
Notes on Agent Algebras

Jerry R. Burch
�

Roberto Passerone
���

Alberto L. Sangiovanni-Vincentelli
�

November 4, 2003

Abstract

We introduce Agent Algebra as a general framework that can be used to include a wide variety of models
for concurrent systems. We introduce an ordering in the algebra to represent refinement in the model, and
study its relationships with respect to the operators of the algebra. In particular, we study the problem
of compositionality and provide an extension of the notion of monotonic function to the case of partial
functions. We then characterize the order in terms of a substitutability relation that we call conformance.
We relate the conformance order for each agent to its maximally compatible agent, called the mirror.

Given models for a plant, a controller and a specification, we often want to determine whether the
specification is satisfied by the composition of the plant and the controller. It is also common, given a plant
and a specification, to try to characterize all of the controllers that meet the above requirement. We give
sufficient conditions for constructing such characterizations in the framework of Agent Algebra, including
conditions to be met by the definitions of system composition and system refinement in the models.

Memorandum No. UCB/ERL M03/38

�
Synopsys, Inc. - jrb@synopsys.com�
Cadence Design Systems, Inc. - robp@cadence.com�
University of California at Berkeley - roby@eecs.berkeley.edu�
University of California at Berkeley - alberto@eecs.berkeley.edu

1

2

1 Introduction

This technical report describes some very general methods for constructing different models of concurrent
systems, and presents general results on compositional methods and refinement verification. We introduce
the notion of an agent algebra to formalize the model of a concurrent system. Agent algebra is a broad class
of models of computation. They developed out of our work on concurrency algebra, trace algebra and trace
structure algebra [2, 4, 5, 6], which builds on Dill’s work on circuit algebra and trace theory [8]. Through
trace structure algebra we have studied concepts, such as conservative approximations, that help clarify the
relationships between different models of computation. Agent algebra provides a simpler formalism for
describing and studying these concepts. The tradeoff is that agent algebra is more abstract and provides less
support for constructing models of computation.

An agent algebra (section 3) is a simple abstract algebra with three operations: parallel composition,
projection, and renaming. The three operations must satisfy certain axioms that formalize their intuitive
interpretation. The domain (or carrier) of an agent algebra is intended to represent a set of processes, or
agents. Any set can be the domain of an agent algebra if interpretations for parallel composition, projection
and renaming that satisfy the axioms can be defined over the set. In this document, whenever we define
an interpretation for these three operations, we always show that the interpretation forms an agent algebra,
which gives evidence that the interpretation makes intuitive sense.

Agent algebras can be constructed from other agent algebras by the usual devices of direct product,
disjoint sum and subalgebra (section 4). We introduce these constructions, and show that they effectively
yield new agent algebras. Direct products are useful for example to construct hybrid models and to provide
a sort of “signature specification” to a set of agents. The examples are not, however, included in these notes.

In verification and design-by-refinement methodologies a specification is a model of the design that em-
bodies all the possible implementation options. Each implementation of a specification is said to refine the
specification. In our framework, agent algebras may include a preorder on the agents that represents refine-
ment relationships (section 5). Proving that an implementation refines a specification is often a difficult task.
Most techniques decompose the problem into smaller ones that are simpler to handle and that produce the
desired result when combined. To make this approach feasible, the operations on the agents must be mono-
tonic with respect to the refinement order. In this document we extend the notion of monotonic function to
the case of partial functions, and show under what circumstances compositional verification techniques can
be applied.

Expressions can be defined in terms of the operators and the agents of an agent algebra (section 6). We
show that under certain conditions every expression can be transformed into an equivalent expression in a
particular normal form. The normal form is useful to deal with systems specified as complex interaction of
hierarchies, as it allows one to flatten the system to a single parallel composition. The normal form is also
important in obtaining closed form solutions to equations involving expressions on agents.

The order of an agent algebra can often be characterized in terms of substitutability as a conformance
relation (section 7). We introduce the definition of a conformance order by considering the effect of substi-
tuting an agent for another agent in every possible context. We parameterize the notion of substitutability
using a set of agents, called a conformance set. Conformance can be used to verify the order relationship
between agents. In these notes we introduce the notion of the mirror of an agent (section 8), which, together
with a conformance order, reduces the task of refinement verification to computing a parallel composition
and checking membership with the conformance set.

Substitutability in every context is often not required. The conformance order and the mirror function is
used with an agent algebra to formulate and to solve the problem of synthesizing a local specification subject

3

to a context (section 9). This construction, which is independent of the particular agent algebra considered, is
useful in developing synthesis techniques, and can be applied to solve problems such as supervisory control
synthesis, engineering changes, rectification and protocol conversion.

These notes include simple examples of agent algebras that deal essentially with the definition of the
interface of an agent in terms of its input and output signals. The examples are carried through the document
and provide a simple and more practical explanation of the theory developed in these notes. More complex
examples that include behavior models are also possible, based for instance on trace structure algebras
[2, 4, 5]. The full version of these notes will present these examples and will include a thorough treatment
of their conformance order and mirror function.

2 Preliminaries

The algebras we develop in this document have many characteristics in common. This section discusses
several of those characteristics.

Each of the algebras has a domain 	 which contains all of the objects under study for the algebra.
We borrow the term “domain” from the progamming language semantics literature; algebraists call 	 a
“carrier”.

Associated with each element of 	 is a set
 of signals, called an alphabet. Signals are used to model
communication between elements of 	 . Typically signals serve as actions and/or state variables that are
shared between elements of 	 , but this need not be the case. Associated with each algebra is a master
alphabet. The alphabet of each agent must be a subset of the master alphabet. A master alphabet typically
plays the role of � in the following definition.

Definition 2.1. If � is a set, then
 is an alphabet over � iff
��� .

We often make use of functions that are over some domain or master alphabet.

Definition 2.2. Let � be an arbitrary set. A function � of arity � is over � iff dom ����������� and
codom ��������� .

Definition 2.3. Let � and 	 be sets. A renaming operator over master alphabet � and over domain 	
(written rename) is a total function such that

1. the domain of rename is the set of bijections over � , and

2. the codomain of rename is the set of partial functions from 	 to 	 .

Definition 2.4. Let � and 	 be sets. A projection operator over master alphabet � and over domain 	
(written proj) is a total function such that

1. the domain of proj is the set of alphabets over � , and

2. the codomain of proj is the set of partial functions from 	 to 	 .

Definition 2.5. Let 	 be a set. A parallel composition operator over domain 	 (written a binary infix
operator �) is a partial function over 	 such that

1. the domain of � is 	���	 , and

4

2. the codomain of � is 	 .

The codomain of the operators above are partial functions, and can therefore be undefined for certain
arguments. In the rest of this work, we often say that the operator itself is undefined, with the understanding
that it is the resulting partial function that really is undefined at a certain argument. In formulas, we use the
notation to indicate that a function is defined at a particular argument, and ! to indicate that it is undefined.

3 Agent Algebras

Informally, an agent algebra " is composed of a domain 	 which contains the agents under study for the
algebra, and of the following operations on agents: parallel composition, projection and renaming. The
algebra also includes a master alphabet � , and each agent is characterized by an alphabet
 over � . All of
this is formalized in the following definitions. Throughout the document, equations are interpreted to imply
that the left hand side of the equation is defined iff the right hand side is defined, unless stated otherwise.

Definition 3.1. An agent algebra " has a domain "$#%	 of agents, a master alphabet "$#&� , and three oper-
ators: renaming (definition 2.3), projection (definition 2.4) and parallel composition (definition 2.5),
denoted by rename , proj and � . The function "'#%(associates with each element of 	 an alphabet

over � . For any) in "$#%	 , we say that "$#%(��*)+� is the alphabet of) .

The operators of projection, rename and parallel composition must satisfy the axioms given below,
where) and)-, are elements of 	 ,
/.0(1�*)2� ,
','.3(1�*)-,4� , 5 is an alphabet and 6 is a renaming
function.

A1. If proj �758�9�*)+� is defined, then its alphabet is 5;:<
 .

A2. proj �7
$�9�*)+��.=) .

A3. If rename �>6?�9�*)+� is defined, then
@� dom �>6?� and (�� rename �>6?�9�*)+�A�B.C6D�7
$� , where 6 is natu-
rally extended to sets.

A4. rename � id EF�9�*)2�G.=) .

A5. If)��H) , is defined, then its alphabet is
JI<
 , .
A6. Parallel composition is associative.

A7. Parallel composition is commutative.

The operators have an intuitive correspondence with those of most models of concurrent systems. The
operation of renaming corresponds to the instantiation of an agent in a system. Note that since the renaming
function is required to be a bijection, renaming is prevented from altering the structure of the agent interface,
by for example “connecting” two signals together. Projection corresponds to hiding a set of signals. In
fact, the projection operator is here used to retain the set of signals that comes as an argument, and hide
the remaining signals in the agent. In that sense it corresponds to an operation of scoping. Finally, parallel
composition corresponds to the concurrent “execution” of two agents. It is possible to define other operators.
We prefer to work with a limited set and add operators only when they can’t be derived from existing ones.
The three operators presented here are sufficient for the scope of this work.

5

A1 through A7 formalize the intuitive behavior of the operators and provide some general properties that
we want to be true regardless of the model of computation. These properties, together with the ones required
for normalization later in section 6, are at the basis of the results of this work.

As described in the above definition, an agent in an agent algebra contains information about what its
alphabet is. A simple example of an agent algebra " can be constructed by having each agent be nothing
more than its alphabet, as follows.

Example 3.2 (Alphabet Algebra). For this example, the master alphabet "$#&� is an arbitrary set of signal
names. The domain "'#%	 of the algebra is the set of all subsets of "$#&� . The alphabet of any) in "$#%	
is simply) itself. Thus, "$#%(is the identity function. If 6 is a bijection over � , then rename �>6?�9�*)+� is
defined whenever)K� dom �>6?� , in which case rename �>6?�9�*)+� is 6D�7
$� (where 6 is naturally extended to
sets). If 5 is a subset of the master alphabet � , then proj �758�9�*)+� is 5L:M) . Finally,)N�D) , is)OIM) , . It is
easy to show that A1 through A7 are satisfied.

On the opposite extreme from the previous example is an agent algebra where all the agents have an
empty alphabet. Later, we will show how such an agent algebra can be useful constructing more complex
agent algebras in terms of simpler ones.

Example 3.3. This agent algebra can be used to model some quantitative property of an agent, such as
maximum power dissipation. The master alphabet "$#&� is an arbitrary set of signal names. The domain"$#%	 of the algebra is the set of non-negative real numbers. For any) in "$#%	 , the alphabet of) is the
empty set. If 6 is a bijection over � , then rename �>6?�9�*)+� is) . Similarly, if 5 is a subset of � , then
proj �758�9�*)+� is) . Finally,)��P)-, is)OQR)-, . Again it is easy to show that the axioms are satisfied.

The agent algebra in example 3.3 illustrates a class of agent algebras which we call nonalphabetic, since
the agents in the algebra have empty alphabets and rename and proj are identity functions. This class is
formally defined as follows.

Definition 3.4. A nonalphabetic agent algebra " is an agent algebra with the following properties for any) in "'#%	 :

1. the alphabet of) is the empty set,

2. if 6 is a bijection over "$#&� , then rename �>6?�9�*)+�G.S) , and

3. if 5 is a subset of "$#&� , then proj �758�9�*)+�G.=) .

We can use agent algebras to describe the interface that agents expose to their environment, in terms of
the input and output signals. The following definitions provide some examples. For all of the examples, it
is straightforward to show that the axioms of agent algebras are satisfied. Also, for all algebras, the master
alphabet "$#&� is an arbitrary set of signal names.

Example 3.5 (IO Agent Algebra). Consider the IO agent algebra " defined as follows:

• Agents are of the form)N.T�7UPVXWM� where UY�Z"$#&� , WZ�T"$#&� and U$:�WC.[. The alphabet of)
is (��*)+�G.\U'I�W .

• rename �>6?�9�*)+� is defined whenever (��*)+�]� dom �>6?� . In that case rename �>6?�9�*)+�$.^�>6D�7U_�XVA6D�`WM�A� ,
where 6 is naturally extended to sets.

6

• proj �758�9�*)+� is defined whenever U8�a5 . In that case proj �758�9�*)+�G.T�7UDVXW�:<58� .
•)�b��c)-d is defined whenever W]bH:OWedf.L[. In that case)gbh�i)jdB.T�A�7UcbDI]Ukdk�Hlm�`WnbHIOWedo�XVXW$bPIOWedk� .

For each agent in this algebra we distinguish between the set of the input signals and the set of the
output signals. Notice that parallel composition is defined only when the intersection of the output
signals of the agents being composed is empty. In other words, for this algebra we require that each
signal in the system be controlled by at most one agent. Notice also that it is impossible to hide input
signals. This is required to avoid the case where a signal is not part of the interface of an agent, but it
is also not controlled by any other agent (similarly to a floating wire).

In [8], Dill defines a slightly different notion of input and output algebra.

Example 3.6 (Dill’s IO Agent Algebra). Consider the Dill’s IO agent algebra " defined as follows:

• Agents are of the form)N.T�7UPVXWM� where UY�Z"$#&� , WZ�T"$#&� and U$:�WC.[. The alphabet of)
is (��*)+�G.\U'I�W .

• rename �>6?�9�*)+� is defined whenever (��*)+�G. dom �>6p� . In that case rename �>6?�9�*)+�G.T�>6H�7Uq�XVA6H�`W]�A� .
• proj �758�9�*)+� is defined whenever 5r�a(1�*)2� and Us�a5 . In that case proj �758�9�*)+�t.u�7UDVXW�:<58� .
•)�b��c)-d is defined whenever W]bH:OWedf.L[. In that case)gbh�i)jdB.T�A�7UcbDI]Ukdk�Hlm�`WnbHIOWedo�XVXW$bPIOWedk� .

The definitions are similar to those in example 3.5, except that the operators of renaming and projection
are less often defined. When defined, however, the operators coincide with those in example 3.5.

The above two examples are only concerned with the number and the names of the input and output
signals. This is appropriate for models that use signals as pure events. Sometimes signals are associated to
a set of values. Most models also include the ability to define a type for each signal, that restricts the set
of possible values that the signal can take. The following example is a formalization of a valued and typed
interface that builds upon example 3.5.

Example 3.7 (Typed IO Agent Algebra). In this example we extend the IO agent algebra described in
example 3.5 to contain typing information. Let v be a set of values and wDx be its powerset. The Typed
IO agent algebra " is defined as follows:

• Agents are of the form)<.L�zyq"$#&�Z{|� where�}.C~��k�G��I�~��7���pVA�q�1yp�Y��w x �1I�~��7�9�BVA�q�1yp�Y��w x �p#
where � � , � � and � � are constants that denote unused, input and output signals, respectively. The
set � that is associated to an input or an output represents the range of values (i.e. the type) that the
signal can assume. The alphabet of) is (��*)+�t.C~��s�J"$#&��y?���7�H�e�.\�c�t� . It is also conveniente to
defined the set of inputs, outputs and unused signals as follows:

inputs �*)2��. ~��z�J"$#&�@y_���7�q���K~��k���M��w x �
outputs �*)+��. ~��z�J"$#&�@y����7�H���K~��o���]��w x �
unused �*)2��. ~��z�J"$#&�@y_���7�q��.\���G�

To simplify the notation we denote by ���7�H�X#%� and ���7�q�X#&� the components of � .

7

• rename �>6?�9�*)+� is defined whenever (��*)+�$� dom �>6?� . When defined, rename �>6?�9�*)+�e.C� such that
for all �s�J"$#&��j�7�H�t. � ���>6_� b �7�q�A� if 6_� b �7�H� is defined�o� otherwise

• proj �758�9�*)+� is defined whenever inputs �*)+���5 . When defined proj �75��9�*)2��.� such that for all�s��"'#&��j�7�H�t. � ���7�H� if �s��5�o� otherwise

•)��H)P, is defined if

– outputs �*)+�g: outputs �*)j,4��.;[;
– ���7�q�X#&�z��� , �7�H�X#&� whenever ���7�H�X#%�f.\�o� and � , �7�q�X#%�f.L��� .
– �j,��7�q�X#&�<�����7�H�X#&� whenever �+,��7�q�X#%��.\�k� and ���7�H�X#%�f.\�9� .

When defined,)N�D)j,H.�� such that for all �Y�J"$#&�
�j�7�H�t.

������ �����
���7�q� if ���7�q�X#%�f.\�k� and �+,7�7�H�X#%�O�.\�k�� , �7�H� if � , �7�H�X#%�e.��k� and ���7�H�X#%�O�.\�k����7�q� if �j,7�7�H�X#%�e.��o��j,7�7�H� if ���7�q�X#%�f.\� ��7�9��V����7�q�X#&�n:N� , �7�q�X#&�H� if ���7�q�X#%�f.\�9� and � , �7�H�X#%�f.\�9�

The definitions are again similar to those in example 3.5. However, the parallel composition operator
is restricted to be defined only if the range of values of an output signal is contained in the range of
values of the corresponding input signal. In addition, if a signal appears as an input in both agents, the
range of values for that input in the composition corresponds to the intersection of the original ranges,
so that only values consistent with both components can be used when composing with other agents.

4 Construction of Algebras

Several agent algebras can be combined to form a more complex algebra. A simple example of this is the
product of two algebras.

Definition 4.1 (Product). Let "Mb and "fd be agent algebras with the same master alphabet (i.e., "�bo#&��."�dc#&�). The product of "$b and "�d (written "$bf��"�d) is the agent algebra " such that

1. "'#&�T.@"'bo#&� ,

2. "'#%	 .@"'bo#%	���"�d�#%	 ,

3. (1�A¡*)gboV7)-d�¢A�G.\(��*)�b��2I<(��*)-d�� ,
4. rename �>6?�9�A¡*)gboV7)-d�¢A� . ¡ rename �>6p�9�*)gb��XV rename �>6p�9�*)jd��A¢ if both rename �>6?�9�*)gb�� and

rename �>6?�9�*)jd�� are defined, otherwise it is undefined,

8

5. proj �758�9�A¡*)gb�V7)-do¢A�8.£¡ proj �758�9�*)�b��XV proj �758�9�*)jd��A¢ if both proj �758�9�*)gbX� and proj �758�9�*)jd�� are de-
fined, otherwise it is undefined,

6. ¡*)�bkV7)-d�¢��$¡*)P, b V7)P,d ¢s.£¡*)�bM�h)P, b V7)-dO�F)P,d ¢ if both)�bM�g)P, b and)-dO�h)P,d are defined, otherwise it is
undefined.

In the product, each agent is a pair of agents, each from one of the original algebras. The operators are
defined component-wise. It is easy to prove that the product of two agent algebras is again an agent algebra.

Theorem 4.2. Let "$b and "�d be agent algebras, and let "�.@"nb¤��"�d be their product. Then " is an agent
algebra.

Proof: To prove the validity of the axioms simply apply the definitions and the basic commutative, distribu-
tive and associative properties of the operations involved.

Products of algebras are useful to combine in one single model the information contained in two different
models.

Example 4.3. Recall the agent algebra examples in example 3.2 and example 3.3, which have domains ofwc¥ and the non-negative real numbers, respectively. The cross product of these two agent algebras
combines the information of the two individual algebras.

A second example of construction is the disjoint sum of two algebras.

Definition 4.4 (Disjoint Sum). Let " b and " d be agent algebras with master alphabet � b .¦" b #&� and�Od�.§"�d�#&� , respectively. The disjoint sum of "Mb and "�d (written "$bj¨©"�d) is the agent algebra "
such that

1. "'#&�T.@"'bo#&��¨©"�dc#&� ,

2. "'#%	 .@"'bo#%	 ¨ "�d�#%	 ,

3. (1�*)+�t. � "'bo#%(1�*)+� if)���"'bo#%	"�d�#%(1�*)+� if)���"�d�#%	
4. rename �>6?�9�*)+�G. � " b # rename �>6?�9�*)+� if)��J" b #%	"�dc# rename �>6?�9�*)+� if)��J"fdc#%	
5. proj �758�9�*)+�t. � "'bo# proj �758�9�*)+� if)��J"$bo#%	"�d�# proj �758�9�*)+� if)��J"fd�#%	
6.)��H)P,P. �� �)G"'b9#D�H)P, if both)��J"$bo#%	 and)-,-��"�bo#%)G" d #D�H)P, if both)��J" d #%	 and)-,-��" d #%	

undefined otherwise

In a disjoint sum, two algebras are placed side by side in the same algebra. The agents of each algebra,
however, have no interaction with the agents of the other algebra. For this reason the rest of this work will
concentrate on products of algebras. Nonetheless, it is easy to show that the disjoint sum of agent algebras
is again an agent algebra.

9

Theorem 4.5. Let "$b and "�d be agent algebras, and let "�.r"nb ¨ "�d be their disjoint sum. Then " is an
agent algebra.

If "B, is an agent algebra and 	§�	<, is a subset of the agents that is closed in 	�, under the application
of the operators, then 	 can be used as the domain of a subalgebra " of " , .
Definition 4.6 (Subalgebra). Let " and "e, be agent algebras over the same master alphabet � . Then " is

called a subalgebra of " , , written "L�u" , , if and only if

1. "'#%	ª�u"B,7#%	
2. The operators of projection, renaming and parallel composition in " are the restrictions to "$#%	

of the operators of " , .
Clearly, the above definition implies that "$#%	 is closed in "',>#%	 under the application of the operations of

agent algebra. Conversely, every subset of " , #%	 that is closed under the application of the operations is the
domain of a subalgebra " when the operators are the restriction to the subset of the corresponding operators
in " , . The reason why " is an agent algebra in that case follows from the fact that the axioms are valid in
the substructure, since A1 to A7 are true of all agents in the superalgebra, and therefore must be true of all
agents in the subalgebra. The following is an interesting example of this fact.

Theorem 4.7. Let "$b and "�d be agent algebras, and let "f,F.^"�b'��"Bd be their cross product. Consider
the subset ���r"�,>#%	 such that for all agents ¡*) b V7) d ¢f�=� , (1�*) b ��.C(1�*) d � . Then � is closed in "f,>#%	
under the operations of projection, renaming and parallel composition.

Proof: Let)<.u¡*)hboV7)-do¢ and «$.T¡7«�boV¬«odo¢ be elements of � . The proof is composed of the following cases.

