partial trace in the metric trace we obtain a
trace in the non-metric trace that has an initial and final event. It has an initial
event by definition. It has a final event because the metric trace either has an
event at § (the function is not constant), or the function is constant at § but
then there must be an event that brought the function to that constant value
(which, in case of identically constant functions, is the initial event itself).

To show that h does indeed abstract away information, consider the following
situation. Let z; be a metric time trace. Let z5 be same trace where time has
been “stretched” by a factor of two (i.e., forall v € A1, z1(a)(t) = z2(a)(2t)).
The vertex sets generated by the above process are isomorphic (the order of the
events is preserved), therefore h(z1) = h(z2).

4.2 From non-metric to pre-post time

The homomorphism A from the non-metric time traces to pre-post traces requires
that the signature of the trace structure be changed by removing M; and M.



Let y = h(z). The initial state of y is formed by restricting pu(min(V)) (the
initial state of z) to Vx UV). If z is a complete trace, then the final state of y is
1. If ¢ is a complete trace, and there exists a € M;U Mo and time ¢ such that
f(a)(t) = 1, the final state of y is L,. Otherwise, the final state of y is formed
by restricting u(maz(V)).

5 Conservative Approximations

Trace algebras and trace structure algebras are convenient tools for constructing
models of agents. We are interested in relating different models that describe
systems at different levels of abstraction. Let A and A’ be two trace structure
algebras. A conservative approzimation is a pair of functions (¥;, ¥, ) that map
the trace structures in 4 into the trace structures in A’. Intuitively, the trace
structure ¥, (T") in A’ is an upper bound of the behaviors contained in T (i.e.
it contains all abstracted behaviors of T plus, possibly, some more). Similarly,
the trace structure ¥;(T) in A’ represents a lower bound of T (it contains only
abstract behaviors of T, but possibly not all of them). As a result,

Wu(Tl) g Wl (Tg) implies T1 g T2.

Thus, a verification problem that involves checking for refinement of a specifi-
cation can be done in A’, where it is presumably more efficient than in A. The
conservative approximation guarantees that this will not lead to a false positive
result, although false negatives are possible.

5.1 Homomorphisms and Conservative Approximations

A conservative approximation can be derived from a homomorphism between
two trace algebras. A homomorphism A is a function between the domains of
two trace algebras that commutes with projection, renaming and concatenation.
Consider two trace algebras C and C’. Intuitively, if h(z) = =’ the trace =’ is an
abstraction of any trace y such that h(y) = z'. Thus, z' can be thought of as rep-
resenting the set of all such y. Similarly, a set X’ of traces in C’ can be thought
of as representing the largest set Y such that hA(Y) = X', where h is naturally
extended to sets of traces. If A(X) = X', then X C Y, so X' represents a kind of
upper bound on the set X. Hence, if A and A’ are trace structure algebras over
C and C' respectively, we use the function ¥, that maps an agent P in A into
the agent h(P) in A’ as the upper bound in a conservative approximation. A
sufficient condition for a corresponding lower bound is: if z ¢ P, then h(x) is not
in the set of possible traces of ¥;(T). This leads to the definition of a function
¥, (T) that maps P into the set h(P) — h(B(A) — P). The conservative approx-
imation ¥ = (¥;,%,) is an example of a conservative approzimation induced by
h. A slightly tighter lower bound is also possible (see [2]).

It is straightforward to take the general notion of a conservative approxi-
mation induced by a homomorphism, and apply it to specific models. Simply



construct trace algebras C and C’, and a homomorphism A from C to C'. Recall
that these trace algebras act as models of individual behaviors. One can con-
struct the trace structure algebras A over C and A’ over C’, and a conservative
approximation ¥ induced by h. Thus, one need only construct two models of
individual behaviors and a homomorphism between them to obtain two trace
structure models along with a conservative approximation between the trace
structure models.

This same approach can be applied to the three trace algebras, and the two
homomorphisms between them, that were defined in section 3, giving conserva-
tive approximations between process models at three different levels of abstrac-
tion.

5.2 Inverses of Conservative Approximations

Conservative approximations represent the process of abstracting a specifica-
tion in a less detailed semantic domain. Inverses of conservative approximations
represent the opposite process of refinement.

Let A and A’ be two trace structure algebras, and let ¥ be a conservative
approximation between A and A’. Normal notions of the inverse of a function
are not adequate for our purpose, since ¥ is a pair of functions. We handle this
by only considering the T in A for which %,(T) and %;(T) have the same value
T'. Intuitively, T' represents T exactly in this case, hence we define %, (T") = T
When ¥, (T) # ¥;(T) then ¥, is not defined.

The inverse of a conservative approximation can be used to embed a trace
structure algebra at a higher level of abstraction into one at a lower level. Only
the agents that can be represented exactly at the high level are in the image of
the inverse of a conservative approximation. We use this as part of our approach
for reasoning about embedded software at multiple levels of abstraction.

6 Embedded Software

This section outlines our approach for using multiple levels of abstraction to
analyze embedded software. Our motivating example is a small segment of