• If proj �758�9�*)+� is defined then)���� (��*)�b��G.L(1�*)-d��
by A1® (�� proj �758�9�*)gb��A�G.\(�� proj �75��9�*)jd��A�® proj �758�9�*)+�t.u¡ proj �758�9�*) b �XV proj �758�9�*) d �A¢1���

• If rename �>6?�9�*)+� is defined then)���� (��*) b �G.L(1�*) d �
by A3® (�� rename �>6p�9�*)gbX�A�G.\(�� rename �>6p�9�*)jdo�A�® rename �>6?�9�*)+�G.u¡ rename �>6?�9�*)hbX�XV rename �>6?�9�*)jdo�A¢1���

10

• If)��h« is defined then)�����¯<«���� (��*)�b��G.L(1�*)-d��g¯z(1�7«�b��t.\(1�7«�d��
by A5® (��*)�b��g«�b��t.\(1�*)jd��h«odo�®)��h«n.u¡*)�bB�g«�bkV7)-d��h«�dk¢��R�

Since � is closed, the algebra " that has the set � (the agent pairs that have the same alphabet) as the
domain, and the restriction to � of the operators of "�, , is a subalgebra of "nbf�S"�d .
5 Ordered Agent Algebras

To study the concepts of refinement and conservative approximations, we can add a preorder or a partial
order to an agent algebra. The result is called a preordered agent algebra or a partially ordered agent
algebra, respectively.

We require that the functions in an ordered agent algebra be monotonic relative to the ordering. However,
since these are partial functions, this requires generalizing monotonicity to partial functions. The following
definition gives two different generalizations. Later we discuss which of these best suits our needs.

Definition 5.1. Let 	<b and 	8d be preordered sets. Let � be a partial function from 	�b to 	�d . Let	z°d . 	�dtI�~c±]�	z²d . 	�dtI�~c³]�pV
where ± and ³ are not elements of 	Yd . The preorders over 	 °d and 	 ²d are the extensions of the
preorder over 	sd such that)-d�´�±�¯�±��´K)-d
and)-d��´�³�¯�³µ´K)-dcV
respectively, for every)+d in 	8d . Let � ° and � ² be the total functions from 	Nb to 	 °d and 	 ²d ,
respectively, such that for all)Fb in 	zb� ° �*)gb��¶. · ���*)�bX�XV if ���*)gb¬� is defined;±�V otherwise;� ² �*)gb��¶. · ���*)�bX�XV if ���*)gb¬� is defined;³�V otherwise.

We say the function � is ± -monotonic iff � ° is monotonic. Analogously, the function � is ³ -monotonic
iff � ² is monotonic.

11

Recall that the formula)�´;)+, intuitively means that) can be substituted for)2, in any context. If) is
an undefined expression (such as might result from applying a partial function), intuitively it cannot not be
substituted for any other agent (except another undefined expression). Thus, an undefined expression should
be treated as a maximal element relative to the ordering. Therefore, we require that functions in ordered
agent algebras be ± -monotonic.

Definition 5.2. A preordered (partially ordered) agent algebra is an agent algebra " with a preorder
(partial order) "$#�´ such that for all alphabets 5 over "'#&� and all bijections 6 over "$#%	 , the partial
functions "$# rename �>6?� , "$# proj �758� and "$#7� are ± -monotonic. The preorder (partial order) "$#�´ is
called the agent order of " .

Definition 5.3. Let " be a preordered agent algebra. We define the relation “ ¸ ” to be the equivalence
relation induced by the preorder “ ´ ”. That is)<¸\«)�´�«B¯N«]´m)g#

Corollary 5.4. If " be a partially ordered agent algebra, then)<¸\«)<.L«�#
The parallel composition operator is the basis of compositional methods for both design and verification.

Monotonicity is required for these methods to work correctly. Henzinger et al. [7] propose to distinguish
between interface and component algebras. Corollary 5.6 below shows that because parallel composition
is ± -monotonic in an ordered agent algebra, it supports an inference rule identical to the “compositional
design” rule for interface algebras. Similarly, component algebras have a “compositional verification” rule
that corresponds to ³ -monotonic functions. This suggests that the ordering of a component algebra cannot
be interpreted as indicating substitutability.

Theorem 5.5. Let � be a ± -monotonic partial function. If)R´K) , and ���*) , � is defined, then ���*)+� is defined
and ���*)+��´����*)-,¹� .

Proof: Let � ° be as described in definition 5.1. Assume)=´�)2, and ���*)-,4� is defined. To show by contra-
diction that ���*)2� is defined, start by assuming otherwise. Then, � ° �*)+� is equal to ± and � ° �*) , � is not.
This leads to a contradiction since)�´K)2, and � ° is monotonic. Also, since ���*)+� and ���*)+,¹� are defined,
it follows easily from the monotonicity of � ° that ���*)+��´����*)P,�� .

Corollary 5.6. Let � be the composition function of a preordered agent algebra. If)tbn´�) , b ,)jd�´�) ,d and) , b �P) ,d is defined, then) b �P) d is defined and) b �H) d ´K) , b �D) ,d .
Proof: Since � is ± -monotonic by the definition of a preordered agent algebra (definition 5.2), this is simply

specializing theorem 5.5 to a binary function.

The rest of this section is devoted to examples. For each example we derive necessary conditions that
the order must satisfy in order for the operators to be ± -monotonic. We then choose a particular order, and
show that the operators are in fact ± -monotonic relative to the order.

Example 5.7 (Alphabet Algebra). Consider the alphabet agent algebra described in example 3.2. The
condition of ± -monotonicity imposes restrictions on the kind of orders that can be employed in the
algebra. In this particular case, the order must be such that)�´K) , only if)��K) , .

12

Theorem 5.8. Let ´ be an order for " such that rename , proj and � are ± -monotonic. Then)S´�)h,
only if)��K) , .

Proof: Let)a´;)-, and let 6 be a renaming function such that)2,t. dom �>6p� . Then rename �>6?�9�*)-,º� is
defined. Since rename is ± -monotonic, also rename �>6?�9�*)+� is defined. Therefore)}� dom �>6?�B.)P, .

The above result only provides a necessary condition on the order so that the operators are ± -
monotonic. Any particular choice of order must still be shown to make the operators ± -monotonic.
Consider, for instance, the order ´ that corresponds exactly to � , that is)}´�) , if and only if)}��) , .
Then

Theorem 5.9. The operators rename , proj and � are ± -monotonic with respect to � .

Proof: Let)R�K)-, .
• Assume rename �>6p�9�*) , � is defined. Then) , � dom �>6?� . Thus, since)��m) , , also)�� dom �>6?� ,

so that rename �>6?�9�*)+� is defined. In addition since 6 is a bijection and)��m)�,
rename �>6?�9�*)+�G.�6D�*)+����6D�*) , ��. rename �>6?�9�*) , �

• Let 5 be a subset of � . Then proj �758�9�*)+,4� and proj �758�9�*)+� are both defined. In addition,
since)R�K) , ,

proj �758�9�*)+�t.=)O:<5@�K) , :z5T. proj �758�9�*) , �X#
• Let « be an agent. Then)j,j�g« and)��g« are both defined. In addition since)R�K)+,)��h«n.=)OI<«��K) , I<«n.=) , �h«_#

Example 5.10 (IO Agent Algebra). Consider the IO agent algebra " defined in example 3.5. The require-
ment that the functions be ± -monotonic places a corresponding requirement on the order that can be
defined in the algebra.

Theorem 5.11. Let ´ be an order for " such that rename , proj and � are ± -monotonic. Then)»´S)h,
only if Us�aU , and W.W , .

Proof: Let)R´K)-, .
• We first prove that U��¼U�, . Since U?,'�¼Up, , then proj �7U?,º�9�*)P,º� is defined. Since proj is ± -

monotonic, then also proj �7U�,º�9�*)+� must be defined. Therefore it must be Us�aUq, .
• We now prove that W0�¼W , . Assume, by contradiction, that there exists ½=�W such that½m��aW$, . Consider «z.ª�`W$,7V¬Up,HIm~�½?�c� . Then)-,2�G« is defined because Wn,_:S�7Up,HIm~�½?�c�'.r[

since by hypothesis W , :RU , .@[and ½m��JW , . Since � is ± -monotonic then also)��G« must
be defined. But then it must be WL:=�7U_,_IK~�½��c�f.T[, which implies ½K���W , a contradiction.
Hence Wu��W , .

13

• Finally we prove that Wn,j��W . Consider the agent «n.u�`Wn,7V¬Up,º� . Since by definition Wn,¬:'Up,D.[, then) , �h« is defined and) , �g«n.u�A�7U , INW , �Fl��`W , IzU , �XVXW , I<U , �G.u��[_VXW , I<U , �X#
Since � is ± -monotonic, then also)N�F« is defined and)��h«n.u�A�7U'I�W , �hl��`W�INU , �XVXW�I<U , �X#
Since � is ± -monotonic it must be)��g«]´m) , �g« . Since proj is ± -monotonic, it must be�7U$I�W , �hl��`W�I<U , �1��[�7U$I�W , �hl��`W�I<U , �G.;[�7U$I�W , �1��`W�I<U , �

Since Us�aU ,W , �©�`WaI<U , �
Since W , :<U , .;[W , ��WO#

The converse is not true. That is, it is not the case that if ´ is an order for " such that)}´�)F, only
if UN�;U , and WT.uW , , then the operators rename , proj and � are ± -monotonic. For example, assume
rename �>6p�9�*)-,º� is defined. Then we can show that rename �>6?�9�*)+� is defined. However, since we don’t
have sufficient conditions for the ordering, the hypothesis are insufficient to show that rename �>6?�9�*)+�1´
rename �>6p�9�*)-,º� . Similarly for the other functions in the algebra.

For the purpose of this example we choose the order ´ so that);´µ)g, if and only if UJ�¾U�, andW©.;W , .
Theorem 5.12. The functions rename , proj and � are ± -monotonic with respect to ´ .

Proof: Let)R´K)-, .
• Assume rename �>6p�9�*) , � is defined. Then
 , � dom �>6?� . By hypothesis,
¦�¿
 , , so that
C� dom �>6?� . Therefore rename �>6?�9�*)+� is defined. Since 6 is a bijectionUs�aU , ® 6D�7Uq�1��6D�7U , �W©.;W , ® 6D�`W]�G.�6D�`W , �

Hence rename �>6?�9�*)+�1´ rename �>6?�9�*)j,º� .
• Assume proj �758�9�*)j,4� is defined. Then U�,��§5 . By hypothesis, UL�§U�, , so that U;�§5 .

Therefore proj �758�9�*)+� is defined. In additionUs�aU , ® UY�aU ,W©.;W , ® W�:z5T.;W , :<5z#
Hence proj �758�9�*)+��´ proj �758�9�*) , � .

14

• Assume)-,q�+« is defined, where «n.u�7U�À�VXWeÀo� . Then W$,i:YWfÀ�.L[. By hypothesis, W©.;Wn, so
that Wa:NWeÀ�.L[. Therefore)��h« is defined. In addition) , �g« . �A�7U , I<UkÀk�hl��`W , I�WeÀk�XVXW , I�WeÀo�)��g« . �A�7U'I<UkÀk�hl��`W�I�WeÀk�XVXW�I�WeÀo�
Clearly since W.;Wn,W�I�W À .;W , I�W À #
Therefore, since Us�aU�,�7U$I<UkÀk�hl��`W , I�WeÀk�1�©�7U , IzUkÀk�Fl��`W , INWfÀo�X#
Hence)��h«�´K) , �h« .

Example 5.13 (Dill’s IO Agent Algebra). Consider now the Dill style IO agents described in example 3.6.
Because the rename operator has a further restriction that the domain of the renaming function 6 be
equal to the alphabet of the agent being renamed, the order that results in ± -monotonic function is
completely determined. In particular

Theorem 5.14. Let ´ be an order for " . Then rename , proj and � are ± -monotonic with respect to ´
if and only if for all agents) and) , ,)R´K) , if and only if)<.=) , .

Proof: For the forward direction, assume ´ is an order such that the functions are ± -monotonic. Let)�.��7UDVXW]� and) , .��7U , VXW , � be two agents. Clearly, if)».a) , , then)m´�) , , since ´ is reflexive.
Conversely, assume)�´K)j, .

We first show that
^.¿
 , . Since dom � id E-Á ��.^
 , .�(��*) , � , then rename � id E-Á �9�*) , � is de-
fined. Since rename is ± -monotonic, then also rename � id E Á>�9�*)+� is defined. Thus
 .r(1�*)+�$.
dom � id E Á7�G.\
e, .

We then show that U<�LU , . Since U , �L
 , and U , �\U , , then proj �7U , �9�*) , � is defined. Since proj
is ± -monotonic, then also proj �7U_,4�9�*)+� is defined. Thus U�,+�a
 and U8�aU?, .

Finally we show that U�.\U , and W©.;W , . Since W , :�U , .L[, then) , �F�`W , V¬U , � is defined. Since� is ± -monotonic, then also)m�e�`W , V¬U , � is defined. Thus W;:»U , .¾[. But since, by the above
arguments, W�I<U�.;W , I<U , then U , ��U , and thus UO.LU , . Therefore it must also be W.;W , .

For the reverse direction, we note than any function is ± -monotonic on the discrete order.

Thus for this example we must choose the order such that)�´K)g, if and only if U�.\U�, and W©.;W$, .
Example 5.15 (Typed IO Agent Algebra). Consider the Typed IO agent algebra " defined in example 3.7.

As for IO agents, ± -monotonicity restricts the set of orders that can be applied to the algebra.

Theorem 5.16. Let ´ be an order for " such that rename , proj and � are ± -monotonic. Then)»´S) ,
only if inputs �*)+�1� inputs �*)+,4� and outputs �*)+�G. outputs �*)j,4� , and for all �Y�J"$#&� , if ���7�H�X#%�f.\�k�
then ���7�H�X#&�YÂ�� , �7�H�X#&� , and if ���7�q�X#%�f.\�o� then ���7�q�X#&�z��� , �7�H�X#&� .

15

Proof: It is easy to adapt the proof of theorem 5.11 to show that)�´K)g, only if

inputs �*)2�Ã� inputs �*) , �
outputs �*)+��. outputs �*) , �

To prove the rest of the theorem, let)�´m) , and let «n.L��À be the agent such that for all �Y�J"$#&�
��À��7�q�G. �� � �7�k��VA�q� if � , �7�q�t.u�7�9��VA�q��7�9��VA�q� if �j,7�7�q�t.u�7�k��VA�q�� � otherwise

so that inputs �7«p�G. outputs �*) , � and outputs �7«���. inputs �*) , � . Then clearly) , �j« is defined. Since� is ± -monotonic,)R�h« must also be defined. In fact, since outputs �*)+�1. outputs �*)g,º� we already
know that outputs �*)+�t: outputs �7«p�s.Ä[. Assume now that �\� "$#&� and ���7�H�X#%�R.^�i� . Then
also �j,��7�H�X#%�K.Ä�9� , and ��À��7�q�X#%�K.3�k� . Hence, since)S��« is defined, �pÀ��7�H�X#&�;�§���7�q�X#&� . But� À �7�H�X#&�s.L�j,>�7�H�X#&� , thus ���7�q�X#&�zÂ��+,7�7�H�X#&� .

Similarly, assume that �J�r"$#&� and ���7�H�X#%�<.ª��� . Then also � , �7�H�X#%�N.ª�k� , and ��À��7�q�X#%�N.�9� . Hence, since)S��« is defined, ���7�q�X#&��^�?Àc�7�H�X#&� . But ��À��7�H�X#&�\.0�j,7�7�H�X#&� , thus ���7�H�X#&�;�� , �7�H�X#&� .
Given this result, we choose to order the Typed IO agents so that)}´J)g, if and only if inputs �*)+�e�

inputs �*) , � and outputs �*)+��. outputs �*) , � , and for all �Y�J"$#&� , if �Y� inputs �*)+� then ���7�q�X#&�YÂ�� , �7�H�X#&� ,
and if �Y� outputs �*)+� then ���7�H�X#&�z���2,7�7�H�X#&� .
Theorem 5.17. The operations of rename , proj and � are ± -monotonic with respect to ´ .

Proof: The proof of this theorem is similar to the proof of theorem 5.12 and is left as an exercise.

5.1 Construction of Algebras

In section 4 we have introduced several constructions used to create new algebras from existing ones. In this
section we extend those constructions to include the agent order.

The order in the product is the usual point-wise extension.

Definition 5.18 (Product - Order). Let "Mb and "�d be ordered agent algebras with the same master alpha-
bet. The product of "a.r"$bf��"�d is defined as in definition 4.1 with the order such that¡*)�bkV7)-d�¢�´©¡*) , b V7) , d ¢)�b�´K) , b ¯])jde´m) ,d #

Theorem 5.19. Let "$b and "fd be ordered agent algebras, and let "�.�"Mbf��"�d be their product. Then "
is an ordered agent algebra.

Proof: We must show that the operators are ± -monotonic. Here we only show the case for projection, since
the other cases are similar.

Let ¡*)�bkV7)-d�¢J´Å¡*)P, b V7)-,d ¢ , and assume proj �758�9�A¡*)j, b V7)P,d ¢A� is defined. Then both proj �758�9�*)j, b � and
proj �758�9�*)-,d � are defined. By definition 5.18, since ¡*) b V7) d ¢Y´Ä¡*)P, b V7)-,d ¢ , also) b ´u)P, b and) d ´µ)-,d .
Thus, since proj is ± -monotonic in "nb and "�d , proj �758�9�*)gb�� and proj �758�9�*)jdk� are defined, and

proj �75��9�*)gb��1´ proj �758�9�*) , b ��¯ proj �758�9�*)-do�1´ proj �75��9�*) , d �X#
16

Therefore, by definition 5.18, also proj �758�9�A¡*)¤boV7)-d�¢A� is defined and

proj �75��9�A¡*) b V7) d ¢A�1´ proj �75��9�A¡*) , b V7) , d ¢A�X#
Hence proj is ± -monotonic in " .

The order in the disjoint sum corresponds to the orders in the components.

Definition 5.20 (Disjoint Sum - Order). Let "Mb and "fd be ordered agent algebras. The disjoint sum of"�.@"'b ¨ "�d is defined as in definition 4.4 with the order such that)�´K)�, if and only if either)���"'bo#%	µ¯�) , ��"�bo#%	u¯])�´]Æ�Çj) , V
or)���" d #%	µ¯�) , ��" d #%	u¯])�´ ÆjÈ) , #

Theorem 5.21. Let "$b and "�d be ordered agent algebras, and let "L.�"Mbj¨©"�d be their product. Then "
is an ordered agent algebra.

The order in the subalgebra must correspond exactly to the order in the superalgebra.

Definition 5.22 (Subalgebra - Order). Let "�, be an ordered agent algebra. The agent algebra " is a
subalgebra of "�, if and only if

• " is a subalgebra of " , (definition 4.6), and

• for all)hV7)-,-�J"$#%	 ,)�´ Æ)P, if and only if)�´ Æ Á)-, .
Theorem 5.23. Let " , be an ordered agent algebra and let "L�u" , . Then " is an ordered agent algebra.

6 Normalizable Agent Algebra

As is customary in the study of algebraic systems, we can define expressions in terms of the operators that
are defined in an agent algebra. In this section we define what it means for two agent expressions to be
equivalent and prove that every expression can be transformed into an equivalent expression in a specific
(normal) form.

Definition 6.1 (Agent Expressions). Let v be a set of variables, and let " be an agent algebra. The set of
agent expressions over " is the least set É satisfying the following conditions:

Constant If)��J"$#%	 , then)���É .

Variable If �Y��v , then �Y�NÉ .

Projection If ÊZ��É and 5 is an alphabet, then proj �758�9�7ÊO�1��É .

Renaming If ÊT��É and 6 is a renaming function, then rename �>6?�9�7Ê��1��É .

Parallel Composition If Ê b ��É and Ê d �NÉ , then Ê b �hÊ d �NÉ .

17

We denote by sub �7ÊO� the set of all subexpressions of Ê , including Ê .
Agent expressions have no binding constructs (e.g. quantifiers). Therefore every variable in an agent

expression is free. The set of free variables of an agent expressions can be defined by induction on the
structure of expressions as follows.

Definition 6.2 (Free variables). Let Ê be an agent expression over " . The set FV �7Ê�� of free variables ofÊ is

• If Êu.}) for some)R�J"$#%	 , then FV �7Ê��t.;[.
• If Êu.�� for some �s��v then FV �7Ê��t.©~o�D� .
• If Êu. proj �75��9�7ÊMb�� for some agent expression ÊMb then FV �7ÊO�t. FV �7Ênb�� .
• If Êu. rename �>6?�9�7Ê b � for some agent expression Ê b then FV �7Ê��G. FV �7Ê b � .
• If Êu.�Ê$bB�FÊfd for some agent expressions Ê]b and Êed then FV �7ÊO�G. FV �7Ênb���I FV �7Êfdo� .

We call an expression that has no free variables a closed expression.
Intuitively, an agent expression represents a particular agent in the underlying agent algebra once the

variables have been given a value. Hence, to define the semantics of agent expressions we must first describe
an assignment to the variables.

Definition 6.3 (Assignment). Let " be an agent algebra and let v be a set of variables. An assignment ofv on " is a function Ë<yivµÌ{Í"$#%	 .

The denotation [[Ê]] of an expression Ê is a function that takes an assignment Ë and produces a particular
agent in the agent algebra. Note however that since the operators in the agent algebra are partial functions,
the denotation of an expression is also a partial function. The semantic function, the one that to each
expression Ê associates the denotation [[Ê]] is, of course, a total function.

Definition 6.4 (Expression Evaluation). Let Î be the set of all assignments. The denotation of agent
expressions is given by the function [[l]] yXÉ�Ì{¶Î�{Í"$#%	 defined for each assignment Ë»��Î by the
following semantic equations:

• If Êu.}) for some)R�J"$#%	 , then [[Ê]] Ë�.=) .

• If Êu.�� for some �s��v then [[Ê]] ËR.LËG�>�q� .
• If ÊC. proj �75��9�7ÊMb�� for some expression ÊMb then [[Ê]] Ë�. proj �75��9� [[ÊMb]] Ëg� if [[Ênb]] Ë is defined

and proj �758�9� [[Ê b]] Ëg� is defined. Otherwise [[Ê]] Ë is undefined.

• If Ê . rename �>6?�9�7Ênb�� for some expression ÊMb then [[Ê]] Ë�. rename �>6?�9� [[ÊMb]] Ëg� if [[Ênb]] Ë is
defined and rename �>6?�9� [[ÊMb]] Ëg� is defined. Otherwise [[Ê]] Ë is undefined.

• If Êu.LÊnbB�hÊfd for some expressions ÊMb and Êed then [[Ê]] Ë�. [[Ênb]] Ë»� [[Êed]] Ë if both [[Ênb]] Ë
and [[Êed]] Ë are defined and [[ÊMb]] Ë»� [[Êed]] Ë is defined. Otherwise [[Ê]] Ë is undefined.

18

The following equivalent definition of expression evaluation highlights the fact that the semantic equa-
tions are syntax directed.

[[)]] Ë .)
[[�]] Ë . ËG�>�H�

[[proj �758�9�7Ê��]] Ë . �
proj �75��9� [[Ê]] Ëg� if [[Ê]] Ëj and proj �758�9� [[Ê]] Ëg�Ï ! otherwise

[[rename �>6?�9�7Ê��]] Ë . �
rename �>6?�9� [[Ê]] Ëg� if [[Ê]] Ëj and rename �>6?�9� [[Ê]] Ëg�Ï ! otherwise

[[ÊnbB�gÊfd]] Ë . �
[[Ê b]] Ë�� [[Ê d]] Ë if [[Ê b]] Ëj , [[Ê d]] Ëj and [[Ê b]] ËK� [[Ê d]] Ëj ! otherwise

Since the semantic equations are syntax directed, the solution exists and is unique [12]. We extend the
semantic function to sets of expressions and sets of assignments as follows.

Definition 6.5. Let É be a set of expressions and Î , a set of assignments. We denote the possible evaluations
of an expression in É under an assignment in Îf, as

[[É]] Î , .©~ [[Ê]] ËKypÊZ��É and ËK��Î , �p#
Clearly, the value of an agent expression depends only on the value assigned by the assignment Ë to the

free variables.

Lemma 6.6 (Coincidence Lemma). Let Ê be an expression, and let Ë�b and Ë-d be two assignments such
that for all �Y� FV �7ÊO� , Ëgbi�>�q�G.\Ë-d��>�q� . Then

[[Ê]] Ë�b1. [[Ê]] Ë-d�#
Since an agent expression involves only a finite number of free variables, we use the notationÊYÐ �_boVk#k#k#iVA� �?Ñ to denote that Ê has free variables �DboVk#k#k#oVA� � . In that case, we use the notation ÊzÐ)FboVk#k#k#�V7) �pÑ

for [[Ê]] Ë where ËG�>��Ò��e.�)PÒ for Ó8Ô©ÕfÔ©� . Note also that if an agent expression has no free variables its
value does not depend on the assignment Ë .

When an expression contains variables it is possible to substitute another expression for the variable. 1

Definition 6.7 (Expression Substitution). Let " be an agent algebra and let Ê and Ês, be a agent ex-
pressions. The agent expression Ê�, ,�.rÊzÐ �qÖcÊM, Ñ obtained by substituting Ê�, for � in Ê is defined by
induction on the structure of expressions as follows:

• If Êu.}) for some)R�J"$#%	 , then Ê , , .=) .

• If Êu.�× for some ×©�»v , ×r�.�� then Ê , , .�× .

• If Êu.�� then Ê , , .\Ê , .
• If Êu. proj �75��9�7ÊMb�� for some expression ÊMb then Ê , , . proj �758�9�7Ê$biÐ �HÖcÊ , Ñ � .
• If Êu. rename �>6?�9�7Ênb�� for some expression ÊMb then Ê , , . rename �>6?�9�7ÊnbiÐ �qÖcÊ , Ñ � .

1While it is possible to define the simultaneous substitution of several expression for several variables, we limit the exposition
to the single variable case to keep the notation simpler.

19

• If Êu.�Ê$bB�FÊfd for some expressions Ê]b and Êed then ÊM, ,P.\Ê$b�Ð �qÖcÊM, Ñ �gÊfdpÐ �HÖcÊn, Ñ .
Expression substitution differs from expression evaluation in that substitution is a syntactic operation that

returns a new expression, while evaluation is a semantic operation that returns a value. The two are related
by the following result.

Lemma 6.8 (Substitution Lemma). Let Ê�b�Ð � Ñ and Êed�Ð � Ñ be two expressions in the variable � . Then for all
agents)Ê$b�Ð �qÖcÊed?Ð � Ñ�Ñ Ð) Ñ .\Ê$biÐ ÊedpÐ) Ñ�Ñ

We say that two expressions are equivalent if they have the same value for all possible assignments.

Definition 6.9 (Expression equivalence). Two expressions Ê�b and Êed are equivalent, written ÊMbBØ;Êed , if
and only if for all assignments Ë , [[Ê]b]] ËR. [[Êed]] Ë .

In particular the above definition implies that if two expressions are equivalent then they are defined or
undefined for exactly the same assignments. Notice also that because equivalence depends on the evalua-
tion of the expression, two expressions may be equivalent relative to one agent algebra and not equivalent
relative to another agent algebra. In other words, expression equivalence depends on the particular choice
of underlying agent algebra.

Sometimes it is convenient to consider only a subset of the possible assignments. In that case we talk
about equivalence modulo a set of assignments Îf, .
Definition 6.10 (Expression equivalence modulo Î ,). Let Î , be a set of assignments. Two expressionsÊnb and Êfd are equivalent modulo ÎB, , written Ênb]Ø$ÙqÁtÊed , if and only if for all assignments Ë\��Îf, ,

[[Ê b]] Ë�. [[Ê d]] Ë .

We state the following results for expression equivalence only, but they extend to expression equivalence
modulo Î1, in a straightforward way.

Lemma 6.11. Expression equivalence is an equivalence relation.

Because the semantics of expressions is syntax directed, the value of an expression depends only on the
value of its subexpressions. Hence

Theorem 6.12. Expression equivalence is a congruence with respect to the operators of the agent algebra.

Proof: We show that if Ê]b and Êfd are two agent expressions such that Ê�b8Ø�Êed , then for all alphabets5 , proj �758�9�7Ênb��$Ø proj �758�9�7Êfdc� . The cases for rename and � are similar. The proof consists of the
following series of implications:Ê$b�Ø\Êed

by definition 6.9 for all assignments Ë , [[Ê]b]] Ë�. [[Êed]] Ë® for all assignments Ë , proj �758�9� [[Ê b]] Ëg�G. proj �758�9� [[Ê d]] Ëg�
by definition 6.4 for all assignments Ë , [[proj �758�9�7Ê]b��]] ËR. [[proj �758�9�7Êed��]] Ë
by definition 6.9 proj �758�9�7Ênb9��Ø proj �758�9�7Êed��

20

Lemma 6.13. Let Ê be an agent expression and let ÚÊ be a subexpression of Ê . If ÚÊªØ ÚÊM, for some ÚÊM, ,
then ÊµØLÊ , , where Ê , is obtained from Ê by replacing ÚÊ with ÚÊ , .

Proof: The proof is by induction on the structure of Ê .

Equivalence is useful when we need to transform an expression into a form that is convenient for certain
applications. In that case, we want to make sure that the transformations do not change the meaning (the
semantics) of the expression. In this work we are particularly interested in a form where rename operator is
applied first, then followed by the parallel composition operator, and finally by the projection operator. We
call this the RCP normal form.

Definition 6.14 (RCP normal form). Let " be an agent algebra and let ÉjÛ be the set of expressions:É Û .©~A)�y9)��J"$#%	���IR~o�zy��Y��v��p#
An agent expression Ê is said to be in RCP (i.e., rename, compose, project) normal form if it is of the
form ÊC. proj �7
$�9� rename �>6pb��9�7Ê$b��t�tÜkÜkÜD� rename �>6 � �9�7Ê � �A�
where
 is an alphabet, 6?bkVk#k#k#�VA6 � are renaming functions and Ê]boVk#k#k#oV¬Ê � are expressions in É Û .

The RCP normal form is similar to the normal form Dill defined for circuit algebra expressions [8]. In
our case, however, we have extended the definition to expressions involving variables. This normal form
corresponds to flattening the hierarchy: all agents are first instantiated using the rename operator, and are
subsequently composed in parallel to form the entire system. The final projection is used to hide the internal
signals.

A variation on the above example includes an additional projection operation before the agents are com-
posed together. We restrict this normal form to expressions that do not involve variables, since we need to
account for the alphabet of each of the agents.

Definition 6.15 (PRCP normal form). Let)¤boVk#k#k#oV7) � , with alphabets
]bkVk#k#k#iV¬
 � , respectively, be agents
in some agent algebra. An expression involving the operations of the agent algebra is said to be in
PRCP (i.e., project, rename, compose, project) normal form if it is of the form

proj �75��9� rename �>6pb��9� proj �75]b��9�*)gb��A�1�tÜkÜkÜH� rename �>6 � �9� proj �75 � �9�*) � �A�A�XV
where for all Ý ,5BÞf.\
�Þ�:K�75;I<
MbFI�ÜkÜkÜcI<
�Þ � bgIz
�Þ�ßhbFIRÜkÜkÜ�Iz
 � �X#

In PRCP normal form, any local signal is projected away before an agent is composed with the rest of
the system, where a local signal is one that is not in the alphabet of the expression (i.e., 5) and is not in the
alphabet of any of the other agents in the system.

In the rest of this section we will concentrate on the RCP normal form, since we will need to solve
inequalities for variables in the application shown in section 9. In particular, we are interested in sufficient
conditions that an algebra must satisfy in order for all expressions to have an equivalent RCP normal form.
We will approach this problem in steps of increasing complexity. First we will consider expressions that
do not involve variables, i.e. closed expressions. In that case, the expression is either defined or undefined,

21

a condition that greatly simplifies the search for the normal form. As a second step, we will consider
expressions where variables can only be assigned agents with a specific alphabet and that always make the
expression defined or not defined. This is a case that is interesting in practice, and that does not require
the stronger conditions of the general result. Finally we will explore a set of restrictions that are needed to
obtain an equivalent normal form in the general case. We will see that alphabets again play a major role,
and that they must be restricted in order for the appropriate renaming functions and projection operators to
exist. All of this is formalized in the following definitions and results.

Definition 6.16 (Closed-Normalizable Agent Algebra). Let " be an agent algebra. We say that " is a
closed-normalizable agent algebra if the renaming, projection parallel composition operators satisfy
the axioms given below, where) and)+, are elements of 	 and
;.\(1�*)2� and
�,P.\(��*)P,º� .

A8. If rename �>6?�9�*)+� is defined, then it is equal to rename �>6fà E+á'â�ãäE+å �9�*)+� .
A9. rename �>6�,��9� rename �>6p�9�*)2�A�t. rename �>6�,9æ26?�9�*)+� , if the left hand side of the equation is defined.

A10. If proj �758�9�*)+� is defined, then it is equal to proj �75;:<
'�9�*)2� .
A11. proj �758�9� proj �75O,4�9�*)+�A�G. proj �75L:N5�,��9�*)2� , if the left hand side of the equation is defined.

A12. If rename �>6?�9� proj �758�9�*)+�A� is defined, then there exists a function 6 , such that

rename �>6p�9� proj �758�9�*)+�A��. proj �>6 , �75��A�9� rename �>6 , �9�*)+�A�X#
A13. If proj �758�9�*)+� is defined, then there exists a function 6 such that 6D�7
$��:<
M,j�a5 and

proj �758�9�*)+�G. proj �75��9� rename �>6p�9�*)2�A�X#
A14. rename �>6?�9�*)��-)-,4��. rename �>6fà Ejá$âXã¹Ejå �9�*)+��� rename �>6fà E Á á'â�ãäE Á å �9�*)-,4� , if the left hand side of

the equation is defined.

A15. proj �758�9�*)R�D)-,���. proj �75L:N
'�9�*)+�1� proj �75:z
e,º�9�*)P,º� , if �7
J:<
e,º���a5 .

The axioms can be used to algebraically transform an expression into an equivalent RCP normal form, as
the next result shows. Technically, since we are considering only sufficient and not necessary conditions,
the term normalizable should apply to all agent algebras whose expression can be put in RCP normal form,
whether or not they satisfy the axioms. In practice, we restrict our attention to only algebras that do satisfy
the axioms for the purpose of normalization, and we therefore use the term to distinguish them from those
that do not. We will continue to use this convention for the rest of this document, including the more general
cases of normalizable agent algebras.

Theorem 6.17 (Normal Form - Closed Expressions). Let " be a closed-normalizable agent algebra, and
let Ê be a closed expression over " . Then Ê is equivalent to an expression in RCP normal form.

Proof: Let Ê be a closed expression. If Ê is undefined, then Ê is equivalent to any undefined closed
expression in RCP normal form. If Ê is defined, then we construct an equivalent closed expression in
RCP normal form by induction on the structure of expressions.

• Assume Êu.=) for some agent)��J"$#%	 . Then Êµ. proj �7
'�9� rename � id EF�9�*)+�A� by A4 and A2.

22

• Assume Ê . proj �758�9�7ÊMb�� . Then, by induction, Ê]b is equivalent to an expression Ê�,b .
proj �75 , �9� rename �>6pb��9�*)�bX���tÜkÜkÜH� rename �>6 � �9�*) � �A� in RCP normal form. ThenÊ . proj �758�9� proj �75 , �9� rename �>6pb��9�*)�b��t��ÜkÜkÜH� rename �>6 � �9�*) � �A�A�

By A11. proj �75;:<5 , �9� rename �>6pb��9�*)�b��t�tÜkÜkÜH� rename �>6 � �9�*) � �A�
which is in RCP normal form.

• Assume Ê . rename �>6p�9�7ÊMb�� . Then, by induction, ÊMb is equivalent to Ê ,b .
proj �75��9� rename �>6 b �9�*) b ���GÜkÜkÜP� rename �>6 � �9�*) � �A� in RCP normal form. ThenÊ . rename �>6?�9� proj �758�9� rename �>6?b��9�*)�b����GÜkÜkÜP� rename �>6 � �9�*) � �A�A�

By A12 there exists a renaming function 6?, such that. proj �>6 , �758�A�9� rename �>6 , �9� rename �>6 b �9�*) b �1�GÜkÜkÜH� rename �>6 � �9�*) � �A�A�
By A6, A14 and A3. proj �>6 , �758�A�9� rename �>6 , à â Ç ã¹E Ç åçá'â Á ãäâ Ç ãäE Ç åºå �9� rename �>6pb��9�*)�b��A���GÜkÜkÜ� rename �>6 , à âéèpã¹E-è�åºá$âéÁºã*âéèpã¹E-ècåºå �9� rename �>6 � �9�*) � �A�A�
By A9. proj �>6 , �758�A�9� rename �>6 , à â Ç ã¹E Ç åçá'âêÁ4ãäâ Ç ãäE Ç åºå æ16�bX�9�*)�b����GÜkÜkÜ� rename �>6 , à â è ã¹E è åºá$â Á ã*â è ã¹E è åºå æ�6 � �9�*) � �A�

which is in RCP normal form.

• Assume Êë.¦ÊMb]��Êfd . Then, by induction, Ê]b is equivalent to an RCP normal form Ê ,b .
proj �75]b��9� rename �>6pbAb��9�*)�bAb9���eÜkÜkÜh� rename �>6 � b��9�*) � bX�A� and Êed is equivalent to an RCP normal
form Ê ,d . proj �75'd��9� rename �>6�bÏd��9�*)gbÏd����eÜkÜkÜg� rename �>6 � do�9�*) � d��A� . Let
Mb be the alphabet of
expression Ê], ,b such that ÊM,b . proj �75]b��9�7Ên, ,b � . We can assume, without loss of generality, that5 b ��
 b and 5 d �a
 d . By A13 there exists a function 6 b such that 6 b �7
 b �2:<
 d �a5 b and

proj �75]b��9�7Ê , ,b ��. proj �75]b��9� rename �>6pb��9�7Ê , ,b �A�X#
Similarly, there exists a function 6�d such that 6id��7
�d���:K�7
MbFIz6�b��7
nb��A���a5'd and

proj �75'd��9�7Ê , ,d ��. proj �75'd��9� rename �>6id��9�7Ê , ,d �A�X#
By A10

proj �75]b��9�7Ê , ,b ��. proj �75]bF:z6�b��7
Mb��A�9� rename �>6pbX�9�7Ê , ,b �A�
proj �75'd��9�7Ê , ,d ��. proj �75'dt:z6�d��7
�d��A�9� rename �>6ido�9�7Ê , ,d �A�

Note that since 6pb��7
Mb��G:K
�d»�¾5]b , and since 5'd»�¾
�d , also 6pbi�7
nb��G:m5'dR�ª5Mb . Thus also6�b��7
nb��g:z5�d'��5MbF:Y6pbi�7
nb�� . Hence�75]bFI<5'd��2:z6�b��7
Mb��G.u�75]bF:z6�b��7
Mb��A��IK�75'dt:z6�b��7
Mb��A�G.\5]bF:Y6�bi�7
Mb��X#
23

Likewise, since 6cd��7
�d���:e�7
nboI�6�b��7
Mb��A�1��5'd , also 6id��7
�d���:t
nb��a5'd and therefore 6cd��7
ed��X:G5]bB�5'd . Thus 6idp�7
ed��2:<5]b��a5'dG:z6�dp�7
�d�� . Hence�75 b I<5 d �2:z6 d �7
 d �G.u�75 b :z6 d �7
 d �A��IK�75 d :z6 d �7
 d �A�G.\5 d :Y6 d �7
 d �X#
Thus we have

proj �75]b��9�7Ê , ,b ��. proj �A�75]bFI<5'do��:z6�b��7
Mb��A�9� rename �>6pbX�9�7Ê , ,b �A�
proj �75'd��9�7Ê , ,d ��. proj �A�75]bFI<5'do��:z6�d��7
�d��A�9� rename �>6ido�9�7Ê , ,d �A�

Moreover, since 6cdp�7
�d���:J�7
Mb1IR6�bi�7
nb��A�8��5�d , we also have 6cdp�7
ed���:»6�b��7
nb��8�r5'd , so that6�d��7
ed��g:Y6�bi�7
nb�����5MbFIN5�d . Hence by A15

proj �75 b �9�7Ê , ,b �t� proj �75 d �9�7Ê , ,d ��.. proj �A�75�bFI<5'd��2:z6�b��7
nb��A�9� rename �>6pb��9�7Ê , ,b �A���
proj �A�75 b I<5 d �2:z6 d �7
 d �A�9� rename �>6 d �9�7Ê , ,d �A�. proj �75�bFI<5'dk�9� rename �>6pb��9�7Ê , ,b �t� rename �>6id��9�7Ê , ,d �A�

By A9 and A6

rename �>6pb��9�7Ê , ,b �G. rename �>6pbFæ16�bAb��9�*)�bAb��t�tÜkÜkÜD� rename �>6pbFæ16 � b��*) � b��
rename �>6id��9�7Ê , ,d �G. rename �>6idtæ16�bÏd��9�*)�bÏd��t�tÜkÜkÜD� rename �>6idtæ16 � d��*) � d��

which proves the result.

If we consider an expression that involves variables, the axioms of agent algebras and the axioms of
definition 6.16 may not be sufficient to ensure the existence of an equivalent normal form. Consider, for
example, the expressionÊµ.��P#
We must find a renaming function 6 and an alphabet 5 such thatÊµØ proj �758�9� rename �>6?�9�>�q�A�X#
The axioms are insufficient for two reasons. In the first place, A4 and A2 ensure the existence of an appro-
priate renaming function 6 and alphabet 5 for each agent. However, the algebra must be such that the same
renaming function 6 and alphabet 5 can be used to construct an equivalent expression for all agents (or, at
least, for the subset of agents that are assigned to �). The same is true of all the axioms that for all agents
dictate the existence of a certain renaming function or alphabet. To make the algebra normalizable, the order
of the quantifiers of these axioms must be exchanged, thus strengthening the requirements.

Secondly, we have dealt with the problem of definedness in theorem 6.17 by deriving a different normal
form, according to whether the original closed expression is defined or not. However, unlike a closed
expression, an expression may be defined or not defined depending on the assignment to its variables. To
ensure equivalence, we must find an expression in normal form that is defined and not defined for exactly

24

the same assignments. In the particular case above, since the expression Ê¼.u� is defined for all possible
assignments to � , we must find a renaming function 6 and an alphabet 5 such that proj �75��9� rename �>6p�9�>�H�A�
is also always defined. Consequently, we must strengthen the axioms in two ways: by first requiring that the
equalities that occur in the axioms are valid whether or not the left hand side is defined; and by introducing
additional assumptions on the definedness of the operators to ensure the existence of the normal form.

However, one case that requires minimal strengthening of the axioms, and that is of great practical interest,
is when variables are always assigned agents with the same alphabet, and such that the expression is always
defined or always not defined. This is, for instance, the case in [8].

Definition 6.18 (Alpha-Normalizable Agent Algebra). Let " be a normalizable agent algebra. We say
that " is alpha-normalizable if the renaming, projection and parallel composition operators satisfy the
following axioms:

A16. For all alphabets
 there exists a renaming function 6_, such that for all agents) such that(��*)+�G.\
 , if rename �>6?�9� proj �758�9�*)+�A� is defined, then

rename �>6p�9� proj �758�9�*)+�A��. proj �>6 , �75��A�9� rename �>6 , �9�*)+�A�X#
A17. For all alphabets
 there exists a renaming function 6 such that for all agents) such that (1�*)+�t.
 , if proj �758�9�*)+� is defined, then 6D�7
$��:<
',+�a5 and

proj �758�9�*)+�G. proj �75��9� rename �>6p�9�*)2�A�X#
Note that, as in definition 6.16, the axioms are stated directly in terms of the operators and the agents

of the algebra. However, by theorem 6.12, they can be used with expressions whenever every evaluation
(possibly restricted to a set of assignments Îe,) of the expressions involved satisfies the requirements of the
axiom. In that case, the equality must be replaced by equivalence (possibly modulo Î ,). This remark applies
especially to the proofs of theorem 6.19 and theorem 6.25 below.

Theorem 6.19 (Normal Form - Same Alphabet). Let " be an alpha-normalizable agent algebra. Let Ê
be an expression over " and let ÎB, be a set of assignments such that for all ËFboV¬Ë-d'��Î1, , [[Ê]] Ë�bê if and
only if [[Ê]] Ë d and for all variables � , (1�7Ë b �>�q�A��.C(��7Ë d �>�H�A� . Then Ê is equivalent modulo Î�, to an
expression Ê , in RCP normal form.

Proof: The proof is similar to the proof of theorem 6.17. In fact, the transformations in the induction are
the same and equally valid for every assignment (subject to the restrictions set forth in the statement of
the theorem) and therefore preserve the evaluation of the expression no matter what agents replaces the
variables.

In general, an equivalent RCP normal form for an expression that involves unrestricted variables and
quantities does not exist. To see why, consider the following expression Ê :Êµ. proj �758�9�*)+���g�-#
To normalize this expression we must rename) so that the signals that are in its alphabet and that are not in5 do not conflict with the signals in � . The alphabet of � however depends on its assigned value. Thus, if we
assume that for each signal in the master alphabet "'#&� there is an agent that has that signal in its alphabet,
then there exists no renaming function with the above property. One could avoid conflicts by renaming � by

25

folding the master alphabet into a subset of itself (this can be done only if the master alphabet is infinite),
thus making the extra signals available for) . However, in general this changes the meaning of the expression
(since � now appears renamed without being guarded by a projection), thus making it difficult to obtain an
equivalent expression.

One could of course require that projection and parallel composition always commute. That, however,
would not only unduly restrict the kinds of models of computation that can be studied as agent algebras,
but, more importantly, would be contrary to the intuitive interpretation of the operations. Therefore, in the
absence of conditions specific to particular agent algebras, we must restrict the extent of the alphabets that
are used in the expression and in the assignments to the variables.

In the rest of this section we present sufficient conditions for the existence of an equivalent RCP normal
form for expressions involving variables. In particular, we are looking for restrictions on the alphabet of
agents while still maintaining full generality. This can be achieved by restricting the use of the master
alphabet to only a subset of the available signals, as long as the subset has the same cardinality as the whole
and still leaves enough signals available for the operations of renaming. As a consequence, the equivalence
will be modulo some set of assignments Îf, that satisfies the restrictions.

In what follows we will make use of the following lemmas and definitions.

Lemma 6.20. Let " be an agent algebra. Let Ê�b and Êfd be two expression over " and Î , a set of assign-
ments such that Ênb1Ø ÙqÁ Êfd . Then (1� [[Ênb]] Î1,4�G.\(�� [[Êfd]] Î1,4� .

Proof: Let �N�»(�� [[Ênb]] Î�,�� . Then there exists an assignment Ë=�KÎ�, such that [[Ênb]] ËK.�) and �<�»(1�*)2� .
But since Ênb8Ø$Ù Á Êfd , then also [[Ê�d]] Ë\.u) . Therefore �J�\(1� [[Ê�d]] Î , � . The reverse direction is
similar.

Definition 6.21 (Small subset). Let ì be a set and let 5 be a subset of ì . We say that 5 is a small subset
of ì , written 5rí�ì , if:

• ì is infinite.

• The cardinality of the complement ìël}5 is greater than or equal to the cardinality of 5 .

Lemma 6.22. Let î and ï be sets such that î0í�ï . Then there exists a set ð such that î3íað@í�ï .

Proof: Let ð b and ð d be two subsets of ï©l�î of the same size such that ïCl�î .§ð b Imð d , and letðu.�îrIYðgb . Since ïJl�î is infinite, à ðFbià�.Tà ð-d?à�.Zà&ïJl»î�à . Since à&ï�lKîJà_ñCà îJà , also à ðhbcà�ñCà î�à .
Therefore î3íað .

Since î¶íCð , à î�à2Ô�à ðgbià . Therefore, since ð .uîªI�ðFb , à ðNàD.ªà ð�bià . Therefore also à ð+d?àD.ªà ð<à .
Hence ðZí�ð\I<ð+dB.ï .

We now have the vocabulary to state and prove the main result of this section.

Definition 6.23 (Normalizable Agent Algebra). Let " be an agent algebra. We say that " is a normaliz-
able agent algebra if the renaming, projection and parallel composition operators satisfy the following
axioms:

A18. For all alphabets
 there exists an alphabet 5 such that
��C5 and for all agents) such that(��*)+�1�a
)<. rename � id òt�9�*)+�X#
26

A19. For all alphabets 5 and agents) and for all alphabets
n, such that (��*)+��:N
e,D.L[
proj �758�9�*)+�G. proj �75LIN
 , �9�*)+�X#

A20. For all alphabets 5 and 5 , , and for all agents)
proj �758�9� proj �75 , �9�*)2�A�G. proj �75;:<5 , �9�*)+�X#

A21. For all renaming functions 6�b and 6�d and for all agents)
rename �>6�b��9� rename �>6id��9�*)+�A�G. rename �>6pbFæ16id��9�*)+�

where for all signals � ,�>6�bFæ�6�do�9�7�q��. � 6�bi�>6�dp�7�H�A� if 6�bi�>6�d��7�H�A�Ï ! otherwise.

A22. For all renaming functions 6 and for all alphabets 5 there exist renaming functions 6D, and 6�, ,
such that for all agents)

rename �>6p�9� proj �758�9�*)+�A��. proj �>6 , �75��A�9� rename �>6 , , �9�*)+�A�X#
A23. For all alphabets 5 , for all alphabets
 and for all alphabets
M, such that à¹�X"$#&�µl}
e,4�Flm5�à�ñà
�l}5�à there exists a renaming function 6 such that 6D�7
'�g:N
n,2��5 and for all agents) such

that (��*)+�1��

proj �758�9�*)+�G. proj �75��9� rename �>6p�9�*)2�A�X#

A24. For all renaming functions 6 and for all agents)¤b and)jd
rename �>6p�9�*) b �H) d ��. rename �>6?�9�*) b �1� rename �>6?�9�*) d �X#

A25. For all alphabets 5 and for all agents) b and) d such that (1�*) b �2:N(1�*) d ���a5
proj �758�9�*)gbB�D)-do�G. proj �758�9�*)�b��1� proj �75��9�*)jd��X#

Lemma 6.24. Let " be a normalizable agent algebra. Then the following two statements are equivalent.

1. " satisfies A19, i.e. for all alphabets 5 and agents) and for all alphabets
], such that (1�*)+�c:e
e,D.[
proj �758�9�*)+�G. proj �75;I<
 , �9�*)2�X#

2. for all alphabets 5 and agents) and for all alphabets
n, such that (��*)+�1��
e,
proj �758�9�*)+�G. proj �75;:<
 , �9�*)2�X#

27

Proof: For the forward implication, assume item 1 is true. Let 5 be an alphabet,) an agent and
O, an
alphabet such that (��*)+�1��
 , . Let ó§.\5;:<
 , and ô , .\5©l}
 , . Then(1�*)2�1�a
 ,

since ô , :<
 , .;[(��*)+��:Rô , .L[
by item 1® proj �7óm�9�*)+�t. proj �7ó¼I�ô , �9�*)+� proj �75;:<
 , �9�*)+�G. proj �A�75;:<
 , ��IK�75Cl}
 , �A�9�*)+� proj �75;:<
 , �9�*)+�G. proj �758�9�*)+�

For the reverse implication, assume item 2 is true. Let 5 be an alphabet,) an agent and
�, an alphabet
such that (��*)+��:<
 , .L[. Let ó§.\5;I<
 , and ô , .�(��*)+�gIz5 . Then(1�*)2�1�Lô ,

by item 2® proj �7óm�9�*)+�t. proj �7ó¼:�ô , �9�*)+� proj �75;I<
 , �9�*)+�G. proj �A�75;I<
 , ��:K�7(��*)+��IN5��A�9�*)2� proj �75;I<
 , �9�*)+�G. proj �A�75;:<(��*)+�A��Im�75L:N5��2Im�7
 , :N(1�*)+�A�gIK�7
 , :<58�A�9�*)+�
since 5\:N(1�*)+���a5 ,
e,?:<(1�*)2�G.L[and
e,?:<5@�a5 proj �75;I<
 , �9�*)+�G. proj �758�9�*)+�

The following theorem shows that in a normalizable agent algebra any expression can be turned into an
equivalent expression in RCP normal form when enough signals are available. The notation is simpler if we
assume that the expression does not contain constants. This assumption is without loss of generality, since
the case when an expression contains constants can be obtained by representing the constants with unique
variables and by considering only assignments that assign the corresponding constant to the variables.

Theorem 6.25 (Normal Form). Let " be an agent algebra such that "$#&� is infinite, and let Ê be an
expression over " that does not involve constants. Let Îe, be a set of assignments and ì �ª"'#&� be
an alphabet such that (�� [[sub �7Ê��]] Î , ��í©ì . Then Ê is equivalent modulo Î , to an expression Ê , in
RCP normal form such that (1� [[sub �7ÊO,4�]] Î�,��f�©ì . In addition, if a variable � appears õ times in Ê ,
then it appears õ times in Ê�, .

Proof: The proof uses the following result.

Lemma 6.26. Let Êu. rename �>6 b �9�>� b �c��ÜkÜkÜé� rename �>6 � �9�>� � � be an expression such that (�� [[Ê]] Î�,4��.
 . Then

rename �>6?�9�7ÊO�GØnÙqÁ rename �>6fæ16pb��9�>�_b��t�tÜkÜkÜH� rename �>6fæ16 � �9�>� � �
and both (1� [[rename �>6p�9�7ÊO�]] ÎB,4��.�6D�7
'� and for all Õ , (1� [[rename �>6fæ�6 Ò �9�>� Ò �]] Î1,4�1��6D�7
'� .

28

Proof: By A6 and A24

rename �>6?�9�7ÊO�GØnÙqÁ rename �>6?�9� rename �>6 b �9�>� b �A���tÜkÜkÜH� rename �>6?�9� rename �>6 � �9�>� � �A�XV
and by A21

rename �>6?�9�7ÊO�GØnÙ Á rename �>6fæ16pb��9�>�_b��t�tÜkÜkÜH� rename �>6fæ16 � �9�>� � �X#
Since (1� [[Ê]] Î�,4�8.¿
 , and by A5, for all Õ , (1� [[rename �>6 Ò �9�>� Ò �]] Î1,4�z�ª
 . Therefore by A3,(1� [[rename �>6?�9�7Ê��]] Î�,4�G.�6D�7
$� and for all Õ , (1� [[rename �>6�æ�6iÒ��9�>��ÒÏ�]] Î1,4�1��6D�7
$� .

The proof is by induction on the structure of expressions.

• Let ÊT.;� . Let
.;(�� [[Ê]] ÎB,�� . By A18 there exists an alphabet 5 such that
µ�\5 and for all) such that (��*)+�1��
)<. rename � id òt�9�*)+�X#
Let now Ë»�»Î1, be an assignment. Then by definition 6.4

[[�]] Ë . ËG�>�q�
Since (1�7ËG�>�H�A�B��
. rename � id òG�9�7ËG�>�H�A�
by A2, since (��7ËG�>�q�A�1.\(�� rename � id ò �9�7ËG�>�H�A�A�. proj �7(��7ËG�>�q�A�A�9� rename � id ò��9�7ËG�>�q�A�A�
by A19, since (��7ËG�>�q�A�h:<
C�a(��7ËG�>�q�A�. proj �7
$�9� rename � id òt�9�7ËG�>�q�A�A�
by definition 6.4. [[proj �7
$�9� rename � id ò �9�>�q�A�]] Ë+#

Thus by definition 6.10�8Ø$Ù Á proj �7
$�9� rename � id òt�9�>�q�A��.\Ê ,
which is in RCP normal form.

By inspection

sub �7Ê , �G.©~o�PV rename � id òG�9�>�q�XV proj �7
'�9� rename � id òt�9�>�H�A���p#
By hypothesis,(�� [[�]] Î , ��.L
©�\ìK#
Since �8Ø$ÙHÁ rename � id òt�9�>�H� , by lemma 6.20(�� [[rename � id òG�9�>�H�]] Î , �G.\
©��ìm#

29

Since �8Ø$ÙHÁ proj �7
'�9� rename � id òt�9�>�H�A� , by lemma 6.20(�� [[proj �7
'�9� rename � id ò��9�>�q�A�]] Î , ��.\
C��ìm#
Therefore, (�� [[sub �7Ê , �]] Î , �1��ì .

By inspection, if a variable � appears õ times in Ê , it appears õ times in the normal form.

• Let Êµ. proj �758�9�7Ênb�� .
By hypothesis, (1� [[sub �7ÊO�]] Î , ��í�ì . Then, since sub �7ÊMb��1� sub �7ÊO� , also (�� [[sub �7ÊMb��]] Î , ��íì . Then, by induction, Ê b is equivalent to an expression Ê ,b in RCP normal formÊ ,b . proj �75 , �9� rename �>6pb��9�>��b��1�tÜkÜkÜH� rename �>6 � �9�>� � �A�
and (�� [[sub �7ÊM,b �]] Î�,�����ì . Then by theorem 6.12ÊuØ ÙqÁ proj �758�9� proj �75 , �9� rename �>6 b �9�>� b �1�GÜkÜkÜD� rename �>6 � �9�>� � �A�A�X#
By A20, Ê is equivalent modulo Î�, to an expression Ê],ÊuØ$Ù Á Ê , . proj �75L:N5 , �9� rename �>6pb��9�>��b��1�GÜkÜkÜD� rename �>6 � �9�>� � �A�
which is in RCP normal form.

Let Ê , ,b . rename �>6�b��9�>�_b��t�tÜkÜkÜD� rename �>6 � �9�>� � �X#
Then

sub �7Ê , �G.©~�Ê , �1I sub �7Ê , ,b �X#
Since by hypothesis (1� [[Ê]] ÎB,4����ì , and since ÊCØnÙHÁ-Ên, , by lemma 6.20(�� [[Ê ,]] Î , �1��ìm#
Since sub �7Ê , ,b �1� sub �7Ê ,b � , and since (�� [[Ê ,b]] Î , �1��ì ,(�� [[sub �7Ê , ,b �]] Î , ���\ìK#
Therefore, (�� [[sub �7Ê],º�]] Î1,4�1��ì .

In addition, if a variable � appears õ times in Ê , it appears õ times in Ê b , and therefore, by
induction, it appears õ times in Ê ,b and in the final normal form.

• Let Êµ. rename �>6?�9�7Ênb�� .
By hypothesis, (1� [[sub �7ÊO�]] Î , ��í�ì . Then, since sub �7ÊMb��1� sub �7ÊO� , also (�� [[sub �7ÊMb��]] Î , ��íì . Then by induction ÊMb is equivalent to an expression Ê�,b in RCP normal formÊ ,b . proj �75 , �9� rename �>6pb��9�>��b��1�tÜkÜkÜH� rename �>6 � �9�>� � �A�

30

and (�� [[sub �7ÊM,b �]] Î�,�����ì .

Let ÊM, ,b . rename �>6pb��9�>�_b����GÜkÜkÜH� rename �>6 � �9�>� � � . Then, by theorem 6.12ÊuØ$Ù Á rename �>6p�9� proj �75 , �9�7Ê , ,b �A�X#
By A22 there exist renaming function 6?, and 6�, , such thatÊuØ ÙqÁ proj �>6 , �75 , �A�9� rename �>6 , , �9�7Ê , ,b �A�X#
Let now
;.\(1� [[rename �>6 , , �9�7Ê , ,b �]] Î , � and 5T.�6 , �75 , �-:�
 . Since (1� [[Ê]] Î , ��í�ì , by A1 and
lemma 6.20 also 5@í\ì . By lemma 6.24ÊuØ$ÙqÁ proj �758�9� rename �>6 , , �9�7Ê , ,b �A�X#
Let now
 , .@"$#&�Slzì . Then �X"$#&�Sls
 , ��ls5u.;ìÄls5 . Note that 6 , , is a bijection, and for any
assignment Ë���ÎB, , if [[rename �>6�, ,º�9�7ÊM, ,b �]] Ë is defined then also [[Ê], ,b]] Ë is defined. Thus, since(1� [[Ê , ,b]] Î , ���§ì , à
Oà1.¶à (�� [[rename �>6 , , �9�7Ê , ,b �]] Î , �kàBÔ£à (�� [[Ê , ,b]] Î , �kà�Ô¦à&ì�à . Hence, since5��µì and 5��©
 , à&ìÅl�5Nà+ñ�à
Ll�5�à . Therefore, by A23 there exists a renaming function6�, , , such that 6�, , ,��7
$��:<
e,j��5 andÊuØ$Ù Á proj �758�9� rename �>6 , , , �9� rename �>6 , , �9�7Ê , ,b �A�A�X#
By A21ÊuØ$ÙqÁ proj �758�9� rename �>6 , , , æ16 , , �9�7Ê , ,b �A�X#
By lemma 6.26ÊuØ ÙqÁ Ê , . proj �>6 , �758�A�9� rename �>6 , , , æ�6 , , æ16�bX�9�>�_b9�t�tÜkÜkÜH� rename �>6 , , , æ�6 , , æ�6 � �9�>� � �A�
which is in RCP normal form.

By inspection

sub �7Ê , �¶. ~o�_boVk#k#k#�VA� � �BI. IR~ rename �>6 , , , æ�6 , , æ�6�b��9�>�_b��XVk#k#k#�V rename �>6 , , , æ16 , , æ16 � �9�>� � ����I. IR~ rename �>6 , , , æ�6 , , æ�6�b��9�>�_b��t�tÜkÜkÜH� rename �>6 , , , æ�6 , , æ16 � �9�>� � �X�1I. IR~�Ê , �
Since for all Õ , � Ò � sub �7Ê ,b � , and since (1� [[sub �7Ê ,b �]] Î , ���\ì ,(�� [[~o�_boVk#k#k#oVA� � �]] Î , ����ìK#
Note that 6�, , ,7�7
$��:<
e,+�a5 implies 6�, , ,7�7
$�1��ì . Therefore by lemma 6.26(�� [[~ rename �>6 , , , æ16 , , æ�6�bX�9�>��bk�XVk#k#k#�V rename �>6 , , , æ16 , , æ�6 � �9�>� � ���]] Î , ����6 , , , �7
'�B��ì(�� [[rename �>6 , , , æ16 , , æ�6�bX�9�>��b��1�GÜkÜkÜD� rename �>6 , , , æ16 , , æ�6 � �9�>� � �]] Î , ����6 , , , �7
'����ìK#

31

Since by hypothesis (1� [[Ê]] ÎB,4����ì , and since ÊCØnÙHÁ-Ên, , by lemma 6.20(�� [[Ê ,]] Î , �1��ìm#
Therefore, (�� [[sub �7Ê],º�]] Î1,4�1��ì .

In addition, if a variable � appears õ times in Ê , it appears õ times in Ê�b , and therefore, by
induction, it appears õ times in Ê�,b and in the final normal form.

• Let Êµ.\ÊnbB�hÊfd .
Let
L.\(�� [[Ê]] Î�,4� .
Since by hypothesis
¼í@ì , by lemma 6.22, there exists an alphabet î such that
¾íTî andîÄí�ì .

Then, since sub �7Ênb��§� sub �7Ê�� and sub �7Êed��§� sub �7ÊO� , also (�� [[Ênb]] Î�,��§í î and(1� [[Êed]] Î , �sírî . Then, by induction, Ê]b and Êfd are equivalent to expressions Ê ,b and Ê ,d in
RCP normal formÊ ,b . proj �75 ,b �9� rename �>6pbAö&b��9�>�_bAö&b����GÜkÜkÜD� rename �>6pbAö � �9�>�_bAö � �A�Ê ,d . proj �75 ,d �9� rename �>6id�ö&b��9�>��d�ö&b����GÜkÜkÜD� rename �>6id�ö ÷'�9�>��d�ö ÷'�A�
and (�� [[sub �7Ê ,b �]] Î , ����î and (1� [[sub �7Ê ,d �]] Î , �1��î .

Let Ê , ,b . rename �>6 bAö&b �9�>� bAö&b ���GÜkÜkÜP� rename �>6 bAö � �9�>� bAö � �
 , ,b . (�� [[Ê , ,b]] Î , �5 b . 5 ,b :z
 , ,bÊ , ,d . rename �>6�d�ö&b��9�>��d�ö&b����GÜkÜkÜP� rename �>6id�ö ÷'�9�>��d�ö ÷$�
 , ,d . (�� [[Ê , ,b]] Î , �5'dø. 5 ,d :z
 , ,d
Then by theorem 6.12 and lemma 6.24Ê ,b Ø$Ù Á proj �75]b��9�7Ê , ,b �Ê ,d Ø$ÙqÁ proj �75'd��9�7Ê , ,d �
Since î0í�ì , by lemma 6.22 there exists an alphabet ð such that î3íað and ðrí�ì .

Let
 , b .@"$#&�al}�`ì|l�ðO� and
 , d .@"$#&�al}�7ðalNî»� . Clearly since î0íað@í�ì and
 , ,b ��î ,à&ì¼lMðzà_ñµà ð<à_ñµà î�à_ñCà
e, ,b à . Therefore, since 5�b���ð , à¹�X"$#&��lM
e, b �ilM5]biàp.Tà¹�`ì¼lMð��ilM5]bcà�.à&ìùlmð<à_ñµà
f, ,b l}5 b à .
Similarly à ð;l}î�à_ñCà îJà_ñCà
�, ,d à . Therefore, since 5 d ��î , à¹�X"$#&�Cl}
e,d �hl}5 d à?.uà¹�7ð©lKîK�hl5'd�à?.uà ð©l}î�à_ñCà
 , ,d l}5'd�à .

32

Therefore, by A23 there exist renaming functions 6�,b and 6�,d such that 6�, b �7
f, ,b ��:f
e, b �a5]b , 6�,d �7
e, ,d �i:
 , d ��5'd andÊ ,b Ø Ù Á proj �75]b��9� rename �>6 , b �9�7Ê , ,b �A�Ê ,d Ø$Ù Á proj �75'd��9� rename �>6 ,d �9�7Ê , ,d �A�
By definition, 5$d � î �
f, b and (�� [[rename �>6�,b �9�7Ên, ,b �]] Î1,�� . 6�,b �7
e, ,b � , therefore
since 6 , b �7
 , ,b �s:u
 , b � 5]b , also 6 , b �7(�� [[rename �>6 , b �9�7Ê , ,b �]] Î , �A�s:T5'dù� 5]b . Similarly,6�,d �7(1� [[rename �>6�,b �9�7Ên, ,b �]] Î1,4�A�2:<5]b��a5'd . Therefore by A19, denoting 5T.\5ObhI<5'dÊ ,b Ø$ÙqÁ proj �758�9� rename �>6 , b �9�7Ê , ,b �A�Ê ,d Ø$ÙqÁ proj �758�9� rename �>6 ,d �9�7Ê , ,d �A�
By the previous definitions (1� [[rename �>6?,b �9�7ÊM, ,b �]] Î�,�� � 5 b I �`ì l ðO� , and(1� [[rename �>6 ,d �9�7Ê , ,d �]] Î , �»�05�dnI��7ð¾lLîK� . In addition, since �`ì l;ðO��:��7ð¾lLîK��.¶[,�75]bBI��`ì lLð��A�1:��75'd'I��7ð l\îK�A��./5]bB:=5'dS�Ä5 . Hence (1� [[rename �>6p,b �9�7ÊM, ,b �]] Î�,��1:(1� [[rename �>6 ,d �9�7Ê , ,d �]] Î , ���a5 . Therefore, by A25ÊuØ$ÙqÁ proj �758�9� rename �>6 , b �9�7Ê , ,b �t� rename �>6 ,d �9�7Ê , ,d �A�X#
By lemma 6.26

rename �>6 , b �9�7Ê , ,b ��Ø$ÙqÁ rename �>6 , b æ16pbAö&b��9�>�_bAö&b�����ÜkÜkÜH� rename �>6 , b æ16�bAö � �9�>��bAö � �
rename �>6 ,d �9�7Ê , ,d ��Ø$ÙqÁ rename �>6 ,d æ16 d�ö&b �9�>� d�ö&b ����ÜkÜkÜH� rename �>6 ,d æ16 d�ö ÷ �9�>� d�ö ÷ �X#

Therefore by theorem 6.12Ê Ø$ÙHÁ¿Ê , . proj �758�9� rename �>6 , b æ�6 bAö&b �9�>� bAö&b �t�tÜkÜkÜD� rename �>6 , b æ16 bAö � �9�>� bAö � �t�� rename �>6 ,d æ16�d�ö&bX�9�>��d�ö&b����tÜkÜkÜH� rename �>6 ,d æ�6�d�ö ÷��9�>��d�ö ÷'�A�
which is in RCP normal form.

By inspection

sub �7Ê , �¶. ~o� bAö&b Vk#k#k#�VA� bAö � �BI. IR~o��d�ö&boVk#k#k#�VA��d�ö ÷M�1I. IR~ rename �>6 , b æ�6�bAö&bX�9�>��bAö&b��XVk#k#k#iV rename �>6 ,d æ16�d�ö ÷'�9�>��d�ö ÷$�X�1I. IR~ rename �>6 , b æ�6�bAö&bX�9�>��bAö&b��1�GÜkÜkÜD� rename �>6 ,d æ�6�d�ö ÷$�9�>��d�ö ÷'�X�1I. IR~�Ê , �
Since for all Õ , �qbAö Ò � sub �7ÊM,b � , and since (1� [[sub �7Ê],b �]] Î�,����\ì ,(�� [[~o�_bAö&boVk#k#k#oVA�_bAö � �]] Î , ���\ìK#
Similarly(�� [[~o��d�ö&boVk#k#k#oVA��d�ö ÷n�]] Î , �1�\ìK#

33

Note that 6�,b �7
e, ,b �g:N
e, b �;5Mb implies 6�, b �7
f, ,b �f�©ì , since "$#&�Cl�ì �;
�, b and 5]b'�;
e, ,b �©ì .
Therefore by lemma 6.26(�� [[~ rename �>6 , b æ�6�bAö&b��9�>�_bAö&b��XVk#k#k#iV rename �>6 , b æ�6�bAö � �9�>�_bAö � ���]] Î , �1��6 ,b �7
 , ,b ����ì(�� [[rename �>6 , b æ16�bAö&bX�9�>�_bAö&b����tÜkÜkÜD� rename �>6 , b æ16�bAö � �9�>��bAö � �]] Î , �1��6 ,b �7
 , ,b ����ì
Similarly(�� [[~ rename �>6 ,d æ�6 d�ö&b �9�>� d�ö&b �XVk#k#k#iV rename �>6 ,d æ�6 d�ö ÷ �9�>� d�ö ÷ ���]] Î , �1��6 ,d �7
 , ,d �1�\ì(�� [[rename �>6 ,d æ16�d�ö&bX�9�>��d�ö&b����tÜkÜkÜD� rename �>6 ,d æ16�d�ö ÷��9�>��d�ö ÷$�]] Î , �1��6 ,d �7
 , ,d �1�\ì
Since by hypothesis (1� [[Ê]] Î , ����ì , and since ÊCØnÙHÁ-Ê , , by lemma 6.20(�� [[Ê ,]] Î , �1��ìm#
Therefore, (�� [[sub �7Ê , �]] Î , �1��ì .

In addition, assume a variable appears ú times in Ê . Then it appears Ý times in Ê8b and õ times inÊfd such that ú^.aÝ$Q�õ . By induction, it appears Ý times in ÊO,b and õ times in ÊM,d , and therefore
it appears Ý'QJõ times in the final normal form.

The rest of this section is devoted to proving the validity of some of the axioms for a few examples.

Example 6.27 (Alphabet Algebra). The alphabet agent algebra " described in example 5.7 is a normaliz-
able agent algebra. Here we show that A23 is satisfied.

Lemma 6.28. " satisfies A23.

Proof: Let 5 ,
 and
 , be alphabets over " such that à¹�X"$#&�ml�
 , ��l�5�à�ñ©à
Nl�5�à . Let 6 , yê�7
Nl�58�¤Ì{�X"$#&�lm
e,��glm5 be any injection from
alm5 to "$#&�lK
',_l»5 . The injection exists because of
the assumption on the cardinality of the sets. Then define an injection 6'yo
\Ì{ø"$#&� as follows:6D�7�q�t. � 6�,>�7�H� if �Y�R
al}5ÕÏû?E1�7�q� otherwise

Then if) is an agent such that (��*)+�1��
 , and restricting the codomain of 6 to 6D�7
'� ,
proj �758�9�*)+��. 5\:<(��*)+�. 5L:z6D�7(1�*)+�A�. proj �758�9� rename �>6?�9�*)+�A�X#

Therefore A23 is satisfied.

Example 6.29 (IO Agent Algebra). The IO agent algebra " described in example 5.10 is normalizable.
Here we show that A25 is satisfied.

Lemma 6.30. " satisfies A25.

34

Proof: Let 5 be an alphabet and let)Fb and)-d be two agents such that (1�*)Fb��h:�(1�*)jd��e�5 . Assume
proj �75��9�*)gbf�-)-do� is defined. Then by definition �7Upb¤I�Ukdk��l��`Wnb�IRWed����;5 . We now show thatUcbB�a5 . Let Õt�RUcb be a signal. Then by definition Õ���»W]b . Assume Õf���W�d . Then ÕG�S�7UcbhIzUkd��gl�`WnbtIKWedo� and therefore Õ]�a5 . On the other hand, assume Õn�\W$d . Then ÕM�a(��*)gb��¤:�(1�*)-d�� .
Therefore Õn�a5 . Hence U�b8�T5 . Similarly, Uod<�T5 . Therefore proj �75��9�*)hbX�f� proj �758�9�*)-d�� is
defined. In addition

proj �758�9�*)�bB�P)-do�G.u�A�7UcbFI<Ukdo�Fl��`WnbFI�Wed��XV��`Wnb¤INWed���:<58�
proj �758�9�*)�b��1� proj �75��9�*)jd���.u�A�7Ucb¤IzUkd��hl��A�`W$b�I�Wed��2:<58�XV��`W$b�INWfd��g:<58�

Clearly�7U b I<U d �hl��`W b I�W d �1�C�7U b IzU d �hl��A�`W b I�W d ��:<58�X#
Let now ÕO�T�7Ucb1I�Ukd���l©�A�`Wnb�I}Wfd���:K5�� . Then either ÕO�LU�b or ÕO�\Ukd (or both). If ÕO�LU�b
then ÕM��JW b and Õ]���W d :�5 . If Õf�SW d , then Õe�=(��*) b �F:�(1�*) d � and therefore Õe�=5 . But thenÕG��Wedt:z5 , a contradiction. Hence Õe���W'd . Then Õ��}�7UcbFI<Ukdo�hl��`WnbFINWed�� . Similarly if Õt��U�d .
Therefore�7UcbFI<Ukd��hl��A�`Wnb¤I�Wfdo��:N5���.T�7UcbFI<Ukdo�Fla�`Wnb¤I�Wedo�
and

proj �758�9�*)�bB�P)-do�G. proj �758�9�*)�b���� proj �758�9�*)jd��X#
Assume now proj �758�9�*)gbt�p)-do� is not defined. Then there exists Õt�=�7Upb+I�Ukd��jlS�`Wnb+IYWfdo� such

that Õz��\5 . But then either Õ��\U�b or ÕO�LUkd , and therefore either U�bR�� 5 or Ukd}�� 5 . Hence
either proj �75��9�*) b � or proj �75��9�*) d � (or both) is undefined. Therefore proj �758�9�*) b ��� proj �75��9�*) d �
is undefined.

Example 6.31 (Dill’s IO Agent Algebra). The Dill’s style IO agent algebra " described in example 5.13
is not normalizable. In fact, it does not satisfy A18. The IO agent algebra described in example 6.29 is
a generalization of " that is normalizable.

However, Dill’s style IO agent algebra is closed-normalizable, as described in [8]. It is also alpha-
normalizable when the variable is restricted to assuming always the same value. If the algebra is used
in isolation, this is obviously too restrictive for alpha-normalization to be of interest. However this is a
useful property when used together with an appropriate behavior model for which alpha-normalization
is non-trivial.

7 Conformance

Let) and)P, be two agents in an ordered agent algebra. Intuitively, if we interpret the order as refinement,
if);´u)-, then) can be substituted for)+, in every context in which)j, occurs. If this is the case we say
that) conforms to) , . In this section we make this notion of substitutability precise. In our formalization,
conformance is parameterized by a set of agents ü , called a conformance set, and we only require that for)
to conform to) , ,) can be substituted for) , for all contexts that evaluate in ü . Intuitively, the set ü identifies
the set of contexts that “make sense” for a certain agent. The remaining contexts, which are of no interest
for substitutability, are therefore ignored.

35

Conformance can be made more general by explicitly considering only a subset of the possible contexts.
We call this notion relative conformance. In this section we will study these generalizations, and show the
conditions under which relative conformance corresponds to conformance. We are particularly interested in
composition contexts, also called environments, which are limited to the parallel composition with a single
agent. Composition contexts will be the basis for studying mirror functions in the next section.

The concept of the context of an agent in a system plays a central role in the definition of conformance.
It can be formalized using agent expressions.

Definition 7.1 (Expression Context). An expression context ÊYÐ ý Ñ is an expression with one free variable.

An expression context may or may not be defined depending on the agent that replaces the free variable.
However, the property of ± -monotonicity of the operators of an ordered agent algebra transfers to expression
contexts, as well.

Theorem 7.2. Let " be an ordered agent algebra and);�¾"'#%	 and)�,���"'#%	 be two agents such that)R´K) , . For all expression contexts ÊYÐ ý Ñ , if ÊzÐ) , Ñ is defined then ÊYÐ) Ñ is also defined and ÊzÐ) Ñ ´aÊYÐ) , Ñ .
Proof: The proof is by induction on the structure of the expression context.

• If ÊYÐ ý Ñ .\« or ÊYÐ ý Ñ .�ý then the result follows directly from the hypothesis.

• Let ÊzÐ ý Ñ . rename �>6?�9�7ÊM,ÏÐ ý Ñ � and assume ÊYÐ)-, Ñ is defined. Then also Ê],�Ð)P, Ñ is defined. By
induction hypothesis Ê , Ð) Ñ is defined and Ê , Ð) Ñ ´ Ê , Ð) , Ñ . Since rename �>6?�9�7Ê , Ð) , Ñ � is de-
fined and rename is ± -monotonic, then rename �>6?�9�7ÊO,`Ð) Ñ � is defined and rename �>6p�9�7Ê�,�Ð) Ñ ��´
rename �>6?�9�7Ê , Ð) , Ñ � .

• Let ÊzÐ ý Ñ . proj �758�9�7ÊM,`Ð ý Ñ � and assume ÊYÐ)j, Ñ is defined. Then also Ê],`Ð)P, Ñ is defined. By induction
hypothesis Ê , Ð) Ñ is defined and Ê , Ð) Ñ ´CÊ , Ð) , Ñ . Since proj �758�9�7Ê , Ð) , Ñ � is defined and proj is ± -
monotonic, then proj �758�9�7Ê],`Ð) Ñ � is defined and proj �758�9�7Ê],`Ð) Ñ �1´ proj �758�9�7ÊM,`Ð)P, Ñ � .

• Let ÊYÐ ý Ñ .CÊnb�Ð ý Ñ �FÊfd�Ð ý Ñ and assume ÊzÐ) , Ñ is defined. Then also Ê]biÐ) , Ñ and ÊedpÐ) , Ñ are defined.
By induction hypothesis Ê]b�Ð) Ñ is defined and ÊMbiÐ) Ñ ´�Ênb�Ð)P, Ñ . Similarly, Ê�d�Ð) Ñ is defined andÊfd�Ð) Ñ ´�Êfd�Ð) , Ñ . Since Ênb�Ð) , Ñ �gÊfd�Ð) , Ñ is defined and � is ± -monotonic, then Ê�b�Ð) Ñ �2ÊedpÐ) , Ñ is also
defined and ÊMbiÐ) Ñ �pÊfd?Ð)P, Ñ ´aÊnb�Ð)P, Ñ �pÊed?Ð)P, Ñ . Similarly we conclude ÊMbiÐ) Ñ �pÊed?Ð) Ñ ´aÊnb�Ð) Ñ ��Êed?Ð)P, Ñ
and therefore since ´ is transitive Ê b Ð) Ñ �hÊ d Ð) Ñ ´aÊ b Ð)P, Ñ �hÊ d Ð)P, Ñ .

An ordered agent algebra " has a conformance order parameterized by a set of agents ü when the order
corresponds to substitutability in the following sense.

Definition 7.3 (Conformance Order). Let " be an ordered agent algebra and let ü be a set of agents of" . We say " has a ü -conformance order if and only if for all agents) and) , ,)�´m) , if and only if for
all expression contexts Ê , if ÊYÐ)+, Ñ ��ü then ÊzÐ) Ñ ��ü .

The implication in this definition is strong in the sense that if ÊzÐ)g, Ñ �»ü , then ÊzÐ) Ñ must be defined (and
be a member of ü).

Each set of agents ü induces a particular order, whether or not the algebra has a ü -conformance order.

Definition 7.4. Let " be an agent algebra and let ü be a set of agents of " . We define "$# conf �`üM� to be the
agent algebra that is identical to " except that it has a ü -conformance order.

36

We denote the order of "'# conf �`üM� with the symbol ´nþ and we say that ü induces the order ´$þ . In the
rest of this section we will study some of the properties of "$# conf �`üM� . In particular we are interested in
characterizing when "$# conf �`ü]� is an ordered agent algebra (i.e. the operators of projection, renaming and
parallel composition are ± -monotonic) and when " has a ü -conformance order,

Lemma 7.5. Let " be an ordered agent algebra and let ü be a subset of "'#%	 . Consider the agent algebras"$# conf �`ü]� and "'# conf �7	N� . Then "$# conf �`ü]� is an ordered agent algebra if and only if for all agents) and) , ,)�´eþs) , ®)�´eÿ�) , #
Proof: To show that "$# conf �`üM� is an ordered agent algebra, we need only show that its renaming, projec-

tion and parallel composition operators are ± -monotonic relative to its agent ordering. We prove the
projection case (the others are similar).

Let) and)-, be two agents such that)�´ þ)P, . We must show that if proj �758�9�*)j,4� is defined, then
proj �758�9�*)+� is defined, and proj �75��9�*)2�1´'þ proj �758�9�*) , � .

Since)R´eþs)P, , by hypothesis,)R´�ÿ�)P, . Therefore, by definition 7.3, for all expression contexts Ê , ifÊzÐ) , Ñ ��	 then ÊYÐ) Ñ �R	 . That is, if ÊzÐ) , Ñ is defined, then ÊYÐ) Ñ is defined. Hence, if ÊC. proj �758�9�>ýF� ,
if proj �758�9�*)P,º� is defined then proj �758�9�*)+� is defined.

Let now ÊYÐ ý Ñ be an expression context. We want to show that if ÊYÐ proj �75��9�*) , � Ñ �0ü , thenÊzÐ proj �758�9�*)+� Ñ ��ü . By lemma 6.8ÊYÐ proj �758�9�*) , � Ñ .�ÊYÐ proj �758�9�>ý , �9Ð) , Ñ�Ñ .LÊYÐ ýFÖ proj �758�9�>ýF� Ñ Ð) , Ñ #
Let now ÊM,P.\ÊYÐ ý¤Ö proj �758�9�>ýF� Ñ . ThenÊYÐ proj �758�9�*) , � Ñ �Rü® Ê , Ð) , Ñ ��ü® Ê , Ð) Ñ ��ü® ÊzÐ proj �75��9�*)2� Ñ ��ü
Therefore, by definition 7.3

proj �75��9�*)2�1´eþ proj �758�9�*) , �X#
Hence, the projection operator is ± -monotonic relative to ´Mþ .

Conversely, assume the operators are ± -monotonic relative to ´]þ and let) and)-, be two agents
such that)�´�þs) , . Then, by theorem 7.2, for all expression contexts Ê , if ÊYÐ) , Ñ is defined, then ÊzÐ) Ñ is
defined. Hence, if ÊYÐ)j, Ñ ��	 , then ÊYÐ) Ñ ��	 . Therefore, by definition 7.3,)�´nÿ�)P, .

Corollary 7.6. Let " be an ordered agent algebra. Then "$# conf �7	<� is an ordered agent algebra.

Although ü can be any arbitrary set of agents, ü must be downward closed relative to "$#-´ in order for" to have a ü -conformance order.

Theorem 7.7. Let " be an agent algebra and let ü be a set of agents. Then ü is downward closed relative
to ´eþ .

37

Proof: Let)j,��}ü and let)K´�þ<)-, . Consider the expression context Ê@.ý . Then clearly ÊYÐ)�, Ñ �}ü . But
then, by definition 7.3, since)�´$þs) , , also ÊYÐ) Ñ .=)���ü . Therefore ü is downward closed.

Corollary 7.8. Let " be an ordered agent algebra. If " has a ü -conformance order, then ü is downward
closed relative to "'#P´ .

In the following we will explore the relationships between the order of " and the orders induced by
various conformance sets.

Theorem 7.9. Let " be an ordered agent algebra and let ü be a downward closed set of agents. Then)�´a« ®)�´�þR«_#
Proof: Since)»´�« and the operators are ± -monotonic, then by theorem 7.2 for all expression contexts Ê ,

if ÊzÐ « Ñ is defined then ÊzÐ) Ñ is defined. In addition, ÊYÐ) Ñ ´©ÊYÐ « Ñ . Assume now that ÊzÐ « Ñ ��ü . Then,
since ü is downward closed, also ÊYÐ) Ñ ��ü . Therefore)R´nþ�« .

Notice that if ü is downward closed, then the forward implication in definition 7.3 follows from theo-
rem 7.9. If " has a ü -conformance order then the order is weak enough to ensure that the reverse implication
also holds.

Corollary 7.10. If " has a ü -conformance order, then " and "$# conf �`ü]� are identical agent algebras.

The set of all agents 	 plays a special role, since it is always downward closed, no matter what order the
agent algebra may have, and the order it induces always makes the operators ± -monotonic. The following
theorem shows that given an agent algebra " , the ordered agent algebra "$# conf �7	N� has the weakest order
that makes the operators ± -monotonic.

Corollary 7.11. Let " be an ordered agent algebra. Then)�´a« ®)�´�ÿ=«_#
Proof: The result follows from theorem 7.9, since 	 is always downward closed.

Since the discrete order (i.e. the order such that)\´©) , if and only if)�.µ) ,) also makes the operator± -monotonic, any order of an ordered agent algebra is bounded by the discrete order and by ´ ÿ .
The following results show that if " has the weakest conformance order (i.e. "�.@"$# conf �7	N�), then any

downward closed set of agents characterizes the order.

Corollary 7.12. Let " be an ordered agent algebra and let ü be a downward closed set of agents such that"�.@"$# conf �`ü]� . Then)�´eþ�« ®)�´eÿS«_#
Proof: Since " is an ordered agent algebra, and "¿.�"$# conf �`üM� , also "$# conf �`üM� is an ordered agent

algebra. Then the result follows from corollary 7.11.

Corollary 7.13. Let " be an ordered agent algebra such that "u.^"$# conf �7	<� , and let ü be a downward
closed set of agents such that "'# conf �`üM� is an ordered agent algebra. Then "a.r"'# conf �`üM� .

38

Proof: Let) and)-, be two agents such that)u´Z)j, . The proof is composed of the following series of
implications.)�´K) ,

by theorem 7.9®)�´�þ8) ,
by corollary 7.12®)�´�ÿ�) ,
since "�.@"$# conf �7	<�®)�´m) ,

These results show that, in general, an ordered agent algebra " can be characterized by several confor-
mance sets. The particular choice of ü influences the complexity of verifying the conformance relation, as
we will see in the next few sections when we introduce relative conformance and mirror functions.

Note also that "$# conf �`üM� is not necessarily an agent algebra, in the sense that the operators may not be± -monotonic relative to the agent ordering, even if they are ± -monotonic relative to the original ordering
(see lemma 7.5). This is in practice not a problem, since we typically start from an ordered agent algebra,
and then characterize its order in terms of a conformance set. In that case, since "�.¶"$# conf �`ü]� , also"$# conf �`üM� is an ordered agent algebra.

7.1 Relative Conformance

In definition 7.3, conformance is defined in terms of all expression contexts. More in general, we can define
conformance relative to a set of contexts.

Definition 7.14 (Relative Conformance). Let " be an agent algebra and let ü be a set of agents of " . We
say " has a ü -conformance order relative to a set of contexts É�, if and only if for all agents) and)+, ,)R´K) , if and only if for all expression contexts ÊZ��É , , if ÊzÐ) , Ñ ��ü then ÊYÐ) Ñ �»ü .

A particularly interesting subset of contexts is the set of environments that consist of a parallel composi-
tion with an arbitrary agent.

Definition 7.15 (Composition Conformance). Let " be an agent algebra and let ü be a set of agents of" . We say " has a ü -conformance order relative to composition if and only if for all agents) and)F, ,)R´K) , if and only if for all agents « , if) , �g«���ü then)��g«]�»ü .

As with conformance, we define "$# conf �`ü�VAÉF,4� to be the agent algebra that is identical to " except that
it has a ü -conformance order relative to É , . We denote the order of "$# conf �`üOVAÉ , � with the symbol ´�� Áþ . In
particular, "$# conf �`üOV���� and ´ �þ denote ü -conformance relative to composition.

Unlike conformance, "$# conf �`üOVAÉ , � is not necessarily an ordered agent algebra even if)�´�� Áþ) , ®)�´�� Áÿ)P, , since the operators of the algebra may not be ± -monotonic (cfr. lemma 7.5). In addition, if " has aü -conformance order relative to ÉF, , then ü is not necessarily downward closed (cfr. corollary 7.8).
Conformance implies relative conformance in the following sense.

39

Lemma 7.16. Let " be an agent algebra and let É¤, be a set of contexts. Then for all agents) and)2,)�´eþs) , ®)�´ � Áþ) , #
Proof: Definition 7.14 is verified since the condition is by hypothesis true of all contexts.

In particular, if)�´ þ)P, , then)�´ �þ)P, .
Despite the above result, if " is an ordered agent algebra and É , is a set of contexts, "r.0"$# conf �`ü]�

does not necessarily imply "¿.¶"$# conf �`ü�VAÉF,º� . This is because the reverse implication above does not
hold. However, if " has a ü -conformance order relative to some set of contexts É , and ü is downward
closed, then it also has a ü -conformance order.

Theorem 7.17. Let " be an ordered agent algebra, É¤, be a set of contexts and let ü be a downward closed
set of agents. Assume for all agents) and) , ,)�´ �þ) , ®)�´K) , #
Then "�.@"$# conf �`üOVAÉg,º��.@"$# conf �`ü]� .

Proof: We must show that for all agents) and)2, ,)�´K)-, if and only if)R´'þs)P, if and only if)�´ �þ)P, . The
result follows from the following circle of implications:)�´K) ,

by theorem 7.9, since ü is downward closed®)�´�þ8) ,
by lemma 7.16®)�´ � Áþ) ,
by hypothesis®)�´m) , #

Corollary 7.18. Let " be an ordered agent algebra, É¤, be a set of contexts and ü a downward closed set of
agents such that "�.r"'# conf �`ü�VAÉh,º� . Then "�.@"$# conf �`ü]� .

Proof: The result follows from theorem 7.17, since by hypothesis)R´�� Áþ) , ®)�´eþs) , .
In particular, if " has a ü -conformance order relative to composition and ü is downward closed, then

it has a ü -conformance order. In the examples that follow we will try to show, when possible, that con-
formance relative to composition corresponds exactly to conformance. When that is the case, it may be
possible to find efficient ways to check the conformance relation, as we shall see in section 8.

Example 7.19 (Alphabet Algebra). Consider the agent algebra " described in example 5.7, with the or-
der such that)a´) , if and only if)��) , . This order is the weakest order that makes the operators± -monotonic, hence "@.Ä"'# conf �7	N� . However, 	 does not characterize the order in terms of con-
formance relative to composition. Instead, conformance relative to composition induces the order such
that every agent refines any other agent.

Theorem 7.20. For all agents) and) , ,)�´ �ÿ) , .
40

Proof: The result follows from the fact that the conformance set in this case is the set of all agents 	 ,
and � is always defined. Therefore the condition in definition 7.15 is always satisfied.

In order to characterize the order in terms of conformance relative to composition we must consider
the set ü©.Lw ¥ lm� , i.e. the set of all subsets of � except � itself. Then

Theorem 7.21. Let) and)j, be two agents. Then the following statements are equivalent:

1.)��K) , .
2.)�´eþY)-, .
3.)�´ �þ)-, .

Proof: We already know that Ó ® w (by theorem 7.9, since ü is downward closed) and that w ®�� (by
lemma 7.16). The remaining implication is proved below.

Lemma 7.22. � �S® Ó�� : Let) and) , be agents such that for all agents « , if) , ��«��µü then)��h«���ü . Then)��m)P, .
Proof: Let) and) , be agents such that for all agents « , if) , �t«»�\ü then)K�t«K�\ü . By the

definition of ü , for all agents « , if)+,H��«z�.�� (i.e.)-,H��«]�»ü), then)<�+«<�.\� . Assume now,
by contradiction, that �z��) and �R���)+, . Consider «n.��ClN) . Then) , �g«n.=) , I<«n.=) , I»�>�ClN)+�X#
Since �����) , and ����S�ul�) (because �»��)), then �����) , �¤« . Thus) , �G«»�.T� . Thus, by
hypothesis, also)N�h«z�.�� . However)��h«n.=)OI<«n.=)OI»�>�µlN)2��.��YV
a contradiction. Thus)��K)j, .

This is the only ü that characterizes the order in terms of conformance relative to composition. In
fact it is easy to show that for all �Y��� , the set �Llm~��P� must be in ü . Then, to characterize the order,ü must be downward closed. Thus ü©.Lwp¥mlm� .

Example 7.23 (IO Agent Algebra). Consider the IO agent algebra " defined in example 3.5 with the
order defined in example 5.10. We now characterize the order in terms of conformance. Let ü/.~��7UPVXWM�BypU�.L[_� be the conformance set that contains all agents that have no inputs. Then

Theorem 7.24. Let) and)j, be IO agents. Then the following three statements are equivalent:

1.)�´K)-, (i.e. UY�aU?, and W©.;W$,).
2.)�´eþY)-, .
3.)�´ �þ)-, .

41

Proof: First we show that ü is downward closed, then that)J´ �þ)-, implies)�´�)-, . The result then
follows from theorem 7.17.

Lemma 7.25. ü is downward closed with respect to ´ .

Proof: Let)-,��aü . Then)-, is of the form ��[_VXWn,º� for some alphabet Wn, . Let)S.��7UPVXWM� be an
agent such that)\´) , . Then, by the definition of the order, U=� [, and therefore U}.ª[.
Hence)R��ü . Therefore ü is downward closed.

Lemma 7.26. � �N® Ó�� : Let) and) , be IO agents such that for all agents « , if) , �G«��aü then)��h«���ü . Then Us�aU?, and W©.;W$, .
Proof: We prove the result in steps.

(Wu�\W',) Assume, by contradiction, that there exists ½��CW such that ½\��CWO, . Consider«a.Í�`W',>V¬Up,2Ia~�½��c� . Then)-,t�B« is defined because Wn,+:��7U?,2I�~�½��c�R.£[since by
hypothesis W , :OU , .L[and ½z���W , . In addition) , �j«���ü . But then by hypothesis)Y�-«
is defined and)��g«���ü . However ~�½?�]��Wa:K�7U_,?I�~�½?�c� , hence W�:m�7U?,pI�~�½��c�$�.L[, a
contradiction.

(W',+��W) Assume, by contradiction, that there exists ½��CW�, such that ½���CW . Consider«».0�`W , V¬U , � . By hypothesis ½���LU , . Clearly) , �t« is defined and) , �t«}�ü , so by
hypothesis also)��g«���ü is defined and)��h«���ü . However)��h«n.u�A�7U$I�W , �hl��`W�IzU , �XVXW�IzU , �
However, since ½��=�7U'I�W$,4� and ½z��=�`WaINUp,º� ,)��h«z���ü , a contradiction.

(Us��U ,) Assume, by contradiction, that there exists Õ$��U such that Õ���JU , . By hypothesis
we also have Õe��mW . Consider «�.Z�`WM,çV¬U?,4� . Clearly)-,-�¤« is defined and)j,P�¤«��»ü , so
by hypothesis also)��h«���ü is defined and)��g«���ü . However)��h«n.u�A�7U$I�W , �hl��`W�IzU , �XVXW�IzU , �
However, since ÕG�=�7U$I�Wn,�� and Õe��}�`W�INUp,4� ,)��g«<��Rü , a contradiction.

Let us now consider the set of agents ü0.�"$#%	 that consists of all agents. Then an expression
evaluates in ü if and only if the expression is defined. The following two theorems show that 	 still
characterizes the order in terms of conformance, but it does not characterize the order in terms of
conformance relative to composition.

Theorem 7.27. Let) and)j, be IO agents. Then)�´K)j, if and only if)�´�ÿ�)P, .
Proof: The forward implication follows from theorem 7.9 since 	 is downward closed.

For the reverse implication, let)}.¼�7UPVXWM� and)+,h.ª�7Up,7VXW$,4� be IO agents such that)S´'ÿ�)P, .
Then for all expression contexts Ê , if ÊYÐ)2, Ñ is defined, then ÊYÐ) Ñ is defined.

42

(U8�aU?,) Consider the context Êù. proj �7U_,4�9�>ý¤� . Then ÊYÐ)-, Ñ . proj �7U?,��9�*)P,º� is defined sinceU , �aU , . Then also ÊzÐ) Ñ . proj �7U , �9�*)+� must be defined. Therefore U8��U , .
(Wµ��W$,) Assume by contradiction that there exists ½Y�}W such that ½���=W�, . Consider the agent«M.u��[_V9~�½��c� and the context Êu.�ýR�+« . Then, since W , :N~�½?�$.L[, ÊYÐ) , Ñ .}) , �j« is defined.

Therefore also ÊYÐ) Ñ .S)��F« must be defined. But then W�:R~�½��$.[, a contradiction. HenceWT��W', .
(W',j��W) Assume by contradiction that there exists ½Y�}W], such that ½R��}W . Consider the agent«R.Ä� ~�½?�pV�[p� and the context Ê§. proj �7U_,��9�>ýa�t«�� . Then, since U�,D:KW$,t.¾[and ½»�\W$, ,) , �g«n.u�A�7U , I�~�½��c�Fl=W , VXW , �G.T�7U , VXW , � . Therefore, since U , �aU , , ÊYÐ) , Ñ . proj �7U , �9�*) , �g«p�

is defined. Therefore also ÊYÐ) Ñ . proj �7U_,4�9�*)��H«p� must be defined. However, since Ut:OW.L[
and ½}���W ,)»�¤«<.¼�A�7U]Im~�½��c��laWOVXW]�e.ª�7U]Im~�½��pVXWM� . In addition, UMIK~�½��K��µU , , since½O��W$, implies ½<���U�, , since U?,Ï:eW',D.L[. Hence proj �7U�,��9�*)e�i«p� is not defined, a contradiction.
Therefore Wn,-�\W .

Theorem 7.28. Let)<.µ�7UPVXWM� and)j,P.u�7U?,çVXW$,º� be IO agents. Then)�´ �ÿ)-, if and only if WT��Wn, .
Proof: For the forward direction, assume)�´ �ÿ) , . Then for all agents « , if) , �h« is defined, then also)m��« is defined. Assume by contradiction that there exists ½}�W such that ½���WO, . Consider

the agent «Y.ª��[_V9~�½��c� . Then, since Wn,_:m~�½��8.@[,)P,2�G« is defined. Therefore, by definition of
conformance, also)��g« must be defined. But then W�:R~�½��'.L[, a contradiction. Hence Wµ��W , .

For the reverse direction, assume W¼�µW], , and let «s.¼�7UoÀcVXWeÀ9� be such that)j,2�¤« is defined.
Then W , :NWeÀB.;[. Since Wu��W , , also Wa:�W�À�.;[. Therefore)��g« is defined.

As expected, the order induced by 	 relative to composition does not make the operators ± -
monotonic. The above results also confirm that ´ is the weakest order such that the operators are± -monotonic.

Example 7.29 (Dill’s IO Agent Algebra). Consider Dill’s IO agent algebra " defined in example 3.6 and
example 5.13. The algebra is an ordered agent algebra if and only if)�´;) , corresponds to)�.C) , .
Hence the only possible order is also the weakest possible order. Therefore "�.@"$# conf �7	N� .

It is difficult however to characterize the order with conformance relative to composition. The
following theorems characterize the conformance orders relative to composition induced by several
conformance sets, and show that they do not correspond to the algebra’s order.

Theorem 7.30. Let ü|.£~��7UPVXWM�1y?UO.L[_� and let)C.��7UDVXW]� and)+,'.��7U?,>VXW$,�� be agents. Then)�´ �þ)P, if and only if UY�aU?, and W.W', .
Proof: The proof is the same as lemma 7.26.

Theorem 7.31. Let üC.	 and let)�.Z�7UPVXWM� and) , .@�7U , VXW , � be agents. Then)»´ �ÿ) , if and only
if Wu��W', .

Proof: The proof is the same as theorem 7.28.

43

Theorem 7.32. Let üµ.u~���[_V�"$#&���9� and let)�.@�7UDVXW]� and)+,-.@�7Up,7VXW',4� be agents. Then)�´ �þ)-, if
and only if W.W$, .

Proof: For the forward direction, assume)T´ �þ)P, . Consider the agent «�.��`WM,çVA�¾lW$,�� . Then) , �G«z.���[_VA�8�M��ü . Hence also)»�G« must be defined, and therefore WL:=�>�@laW , �'.@[. But
then WT�\W$, . In addition)��F«O��ü , and therefore W�IK�>�µlSWM,���.\� . But then WTÂ\W$, . HenceW.;W , .

For the reverse direction, assume W .�W], . Let «<.ª�7UoÀ�VXWeÀo� be an agent. If)-,g�¤« is defined,
then W',�:�W À .µ[. But then also W\:�W À .µ[, and therefore also)R�¤« is defined. In addition, if) , �j«���ü then it must be W , :YWeÀB.;[(for the composition to be defined) and W , IYWfÀ�.�� , and
therefore W À .\�©lSW$, . Hence also)��g«O�Rü . Therefore)�´ �þ)P, .

Example 7.33 (Typed IO Agent Algebra). Consider the Typed IO agent algebra " defined in example 3.7
with the order defined in example 5.15. We would now like to characterize the order in terms of a
conformance set. This can be done if we choose ü to be the set of agents) such that inputs �*)+��.L[.
Theorem 7.34. Let) and)j, be Typed IO agents. Then the following three statements are equivalent:

1.)�´K) , .
2.)�´eþY)-, .
3.)�´ �þ)-, .

Proof: We already know that Ó ® w (by theorem 7.9, since ü is downward closed) and that w ®�� (by
lemma 7.16). The remaining implication is proved below.

Lemma 7.35. (��® Ó): Let) and) , be agents such that for all agents « , if) , �B«��Tü then)��h«���ü . Then)�´m)P, .
Proof: It is easy to adapt the proof of lemma 7.26 to show that inputs �*)+�$� inputs �*) , � and that

outputs �*)+�t. outputs �*)j,4� . To prove the rest of the theorem, let «n.L��À be the agent such that
for all �Y�J"$#&�

� À �7�H�G. �� � �7�k�1VA�H� if �j,>�7�H�G.u�7�9��VA�H��7� � VA�H� if �j,>�7�H�G.u�7� � VA�q��o� otherwise

so that inputs �7«���. outputs �*)+,�� and outputs �7«p�1. inputs �*)j,º� . Then clearly)j,+�F« is defined,
and by definition of � ,) , �+«]�»ü . Thus, by hypothesis, also)Y�+«]�»ü . Let now �Y�J"$#&� . If�z� inputs �*)+� , then �s� inputs �*)j,�� and �Y� outputs �7«�� . Since)$�p« is defined, then �?À��7�q�X#&�z����7�H�X#&� , and thus �+,>�7�H�X#&�m�µ���7�H�X#&� . Similarly, if �»� outputs �*)+� , then �K� outputs �*)2,4� and�S� inputs �7«p� . Since)K�t« is defined, then ���7�H�X#&�=�r�pÀc�7�q�X#&� , and thus ���7�q�X#&�=�@� , �7�H�X#&� .
Thus)�´K)-, .

44

8 Mirrors

In this section we address the problem of checking in an ordered agent algebra whether two agents are
related by the order. If the algebra has a ü -conformance order, then the problem reduces to verifying the
condition for conformance. This problem however is rather expensive, since it requires considering all
possible contexts. When conformance corresponds to conformance relative to composition then we need
only check contexts that consist of parallel compositions with other agents. We define an environment of an
agent to be a composition context. In this section we show how, in certain cases, it is possible to construct
for each agent a single environment that determines the order. We call this environment the mirror of an
agent.

Definition 8.1 (Mirror Function). Let " be an ordered agent algebra and let ü be a downward closed set
of agents of " . Then, " has a mirror function relative to ü if and only if

1. "'#mirror (which we may simply write as “mirror” when there is no ambiguity about what agent
algebra is being considered) is a partial function from 	 to 	 ,

2. mirror �*)+� is defined if and only if there exists « such that)N�h«���ü ,

3.)�´K)P, if and only if either mirror �*)j,º� is undefined or)�� mirror �*)+,4���»ü .

When an ordered agent algebra " has a mirror function relative to some set of agents ü , then we can
verify that)µ´Z)-, by simply looking at the composition)=� mirror �*)2,�� . We assume that computing the
mirror, the composition and verifying the membership in ü is computationally less expensive than checking
that)R´K) , directly.

In the rest of this section we will explore the consequences of having a mirror function. Later, we will
explore necessary and sufficient conditions for an ordered agent algebra to have a mirror function.

Lemma 8.2. Let " be an ordered agent algebra with a mirror function relative to ü . For all agents) , if
mirror �*)+� is defined, then)�� mirror �*)+����ü .

Proof: Since ´ is reflexive,)�´K) . By definition 8.1, this implies mirror �*)+� is undefined or)�� mirror �*)+���ü .

Theorem 8.3. Let " be an ordered agent algebra with a mirror function relative to ü . For all agents) , if
mirror �*)+� is defined, then mirror d �*)+� is also defined.

Proof: Assume mirror �*)2� is defined. By lemma 8.2,)�� mirror �*)+�f�Kü . This implies that there exists a)F,
(namely)) such that)j,H� mirror �*)+�1�»ü . By definition 8.1, this implies that mirror d �*)+� is defined.

Corollary 8.4. Let " be an ordered agent algebra with a mirror function relative to ü . For all agents) , if
mirror �*)+� is defined, then mirror � �*)2� is also defined, for any positive integer � .

Proof: By induction on � .

Lemma 8.5. Let " be an ordered agent algebra with a mirror function relative to ü . Let)��F«��Kü and let) , ´a« . Then)��D) , �»ü .

Proof: By hypothesis)»��« is defined and) , ´C« . Then, since parallel composition is ± -monotonic, also)��H)P, is defined and)��H)-,+´K)��g« . Therefore, since ü is downward closed,)��D)2,j��ü .

45

Lemma 8.6. Let " be an ordered agent algebra with a mirror function relative to ü . Let) and « be agents
such that mirror �*)+� and mirror �7«p� are both defined. Then,

mirror �*)+�1´�« mirror �7«���´K)g#
Proof: The proof is composed of the following series of double implications:

mirror �*)+�1´�«
by definition 8.1, since mirror �7«p� is defined mirror �*)2�t� mirror �7«p�1��ü
since � is commutative by A7 mirror �7«p��� mirror �*)2�1��ü
by definition 8.1 mirror �7«p�1´m)

The term mirror is justified by the following result.

Theorem 8.7. Let " be an ordered agent algebra with a mirror function relative to ü . Let) be an agent and
assume mirror �*)+� is defined. Then mirror d �*)+� is defined and)<¸ mirror d �*)+�X#

Proof: It follows from corollary 8.4 that mirror d �*)+� is defined and mirror �p�*)+� is defined. By definition 5.3,
it is sufficient to show that mirror d �*)+��´m) and)�´ mirror d �*)+� .
Lemma 8.8. mirror d �*)+�1´K) .

Proof: mirror �*)+�1´ mirror �*)+� , since ´ is reflexive. Thus, by lemma 8.6, mirror d �*)+�1´m) .

Lemma 8.9.)�´ mirror d �*)+� .
Proof:)�´K) , since ´ is reflexive. We complete the proof with the following chain of implications.)�´K)

by definition 8.1, since mirror �*)+� is defined)�� mirror �*)+�1�»ü
by lemma 8.8 and lemma 8.5®)�� mirror � �*)+����ü
by definition 8.1)R´ mirror d �*)+�X#

46

Theorem 8.10. Let " be an ordered agent algebra with a mirror function relative to ü . Let) and « be
agents such that mirror �*)+� and mirror �7«p� are defined. Then,)�´a« mirror �7«p�1´ mirror �*)+�X#

Proof: By corollary 8.4 we know that mirror d �7«p� is defined. By applying lemma 8.6 to « and mirror �*)+� , we
get

mirror �7«p�1´ mirror �*)+� mirror d �*)+�1´a«_#
By theorem 8.7, we know that «$¸ mirror d �7«p� . Thus

mirror d �*)2�1´a« «�´K)gV
which implies the desired result.

Since mirrors reduce the problem of verifying conformance to a single composition environment, it is not
surprising that their existence is related to ü -conformance relative to composition. In fact, the mirror of
an agent has an exact characterization in terms of the ü -conformance order relative to composition and the
greatest element of a certain set of agents.

Let ü be a conformance set and let) and « be agents. If)}�1«m�ü then we say that « is compatible
(or ü -compatible if we want to emphasize the conformance set) with) . We call the set of agents that are
compatible with) the compatibility set of) .

Definition 8.11 (Compatibility Set). Let " be an ordered agent algebra and ü a downward closed set of
agents. The ü -compatibility set of an agent) , written cmp �*)+� , is defined as follows:

cmp �*)+�G.C~�«]yo)��g«���ü��
The compatibility set gets larger as the agents are more refined according to the order of the algebra, as

shown in the next theorem.

Lemma 8.12. Let " be an ordered agent algebra and ü a downward closed set of agents. Let) and)F, be
agents such that)R´K) , . Then

cmp �*) , �1� cmp �*)+�X#
Proof: We show that if «a� cmp �*) , � , then «�� cmp �*)+� . The proof consists of the following series of

implications.«�� cmp �*) , �
by definition 8.11) , �g«O�Rü
since � is ± -monotonic and)�´K)+,®)��g«�´K) , �h«
since ü is downward closed®)��g«���ü
by definition 8.11 «�� cmp �*)2�X#

47

When an agent algebra has a ü -conformance order relative to composition, the order is determined by the
compatibility set of each agent.

Lemma 8.13. Let " be an ordered agent algebra with a ü -conformance order relative to composition. Then
for all agents) and)j, ,)�´K) ,)�� cmp �*) , �1��ü�V
where � has been naturally extended to sets.

Proof: The result follows directly from definition 7.15.

Since the operators of an ordered agent algebra are ± -monotonic, the maximal elements of the compati-
bility set are sufficient to completely determine the order.

Lemma 8.14. Let " be an ordered agent algebra with a ü -conformance order relative to composition. Then
for all agents) and)j, ,)�´K) , for all « such that « is maximal in cmp �*)+�9V7)��h«���üO#

Proof: The forward implication is simply a special case of lemma 8.13.
For the reverse implication, let «]� cmp �*) , � be an agent. Then there exists « , � cmp �*) , � such that « ,

is maximal and «�´\«�, . By hypothesis,)��¤«�,2�»ü . Note that ü is downward closed, since " has a ü -
conformance order relative to composition. Hence, since � is ± -monotonic and ü is downward closed,
also)��h«���ü . Therefore)�� cmp �*)j,4�1��ü . The desired result then follows from lemma 8.13.

We often denote the set of maximal elements of cmp �*)+� as maxcmp �*)+� .
Lemma 8.14 suggests that the mirror of an agent should be found among the maximal elements of the

compatibility set. In fact, since the mirror alone is sufficient to determine the order, it suggests that the
mirror should be the greatest element of the compatibility set. In the following we will make the relationship
between the mirror and the compatibility set more precise.

Theorem 8.15. Let " be an ordered agent algebra with a mirror function relative to ü . If)��¤«s�=ü , then«�´ mirror �*)+� .
Proof: The proof is composed of the following implications:)��g«���ü

by definition 8.1 mirror �*)2� is defined

by lemma 8.8® mirror d �*)+�1´K)
by lemma 8.5® mirror d �*)+���h«��Rü
by definition 3.1 (commutativity) «]� mirror d �*)+�1�Rü
by definition 8.1 «�´ mirror �*)2�

48

When an agent algebra has a mirror function relative to a set ü , then it has a ü -conformance order relative
to composition and a ü -conformance order, as shown by the next results.

Theorem 8.16. Let " be an ordered agent algebra and let ü be a downward closed set of agents. If " has
a mirror function relative to ü , then " has a ü -conformance order relative to composition.

Proof: We must show that for all agents) and)2, ,)R´K)P, if and only)�´ �þ)P, .
The forward implication follows from theorem 7.9 and lemma 7.16 since ü is downward closed.
For the reverse implication we consider two cases. Assume mirror �*)g,4� is not defined. Then, by

definition 8.1,)�´K)j, .
Assume mirror �*) , � is defined. Then, by lemma 8.2,) , � mirror �*) , �B�mü . Then, since)K´ �þ) , , also)�� mirror �*)-,����Rü . Therefore, by definition 8.1,)�´K)+, .

Corollary 8.17. Let " be an ordered agent algebra and let ü be a downward closed set of agents. If " has
a mirror function relative to ü , " has a ü -conformance order.

Proof: The result follows from theorem 8.16 and theorem 7.17.

In other words, when an algebra " has a mirror function relative to ü , both ü -conformance and ü -
conformance relative to composition characterize the order.

We can now completely characterize the mirror function in terms of conformance and the compatibility
sets.

Theorem 8.18 (Mirror Characterization). Let " be an ordered agent algebra and let ü be a downward
closed set of agents. Then the following two statement are equivalent:

1. " has a mirror function relative to ü .

2. " has a ü -conformance order relative to composition, and for all agents)g, , cmp �*)-,�� is either
empty or if it is not empty it has a greatest element.

Proof: Assume " has a mirror function relative to ü . Then, by theorem 8.16, " has a ü -conformance
order realtive to composition. In addition, let)2, be an agent. If mirror �*)j,4� is undefined, then, by
definition 8.1, cmp �*)j,4� is empty. Otherwise, if mirror �*)+,º� is defined, then, by definition 8.1, cmp �*)+,º�
is not empty, and, by theorem 8.15, mirror �*) , � is its greatest element.

Conversely, assume " has a ü -conformance order relative to composition, and for all agents)¤, ,
cmp �*) , � is either empty or if it is not empty it has a greatest element. We show that the function

mirror �*) , �t. �
	��� � cmp �*)P,º�A� if cmp �*)P,º�e�.L[! if cmp �*) , ��.L[
is a mirror function relative to ü .

Clearly mirror is a partial function, and mirror �*)2,º� is defined if and only if there exists an agent «
such that)-,��P«���ü . It remains to be shown that for all agents) and)2, ,)�´K)P, if and only if mirror �*)j,º�
is undefined or)�� mirror �*) , �1��ü .

Assume)�´¾)-, . If mirror �*)-,4� is undefined we are done. Assume mirror �*)+,4� is defined. Since
mirror �*) , �1� cmp �*) , � ,) , � mirror �*) , ����ü . But " has a ü -conformance order relative to composition,
hence)R´})P, if and only if for all « , if)+,j�h«O�»ü then)��h«O�Kü . Therefore)�� mirror �*)+,��B�»ü , since
by hypothesis)�´K) , .

49

Conversely assume mirror �*)j,º� is undefined or)�� mirror �*)j,��n��ü . If mirror �*)j,�� is undefined, then
cmp �*) , �B.u[, and therefore for all agents « , if) , �¤«z�=ü then)R�¤«Y�=ü vacuously. Hence)m´ �þ) , ,
and since " has a ü -conformance order relative to composition, also)R´K)g, .

On the other hand, assume mirror �*)2,�� is defined and)m� mirror �*)j,4���;ü . Let « be an agent such
that) , �F«8�}ü . Then, by our definition of mirror �*) , � , «8´ mirror �*) , � , since mirror �*) , � is the greatest
compatible agent. Then)��g«O�»ü , since)R� mirror �*)+,º�1�»ü , «�´ mirror �*)-,4� , � is ± -monotonic and ü
is downward closed. Hence)R´ �þ)P, , and since " has a ü -conformance order relative to composition,
also)�´K) , .

These results show that the mirror of an agent corresponds to the greatest element of the compatibility
set. For general preordered agent algebra, the compatibility set may have several different greatest element.
In that case there is some flexibility in the choice of the mirror function. However, if the algebra is partially
ordered (i.e. the order is antisymmetric), the greatest element is unique. Hence, if a mirror function exists,
it is uniquely determined.

Theorem 8.19. Let " be a partially ordered agent algebra. If " has a mirror function relative to ü , then
the mirror function is uniquely determined.

Proof: Assume " has two mirrors functions "$#mirror b and "$#mirror d . Let) be an agent. By definition 8.1,
mirror b��*)+� and mirror d��*)2� are either both defined or both undefined. If they are both defined, then)�� mirror bi�*)+�1�Rü�¯])�� mirror d��*)+�1��ü

By theorem 8.15® mirror b��*)+�1´ mirror d��*)+��¯ mirror dp�*)2��´ mirror bi�*)+�
by corollary 5.4® mirror b��*)+�G. mirror d��*)+�

Since) was arbitrary, then "'#mirror b .@"$#mirror d .
Perfectly reasonable agent algebras may fail to have a mirror function. The characterization of theo-

rem 8.18 tells us that this may occur for the following two reasons:

• the parallel composition operator is unable to characterize the order of the algebra, i.e. the algebra does
not have a conformance order relative to composition, or

• the compatibility set fails to have a greatest element.

In both cases the lack of a mirror function is due to insufficient information in the agent model. The
following examples show that by extending the model it is possible to recover a mirror function and a
conformance order.

Example 8.20 (Alphabet Algebra). Consider the agent algebra " described in example 7.19, and let ü.wc¥SlS� . Recall that " has a ü -conformance order relative to composition. We now show that " has
no mirror function relative to ü . To do so, we consider the compatibility set of each agent, and then
apply theorem 8.18.

Let) be an agent. It is easy to see that the set of agents compatible with) is

cmp �*)+�G.C~�«]y��q�jÐ �R���«�¯<�R���) Ñ �p#
50

The maximal elements of the compatibility set are therefore

maxcmp �*)+��.C~o�Cl�~��P�]yp�R���)��p#
Observe that maxcmp �*)+� is a set of incomparable agents. Thus cmp �*)+� does not have a greatest el-
ement, and therefore, by theorem 8.18, " does not have a mirror function relative to ü . Because ü
is the only set of agents that characterizes the order relative to composition, " has no mirror function
relative to any ü .

Example 8.21 (Locked Alphabet Algebra). In this example we present an extension of example 8.20 and
we show that by adding extra information to the model it is possible to characterize the order with a
mirror function.

The locked alphabet algebra " is defined as follows:

• Agents are of the form)N.T�7
]V��1� where
 and � are disjoint subsets of "$#&� . The alphabet of)
is (��*)+�G.\
�I�� .

• rename �>6?�9�*)+� is defined whenever (��*)+�]� dom �>6?� . In that case rename �>6?�9�*)+�'.¿�>6D�7
'�XVA6D���1�A� ,
where 6 is naturally extended to sets.

• proj �758�9�*)+�t.u�7
�:<5zV���:<58� .
•) b �D) d is defined whenever � b :�� d .L[,
 b :�� d .L[and
 d :�� b .L[. In that case) b �H) d .T�7
 b I<
 d V�� b I�� d �X#

The additional set of signals � is used by an agent) to indicate that no agent « can compose with) if« uses signals in � .

Theorem 8.22. Let ´ be an order for " such that rename , proj and � are ± -monotonic. Let)<.T�7
MV����
and)-,H.T�7
f,7V��G,4� be two agents. Then)�´K)j, only if
C�a
e,pI��t, and �a���t, .

Proof: Consider the agent «n.u�7
',7VA��l8�7
e,>I��G,¹�A� . Clearly,)-,ê�k« is defined, since ��,7:G��l��7
e,çI��G,��G.L[
and
e,p:��G,P.\[. Therefore, since � is ± -monotonic and)R´K)+, , also)��h« is defined. Hence:

�K:Y�©l��7
 , I�� , �G.L[�¯���:<
 , .L[�¯\
J:z�Cl��7
 , I�� , ��.;[® ����
 , I�� , ¯��»:z
 , .L[�¯\
©�a
 , I�� ,®
C�a
 , I�� , ¯��a��� , #
The requirements of rename and proj are subsumed by those of � .

We will consider the order such that)»´S) , if and only if
Z�L
 , I�� , and �\��� , . The proof that
the operators are ± -monotonic is left to the reader.

Note that the subset of agents �¼.¼~��7
MV�����y���.L[�� is closed under the operations and thus con-
stitutes a subalgebra � of " . It is easy to show that � is isomorphic to the Alphabet Algebra of
example 8.20. By extension, we consider the Locked Alphabet Algebra a superalgebra of the Alphabet
Algebra.

The order can be characterized as a ü -conformance order relative to composition where ü3.!
includes all the agents of the algebra. Clearly ü is downward closed relative to ´ .

51

Let now)-,G.^�7
e,>V��t,º� be an agent, and consider the set of agents «�.^�7
MV���� that are compatible
with) , . Since ü is the set of all agents, an agent « is compatible with) , if and only if «M�H) , is defined,
that is

��:�� , .;[�¯\
J:�� , .L[�¯\
 , :���.;[
which translates to

cmp �*) , �G.C~��7
MV�����yp
�:��S.;[�¯<
C���l"� , ¯��a�J�Cl��7
 , I�� , �X�p#
Note that if
C���Sl#�t, and �����SlR�7
e,êI$�t,¹� , then
©��
e,AI8�>�=lR�7
e,êI��G,¹�A� and �a���SlR�7
e,êI$�t,�� .
Therefore, the agent «n.u�7
�,7VA�Cl��7
e,pI��G,4� is the greatest element of cmp �*)+,º� .
Theorem 8.23. Let)N.u�7
MV���� and) , .T�7
 , V�� , � be two agents. Then)�´K) , if and only if)��q�7
 , VA�Kl�7
f,?I��t,4�A� is defined.

Therefore mirror �*)j,��N.��7
e,7VA�¾lµ�7
e,jI%�G,4�A� is a mirror function relative to ü , and " has a ü -
conformance order relative to composition.

Example 8.24 (IO Agent Algebra). Consider the IO agent algebra " described in example 7.23 and let ü
be the set of agents that have no inputs. Then " has a ü -conformance order relative to composition.
We now show that " has no mirror function relative to ü . Let)�,¤.��7Up,7VXW$,4� be an agent. The set of
agents compatible with) , is

cmp �*) , �G.C~�«M.u�7UkÀ�VXWeÀo��y?UkÀe��W , ¯<U , �\WfÀe���ClSW , �p#
The maximal elements of the compatibility set are therefore

maxcmp �*) , �G.©~�«n.u�7UkÀiVXWfÀo�1ypUkÀ�.;W , ¯NU , ��WeÀe�a�©lSW , �p#
Since the agents in maxcmp �*)+,4� are incomparable, cmp �*)+,�� does not have a greatest element, and
therefore, by theorem 8.18, " does not have a mirror function relative to ü .

Notice how every maximal element imposes a particular constraint for an agent to refine another. Let)�.@�7UDVXWM� and)-,-.Z�7U?,çVXW$,4� be two agents. Then the maximal element « b .Z�`W$,çV¬U?,4� characterizes an
order (which is not ± -monotonic) such that)�´K) , Us�aU , ¯�WuÂ�W , ¯�Wa:NU , .\[_#
On the other hand, the maximal element «�d�.@�`W',>VA�µl�W$,�� charaterizes the different order (again not± -monotonic) such that)�´K) , Us���©l�W , ¯�WµÂ�W , ¯NWu��W , #
In other words, «�b provides the constraint on the inputs, while «�d constrains the outputs. Note that
in this case these two maximal elements are sufficient to characterize the order, which is equal to the
intersection of the two orders described.

Example 8.25 (Locked IO Agent Algebra). In this example we present an extension of example 8.24 and
we show that by adding extra information to the model it is possible to characterize the order with a
mirror function.

The locked IO Agent algebra " is defined as follows:

52

• Agents are of the form)<.T�7UDVXWOV���� where U , W and � are disjoint subsets of "$#&� . The alphabet
of) is (��*)+�G.LU�I�W�I�� .

• rename �>6?�9�*)+� is defined whenever (1�*)+� � dom �>6p� . In that case rename �>6?�9�*)+� .�>6D�7U_�XVA6D�`WM�XVA6D���1�A� , where 6 is naturally extended to sets.

• proj �758�9�*)+� is defined whenever U8�a5 . In that case, proj �758�9�*)+�G.u�7UPVXW�:<5zV��»:z5�� .
•)�bg�c)-d is defined whenever �`WMbPI&�BbX��:z�`Wed2I'��do��.L[, UcbH:&�td�.L[and Ukd+:'��b�.L[. In that case)�bB�H)-df.T�A�7UcbFI<Ukdo�Fl��`WnbFI�Wed��XVXWnb¤INWed�V��BbFI���dk�X#

The additional set of signals � is used by an agent) to indicate that no agent « can compose with) if« uses signals in � .

Theorem 8.26. Let ´ be an order for " such that rename , proj and � are ± -monotonic. Then)»´S)h,
only if Us�aU , , W , ��Wu��W , I�� , and �a��� , .

Proof: The proof is similar to the proof of theorem 5.11. Let)}.ª�7UDVXWOV���� and) , .¾�7U , VXW , V�� , � be
two agents such that)�´K)j, . Then consider the agent «n.u�`WM,7V¬Up,7VA�LlS�7U?,cIsW$,iI��t,��A� and deduce
the conditions for which rename �>6?�9�*)+� , proj �75��9�*)2� and)��h« are all defined.

We will consider the order such that)�´K) , exactly when UY�aU , , W , ��Wµ��W , I�� , and ����� , .
Theorem 8.27. The functions rename , proj and � are ± -monotonic with respect to ´ .

Proof: The proof is similar to the proof of theorem 5.12.

Note that the subset of agents �¶.¶~��7UPVXWOV��1�By��S.;[�� is closed under the operations and thus
constitutes a subalgebra � of " . It is easy to show that � is isomorphic to the IO Agent Algebra of
example 8.24. By extension, we consider the Locked IO Agent Algebra a superalgebra of the IO Agent
Algebra.

The order can be characterized as a ü -conformance order relative to composition, where üÅ.~���[_VXW�V��1�9� includes all the only the agents with no inputs. Clearly ü is downward closed relative
to ´ .

Let now)P,+.Z�7U?,>VXW$,çV��t,º� be an agent, and consider the set of agents «�.@�7UDVXW�V��1� compatible with) , . We have«]�H) , .u�A�7U'IzU , �hl��`W�INW , �XVXWaI�W , V��KI�� , �XV
with the following conditions for membership in ü and for definedness:U�I<Us��WaI�W , V�`WaI����2:K�`W , I�� , ��.;[_VU�:�� , .;[f¯���:zU , .L[f¯��»:�� , .L[_#
These conditions imply (since also for each agent, U , W and � must be disjoint) that[�� U ��W ,U , � W ���©l��`W , I�� , �[�� � ���©l��`WaI�W , I�� , �

53

Notice that the two agents «pb�.u�7UPVXWRIO~��D�pV���� , and «�df.u�7UDVXW�V��OIO~��D�c� are comparable and «pbB´a«�d .
Therefore the set of compatible agents of) , has a greatest element. It is easy to show that the greatest
element is also a mirror function, so that

mirror �*) , �t.u�`W , V¬U , VA�Cl��7U , I�W , I�� , �A�X#
Hence, the algebra also has a ü -conformance order relative to composition.

In the particular case of the simple IO agents,) , is of the form) , .Z�7U , VXW , V�[p� . Hence mirror �*) , �G.�`W$,çV¬U?,7VA�Zl�7Up,DIKW',4�A� . Note how all the maximal elements found in example 8.24 are contained in
mirror �*) , � in the superalgebra. In the superalgebra, however, the compatibility set is extended upwards
by agents that converge to a unique greatest element.

Example 8.28 (Dill’s IO Agent Algebra). We have seen in example 7.29 that the Dill’s IO Agent Algebra
does not have a characterization in terms of conformance relative to composition. It is therefore impos-
sible to find a mirror function in this case. We will however reconsider this example when we restrict
the order to agents that share the same alphabet, below.

In this section we have seen examples of agent algebras that don’t have a mirror function, despite having
a ü -conformance order relative to composition (see example 8.20 and example 8.24). The solution adopted
in those cases consists of augmenting the model with enough information to let a single environment char-
acterize the order. In the next two sections we explore alternative solutions that consist of adding some extra
condition to the definition of the mirror function in order to restrict the size of the compatibility set.

8.1 Mirrors with Predicate

Let " be an ordered agent algebra, and let)+, be an agent. If " has a ü -conformance order relative to
composition, then the compatibility set cmp �*) , � of) , completely characterizes the set of agents) such that)�´K)-, (see lemma 8.13). Each individual agent « in the compatibility set contributes to the characterization
of the order by discriminating among two sets: the set of agents) that are compatible with « do not conform
to)P, ; and the set of agents) that are compatible with « that potentially conform to)h, . In other words, each
compatible agent has a particular view of the conformance order.

When a mirror function exists, one agent (the greatest element) has an exact view of the conformance
order. In that case, the compatibility set of)�, is equal to the set of agents that conform to mirror �*)2,º� , and,
viceversa, the compatibility set of mirror �*) , � is equal to the set of agents that conform to) , . For an arbitrary
element of the compatibility set we can only establish a containment relatioship.

Definition 8.29 (Refinement Set). Let " be an ordered agent algebra, and let) , �C"$#%	 . The refinement
set of)P, , written ref �*)j,�� , is the set of agents) such that)�´K)+, :

ref �*) , �G.©~A)�yo)�´K) , �p#
Lemma 8.30. Let " be an ordered agent algebra with a mirror function relative to ü . Let)F, be an agent

such that mirror �*) , � is defined. Then

ref �*) , �G. cmp � mirror �*) , �A�X#
54

Proof: The proof consists of the following series of double implications:)�� ref �*) , �
by definition 8.29)�´m) ,
by definition 8.1, since mirror �*)+,4� is defined)�� mirror �*) , ����ü
by definition 8.11)�� cmp � mirror �*) , �A�X#

Lemma 8.31. Let " be an ordered agent algebra with a ü -conformance order relative to composition. Let) , be an agent and let «�� cmp �*) , � be a compatible agent. Then

ref �*) , �1� cmp �7«p�X#
Proof: The proof consists of the following series of implications:)�� ref �*) , �

by definition 8.29)�´m) ,
since " has a ü -conformance order relative to composition («_V7) , �g«���ü ®)��h«���ü
since «�� cmp �*) , � , «]�D) , ��ü , therefore®)��g«���ü
by definition 8.11)�� cmp �7«p�X#

These two results are represented graphically in figure 1 and figure 2. Given an agent « in the compatibil-
ity set of)-, , we call the discrimination set of « the set of agents that « discriminates exactly for the purpose
of conformance to) , .
Definition 8.32 (Discrimination Set). Let " be an ordered agent algebra with a ü -conformance order rel-

ative to composition. Let) , be an agent and let «]� cmp �*) , � be a compatible agent. The discrimination
set of « over)-, is the set

dis)oÁ �7«p��.©~A)Ry9)�´m) ,)��g«���ü��p#
Lemma 8.33 (Discrimination). Let " be an ordered agent algebra with a ü -conformance order relative to

composition. Let) , be an agent and let «�� cmp �*) , � be a compatible agent. Then

dis)oÁ �7«p��.u�X"$#%	@l cmp �7«p�A��I ref �*) , �X#
55

��*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�*

+�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�+

,�,�,�,�,�,�,�,�,�,�,�,�,

-�-�-�-�-�-�-�-�-�-�-�-�-

PSfrag replacements)P, mirror �*)-,4�
cmp �*)-,º�

ref �*)P,º� «

mirror �7«p�

cmp �7«p�

Figure 1: Refinement sets and compatibility sets with mirrors

Proof: We must show that)��©�X"$#%	ªl cmp �7«��A�tI ref �*) , � if and only if)�´;) ,)K�t«»�\ü . For the
forward direction we consider the following two cases:

• If)L�r"$#%	�l cmp �7«p� , then)u�� cmp �7«�� and)m��«���ü . By lemma 8.31, ref �*) , �s� cmp �7«p� ,
therefore)}�� ref �*)j,�� . Therefore)}�´K)-, . Hence)�´K)-,)��h«���ü .

• If)K� ref �*) , � , then)»´S) , . By lemma 8.31, ref �*) , �B� cmp �7«p� , therefore)»� cmp �7«�� . Therefore)��g«���ü . Hence)�´K)-,)��g«O�Rü .

For the reverse direction, let) be an agent such that)©´@) ,)S�1«��uü . We then consider the
following two cases:

• If)�´K) , , then)�� ref �*) , � and therefore)��S�X"'#%	rl cmp �7«p�A��I ref �*) , � .
• If)}�´»)-, , then, by hypothesis,)N��«z���ü . Hence)}�� cmp �7«p� . Therefore)R�J"$#%	Tl cmp �7«p� , and

consequently)��=�X"$#%	rl cmp �7«p�A��I ref �*) , � .
Corollary 8.34. Let " be an ordered agent algebra with a mirror function relative to ü . Let) , be an agent

such that mirror �*)j,º� is defined. Then

dis)oÁ � mirror �*) , �A�G.@"$#%	�#
Proof: The proof consists of the following equalities:

dis)oÁ � mirror �*) , �A�G.©~A)�y9)�´m) ,)�� mirror �*) , �1�Rü��
by lemma 8.33. �X"$#%	rl cmp � mirror �*) , �A�A�gI ref �*) , �
by lemma 8.30. �X"$#%	rl ref �*) , �A��I ref �*) , �. "$#%	�#

56

./././././././././././././././././././.

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1

2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/22/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2

3/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/33/3/3/3/3/3/3/3/3/3/3/3/3

4/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/44/4/4/4/4/4/4/4/4/4/4/4/4
PSfrag replacements

576
cmp 8 596;:

ref 8 5 6 :

<>=

cmp 8 < = :

<@?

cmp 8 < ? :

<@A

cmp 8 < A :

Figure 2: Compatibility sets of compatible agents

The above results show that every compatible agent can be used as a “mirror” if the characterization is
restricted to its discrimination set. This suggests an extended notion of mirror function, whose validity is
subject to the validity of a predicate.

Definition 8.35 (Mirror Function with Predicate). Let " be an ordered agent algebra and let ü be a
downward closed set of agents of " . For each agent) , , let pred �*) , �e� "$#%	 be a predicate over "$#%	
such that ref �*)j,��1� pred �*)-,º� . Then, " has a mirror function with predicate relative to ü if and only if

1. "'#mirror (which we may simply write as “mirror” when there is no ambiguity about what agent
algebra is being considered) is a partial function from 	 to 	 ,

2. mirror �*)+� is defined if and only if there exists « such that)N�h«���ü ,

3. If)�� pred �*)-,4� , then)R´K)-, if and only if either mirror �*)+,�� is undefined or)�� mirror �*)j,4�1��ü .

Corollary 8.36. Let " be an ordered agent algebra with a mirror function with predicate relative to ü .
Then, for all agents) and)j, , the following two statements are equivalent

1.)�´K)P,
2.)�� pred �*) , � and either mirror �*) , � is undefined or)�� mirror �*) , �1��ü .

The regular mirror function can be interpreted as a mirror function with predicate by simply setting for
all agents)-,

pred �*) , �G.@"$#%	�#
Hence mirror functions with predicate are more general than the regular mirror functions.

Unfortunately mirror functions with predicate do not enjoy the same characterization in terms of ü -
conformance relative to composition and greatest elements of the compatibility set (see theorem 8.18). A
simple counterexample is obtained by considering the predicate

pred �*) , �G.©~A)�yk)R´K) , �p#
57

In this case, any agent of the compatibility set can function as the mirror. This extreme case is, of course,
useless, since the complexity of checking membership with the predicate is the same as the complexity
of checking conformance. Mirror functions with predicate are therefore most useful when the predicate is
relatively easy to check.

The choice of the predicate is guided by the following result.

Theorem 8.37. Let " be an ordered agent algebra with a ü -conformance order relative to composition. For
all agents) , , let mirror �*) , �1� cmp �*) , � be a compatible agent (mirror �*) , � is undefined if cmp �*) , �G.L[),
and let pred �*)-,º���u"$#%	 be a predicate. Then the following two conditions are equivalent:

1. mirror is a mirror function with predicate pred relative to ü .

2. For all agents)j, , ref �*)P,4�1� pred �*)-,4� and if mirror �*)j,4� is defined, pred �*)j,º��� dis)oÁ � mirror �*)-,4�A� .
Proof: For the forward direction, by definition 8.35, for all agents) , , ref �*) , �1� pred �*) , � . Let now) , be an

agent such that mirror �*)j,4� is defined and let)�� pred �*)+,�� be an agent. Then,)�� pred �*) , �
by definition 8.35, since " has a mirror function with predicate relative to ü®)�´m) ,)�� mirror �*) , �1��ü
by definition 8.32®)�� dis)kÁ � mirror �*) , �A�X#

Hence, pred �*) , ��� dis)kÁ � mirror �*) , �A� .
For the reverse direction, assume ref �*)2,���� pred �*)P,4��� dis)kÁ � mirror �*)P,4�A� . Clearly mirror is a partial

function, and mirror �*)+� is defined if and only if there exists « such that)K�G«R��ü . Let now) be an
agent such that)R� pred �*)j,4� . We must show that)�´m)-, if and only if either mirror �*)+,4� is undefined or)�� mirror �*)-,����Rü . We consider two cases.

Assume mirror �*) , � is undefined. Then, by hypothesis, cmp �*) , �n. [, and therefore, since " has aü -conformance order relative to composition, for all agents) ,)�´m)g, . Therefore,)R´})-, if and only if
mirror �*) , � is undefined.

Conversely, assume mirror �*)j,4� is defined. Then,)�� pred �*) , �
since by hypothesis pred �*)+,º��� dis)oÁ � mirror �*)-,4�A�®)�� dis)kÁ � mirror �*) , �A�
by definition 8.32®)�´m))�� mirror �*) , ����ü�#

Hence mirror is a mirror function with predicate pred relative to ü .

The greater the element in the compatibility set, the larger the discrimination set.

Lemma 8.38. Let " be an ordered agent algebra with a ü -conformance order relative to composition. Let)-, be an agent and let «pb and «od be compatible agents such that «?bB´a«�d . Then

dis)oÁ �7«�bX�1� dis)kÁ �7«odo�X#
58

Since greater elements have larger discrimination sets, and since pred �*)g,4� must be a subset of the discrim-
ination set of mirror �*) , � , it is convenient to choose a maximal element of the compatibility set for mirror �*) , � .
In this way, we have the maximum flexibility in choosing a predicate that is computationally easy to check.
However, unlike regular mirror functions, the mirror of an agent with predicate is not necessarily a maximal
element of the compatibility set.

The following examples show the use of mirror functions with predicate in the cases where a regular
mirror function does not exist.

Example 8.39 (IO Agent Algebra). Example 8.24 shows that the IO agent algebra does not have a mirror
function relative to ü , despite having a ü -conformance order relative to composition. In this example
we show how to derive a mirror function with predicate.

Let)P,�.¦�7Up,7VXW$,4� be an agent. As shown in example 8.24, the agent « b .¦�`W$,>V¬U?,º� is a maximal
element of the compatibility set of) , . We now wish to use «pb as a mirror of) , with the use of a
predicate. To do so, we compute the discrimination set of « b :

dis) Á �7«�bX�G.u�X"$#%	@l cmp �7«�bX�A��I ref �*) , �. �X"$#%	rlJ~��7UDVXW]��ypUY�aU , ¯�W , ��Wu���l=U , �c��I�~��7UDVXW]��y?Us�aU , ¯NWC.;W , �. ~��7UDVXW]��y?U , ��U$BNWu��W , Bz�©l}U , ��WO�1IR~��7UDVXW]��y?Us�aU , ¯�W.W , �. ~��7UDVXW]��y?U , ��U$BNWu��W , Bz�©l}U , ��WCBK�7Us��U , ¯�W.;W , ���
Recall that pred �*)j,º� must include ref �*)j,4� . A reasonable choice for pred �*)+,�� in this case is the following:

pred �*) , �G.~A)�yp(1�*)+�B�a(��*) , ���p#
This predicate is easy to check for finite alphabets, and satisfies the condition ref �*)F,4�O� pred �*)-,º���
dis) Á �7«�b�� . Therefore, by theorem 8.37, " has a mirror function with predicate relative to ü , where

mirror �A�7UDVXW]�A�t.u�`W�V¬U_�XV pred �*) , �t.©~A)�y?(��*)+�1�a(��*) , ���p#
Note that « b is not the only compatible agent that can be used as a mirror with the above predicate. For
example, the maximally compatible agent «�d�.u�`W , VA�µlSW , � has the following discrimination set:

dis) Á �7«odo�G.u�X"$#%	@l cmp �7«�do�A��I ref �*) , �. �X"$#%	rlJ~��7UDVXW]��ypUY���©l=W , ¯�W.;W , �c�gIR~��7UDVXW]�1y?U8��U , ¯�W.W , �. ~��7UDVXW]��yp�©lSW ,ED U$B�W��.W , ��IR~��7UDVXW]�1y?Us�aU , ¯�W©.;W , �. ~��7UDVXW]��yp�©lSW ,ED U$B�W��.W , BK�7Us��U , ¯�W.;W , ���
It is easy to check that the condition ref �*) , ��� pred �*) , ��� dis)kÁ �7«od�� is satisfied. Hence, " has also the
following mirror function with predicate:

mirror �A�7UDVXW]�A�t.u�`W�VA�©l�WM�XV pred �*) , �G.C~A)�yp(1�*)2���a(��*) , �X�p#
We have noted how mirror functions with predicate lose the characterization in terms of conformance

order that simple mirror functions have. For a restricted case, however, we can reduce a mirror function with
predicate to a regular mirror function by extending the model as in example 8.21 and example 8.25. The
construction consists of augmenting the model by providing each agent with the information conveyed by the
predicate of their mirror. This construction is still somewhat preliminary, as it doesn’t guarantee a downward
closed conformance set. In addition, the conformance set does not necessarily enjoy the properties that are
necessary for applying theorem 9.4 below.

59

Theorem 8.40. Let " be an agent algebra with a mirror function with predicate relative to ü , such that
pred �*)2��. pred � mirror �*)+�A� . If ü is downward closed, then the agent algebra " has a mirror function
relative to ü , where

• "'#%	 .©~��*)gVGF�HJI¬�1yk)R�J"$#%	µ¯�F�HJI1�u"$#%	T¯ pred �*)+��:�F�HJIG.L[��
• �*)gVGFKH@IA��´�*) , VGFKH@I , � if and only if either "$#mirror �*) , � is not defined, or, if defined,

F�HJI1�CF�HJI , V
pred �*)2�1�CF�HJI , I pred �*) , � and)���"$#mirror �*)-,4���»üO#

• proj �758�9�A�*)gVGF�HJI) �A�G.u� proj �758�9�*)+�XV proj �758�9�LF�HJI) �A� if all quantities are defined.

• rename �>6?�9�A�*)gVGFKH@I) �A�t.u� rename �>6?�9�*)+�XV rename �>6?�9�LF�HJI) �A� if all quantities are defined.

• �*)gVGFKH@I) �t�1�7«_VGFKH@IéÀk� is defined if and only if)��h« is defined V
pred �*)2��:�FKH@IêÀ�.;[_V
pred �7«p��:�F�HJI) .;[and
F�HJI) :�F�HJIêÀ�.L[_#

In that case�*)gVGF�HJI) ���1�7«_VGF�HJIêÀ9�G.T�*)��h«_VGFKH@I) I�F�HJIêÀk�
• "'#mirror �A�*)gVGFKH@IA�A� is defined if and only if "$#mirror �*)+� is defined. In that case,"$#mirror �A�*)gVGF�HJI¬�A�t.u�X"$#mirror �*)+�XV�"$#%	rl��LF�HJI�I pred �*)+�A�A�
• ü;.;üu�Rw ÆNM ÿ

Proof: We must show that "'#mirror is a mirror function relative to ü .
Clearly "$#mirror is a partial function from "'#%	 to "$#%	 . Also, if "$#mirror �A�*)hVGFKH@IA�A� is defined, then"$#mirror �A�*)hVGFKH@IA�A�n�'�*)hVGFKH@IA��� ü . Conversely, if �7«_VGFKH@I¬À9�'�$�*)gVGF�HJI¬�<� ü , then «<�h)C�uü , hence"$#mirror �*)2� is defined, and therefore "$#mirror �A�*)hVGFKH@IA�A� is defined.
Assume now that �*)gVGF�HJI¬� ´ �*)-,7VGF�HJIé,�� , and assume that "$#mirror �A�*)j,7VGFKH@I ,4�A� .�X"$#mirror �*) , �XV�"$#%	rl��LFKH@I , I pred �*) , �A�A� is defined. Then

• By hypothesis)��B"'#mirror �*) , �1��ü .

• pred �*)+�2:K�X"$#%	rl��LFKH@Ié,pI pred �*)P,4�A�A�t.;[, since pred �*)+�1�OFKH@Ié,pI pred �*)-,�� .
• pred �X"'#mirror �*)-,4�A�¤:PF�HJI�.@[, since by hypothesis pred �X"$#mirror �*)2,4�A��. pred �*)P,4� , pred �*)-,��F:
FKH@I , .L[and F�HJI1�CF�HJI , .

• FKH@I2:»�X"$#%	rl��LF�HJIé,?I pred �*)P,4�A�A�G.L[, since F�HJI1�CFKH@Ié, .
Therefore �*)gVGFKH@IA�1���X"'#mirror �*)j,4�XV�"$#%	rl��LF�HJIé,?I pred �*)P,º�A�A�1� ü .

Conversely, assume �*)gVGFKH@IA�1���X"'#mirror �*) , �XV�"$#%	rl��LF�HJI , I pred �*) , �A�A��� ü . Then

60

• FKH@I��CF�HJIé,�I pred �*)P,4� , since F�HJI�:Y�X"$#%	�l»�LF�HJIé,9I pred �*)-,��A�A��.L[. In addition, F�HJI�: pred �*)j,4�G.L[,
since F�HJI�: pred �X"$#mirror �*) , �A�t.L[and pred �X"$#mirror �*) , �A�t. pred �*) , � . Therefore, FKH@I��OFKH@I , .

• pred �*)+���CF�HJIé,pI pred �*)-,4� , since pred �*)+�2:K�X"$#%	rl��LF�HJIê,pI pred �*)-,º�A�A�G.L[.
• By hypothesis)��B"'#mirror �*) , �1��ü .

Therefore �*)gVGFKH@IA��´©�*)-,>VGFKH@I ,º� .
Similarly, if "$#mirror �A�*) , VGF�HJI , �A� is not defined, then �*)gVGF�HJI¬�Å´ �*) , VGFKH@I , � if and only if"$#mirror �A�*)-,7VGF�HJIé,4�A� is not defined.
Therefore, by definition 8.1, "$#mirror is a mirror function for " relative to ü .

Theorem 8.41. Let " and " be as in theorem 8.40. Then the function H'yj"$#%	0Ì{ "n#%	 such that for all
agents)

H?�*)+�t.u�*)gV�[p�
is an embedding.

Proof: It is easy to show that H commutes with the operators of the algebra, that is, for example, that

proj �75��9�LH��*)+�A�t.�H?� proj �758�9�*)+�A�X#
To complete the proof we must show that)�´K)2, if and only if �*)gV�[p�B´©�*)-,>V�[p� .

Let) and) , be such that)»´=) , . If "$#mirror �*) , � is not defined, then �*)gV�[p�f´u�*) , V�[p� . Alternatively,
assume "'#mirror �*)-,4� is defined. Then, since)�´�)j, ,)J� pred �*)P,º� and)»��"$#mirror �*)j,4�n��ü . Since
pred is monotonic relative to ´ , pred �*)+��� pred �*) , � . Therefore, by definition of " , �*)gV�[p�1´©�*) , V�[p� .

Conversely, assume �*)hV�[p��´¶�*)j,>V�[p� . If "$#mirror �*)-,º� is not defined then)Z´)j, . Alternatively,
assume "$#mirror �*)j,�� is defined. Then, by definition of " , pred �*)2�O� pred �*)2,º� , and therefore, since)L� pred �*)+� ,)�� pred �*) , � . In addition,)=�$"$#mirror �*) , �s�Lü . Therefore, by definition 8.35, also)R´K)P, .

Hence,)R´K) , if and only if �*)gV�[p��´�*) , V�[p� .
Corollary 8.42. Let " and " be as in theorem 8.40 such that ü is downward closed, and let �*)h,7V�[p� be an

agent of " . If �*)gVGFKH@IA��´©�*) , V�[p� , then F�HJIt.\[.
The above results show that if)+, is an agent in " , then the mirror of �*)+,çV�[p� in " characterizes exactly the

agents) such that)�´K) , .
8.2 Mirrors in Subalgebras

In the previous section we have employed a predicate to focus the application of the mirror function to
only those agents that the mirror can discriminate. Here we use an alternative approach, and consider
only a subset of the agents to reduce the size of the compatibility sets. We choose the subset so that it is
downward closed, and closed under parallel composition, thus effectively constructing a subalgebra when
the operators of projection and renaming are removed from the signature. Since the compatibility sets are
smaller, subalgebras have a greater chance to have a ü -conformance order relative to composition and a
mirror function.

61

An example that is particularly useful in practice is the subset of agents that have the same alphabet. In
particular, we are interested in studying the conformance order and the corresponding mirror function for
algebras whose order satisfies the constraint that)�´�)2, only if (��*)+�$.r(��*)P,4� . Note that if (��*)+�$.@(1�7«p� ,
then (1�*)��F«p�1.©(1�*)+��.©(��7«�� . Therefore the subset of agents with a certain alphabet that satisfy the above
constraint consitute a subalgebra of the original agent algebra (restricted to parallel composition only).
Note also that the projection and renaming operators have no effect in determining conformance relative
to composition and mirror functions. Therefore, the results of the previous sections apply to this restricted
case, provided that the necessary restrictions on the alphabet are enforced throughout.

Let " be an agent algebra and assume that for all alphabets
 , the algebra � such that ��#%	 .~A)�y?(��*)+�G.L
n� is a subalgebra of " . Assume also that each subalgebra has a ü -conformance order rel-
ative to composition and a mirror function relative to ü . Note that since ��#%	 must be downward closed
for all alphabets,)m´�) , only if (��*)+��.C(��*) , � . The results obtained in the subalgebras can be rephrased in
terms of the original algebra by restricting the definitions of conformance order and mirror function to apply
only when the alphabets of the agents involved are the same. Note that we are not changing the definition of
conformance, but we are simply reflecting the restrictions of the subalgebra in the superalgebra.

Definition 8.43. Let " be an agent algebra and let ü be a downward closed set of agents of " . " has
a same alphabet ü -conformance order relative to composition if and only if for all agents) and)¤, ,)�´)-, if and only if (1�*)2�].¾(1�*)j,4� and for all agents « such that (1�7«p��.¾(��*)+,�� , if)P,g��«»�;ü then)��g«O�Rü .

Definition 8.44. Let " be an ordered agent algebra and let ü be a downward closed set of agents of " .
Then, " has a same alphabet mirror function relative to ü if and only if

1. "'#mirror is a partial function from 	 to 	 ,

2. mirror �*)+� is defined if and only if there exists « such that (1�7«p�G.L(1�*)+� and)��h«���ü ,

3.)�´K)P, if and only if (��*)+�G.\(��*)-,º� and either mirror �*)j,4� is undefined or)�� mirror �*)j,4�1�Rü .

The additional conditions in these definitions consistently restrict the alphabets of the agents involved to
the alphabet of the agent for which we are considering the mirror.

In particular we are interested in the characterization of the mirror in terms of the greatest element of the
compatibility set and of conformance relative to composition.

Definition 8.45 (Compatibility Set). Let " be an ordered agent algebra and ü a downward closed set of
agents. The alphabet invariant ü -compatibility set of an agent) , written cmp �*)2� , is defined as follows:

cmp �*)+�G.C~�«]y�(1�7«p�G.\(��*)+��¯�)��h«���ü]�
Theorem 8.46. Let " be an ordered agent algebra and let ü be a downward closed set of agents. Then the

following two statement are equivalent:

1. " has an alphabet invariant mirror function relative to ü .

2. " has an alphabet invariant ü -conformance order relative to composition, and for all agents)¤, ,
cmp �*)-,�� is either empty or if it is not empty it has a greatest element.

62

8.3 Construction of Algebras

In this section we explore conformance and mirrors for the direct product of algebras and for subalgebras.

Theorem 8.47. Let "$b and "�d be agent algebras with a ü8b and ünd -conformance order, respectively. Let"L.r" b ��" d be the direct product (definition 4.1) of " b and " d and let ü©.Cü b �Rü d . Then for all)hV7) , ��"'#%	 , if)R´MÆ8) , then for all expression contexts Ê , if ÊYÐ) , Ñ ��ü then ÊzÐ) Ñ ��ü .

Proof: Let)�. ¡*)gbkV7)-d�¢ and)-,2. ¡*)-, b V7)-,d ¢ be agents such that)m´�)j, . The proof consists of the following
serier of implications:)�´K) ,

by definition 4.1)�bB´MÆ Ç) , b ¯])-d�´MÆ+È2) ,d
by hypothesis � (ÊsV¬ÊYÐ) , b Ñ �»ü�b ® ÊzÐ)�b Ñ ��ü�bX�2¯K� (Ê8V¬ÊYÐ) ,d Ñ ��ü$d ® ÊzÐ)-d Ñ ��ündk�
by definition 4.1® (ÊsV¬ÊYÐ) , Ñ ��ü ® ÊYÐ) Ñ �RüO#

Unfortunately the reverse of the last implication in the proof above does not hold, that is " does not
necessarily have a ü -conformance order. This is because a context Ê may be defined for an agent)1b , while
it is not defined for the pair ¡*) b V7) d ¢ . However, the result holds in the presence of mirror functions, when the
mirror function is always defined. In that case, in fact, the expression contexts can be reduced to a single
environment, and the difficulty above disappears.

Theorem 8.48. Let "$b and "�d be agent algebras with a mirror function relative to üYb and ünd , respectively,
such that for all agents) , mirror �*)+� is defined. Let "�.@"]b1�}"�d be the direct product (definition 4.1)
of "'b and "�d and let üù.ÃüOb8��ünd . Then for all agents �*)hboV7)-do�S�|"'#%	 , mirror �A�*)gboV7)-do�A�m.� mirror �*)�b��XV mirror �*)jdk�A� is a mirror function for " relative to ü .

Proof: Clearly "$#mirror is a partial (in fact, total) function. Since mirror is always defined, we must show
that for all)<.u¡*)gboV7)-do¢ there exists « such that)��h«���ü .

mirror �A¡*) b V7) d ¢A�Ï
by hypothesis mirror �*)gbX�Ï '¯ mirror �*)-d��Ï
by definition 8.1 �Q�q«�b�V7)�bB�F«�bB��ü�bX��¯»�Q�q«�diV7)jd��h«od���ü$do�
by definition 4.1 �2¡7«�b�V¬«od�¢XV�¡*)gboV7)-d�¢t�1¡7«�bkV¬«od�¢���ü �q«_V7)N�h«���ü

63

It remains to show that for all)gV7)+,���"'#%	 ,)K´=)P, if and only if)R� mirror �*)j,4�B�mü . Let)�.@¡*)gbkV7)-d�¢
and) , .u¡*) , b V7) , d ¢ .)�´K) , ¡*)�bkV7)-d�¢�´C¡*) , b V7) , d ¢

by definition 4.1) b ´K) , b ¯�) d ´K) ,d
by definition 8.1, since mirror �*)+, b � and mirror �*)j,d � are both defined) b � mirror �*) , b �1�»ü b ¯]) d � mirror �*) , d �1��ü d
by definition 4.1 ¡*)�bkV7)-d�¢t��¡ mirror �*) , b �XV mirror �*) , d �A¢1��ü
by hypothesis ¡*)�bkV7)-d�¢t� mirror �A¡*) , b V7) , d �A¢1�Rü)�� mirror �*) , ����ü

A subalgebra may fail to preserve a ü -conformance order, but is well behaved when it is closed under a
mirror function, if it exists.

Theorem 8.49. Let "f, be an ordered agent algebra with a ü], -conformance order and let " be a subalgebra
of " , . Let ü.ü , :N"$#%	 . Then for all agents) and) , in " , if)�´]Æ�) , then for all expression contextsÊ over " , if ÊzÐ)-, Ñ �Rü , then ÊYÐ) Ñ ��ü .

Proof: Let É , be the set of expressions over " , , and let É be the set of expressions over " . Note that since" is a subalgebra of "f, , an expression over " is also an expression over "�, , and therefore Ém��Éh, .
Let now) and) , be elements of "$#%	 . The proof consists of the following series of implications.)�´MÆO) ,

by definition 5.22)�´ Æ Á�) ,
since "B, has a ü$, -conformance order, by definition 7.3 (ÊZ��É , V¬ÊYÐ) , Ñ �Rü , ® ÊYÐ) Ñ �»ü ,
since "$#%	 is closed in "�,7#%	 under the operators, ü.;üM,�:S"'#%	 , É}��Ég, ,
and since for all)��J"$#%	 , ÊYÐ) , Ñ ��ü , ÊzÐ) , Ñ ��ü ,® (ÊZ��ÉGV¬ÊzÐ) , Ñ ��ü ® ÊzÐ) Ñ ��ü

The reverse of the last implication does not hold. In fact, while it is true that if ÊYÐ) Ñ ��ü , then ÊYÐ) Ñ �ü', , the subalgebra can only consider a subset of the contexts, and may therefore be unable completely
characterize the order.

If however " is a subalgebra of "e, in the sense of definition 4.6 (i.e. without considering the order), and
the subalgebra does have a ü -conformance order, then the orders are related by the following result.

64

Theorem 8.50. Let "f, be an ordered agent algebra with a ü], -conformance order and let " be a subalgebra
of " , . Let üZ.uü , :�"$#%	 and assume " has a ü -conformance order. Then for all agents) and) , in" ,)�´ Æ Á�) , ®)�´MÆ8) , #

Proof: Let now) and)j, be elements of "$#%	 . The proof consists of the following series of implications.)�´ Æ Á�) ,
since "B, has a ü$, -conformance order, by definition 7.3 (ÊZ��É , V¬ÊYÐ) , Ñ ��ü , ® ÊYÐ) Ñ �»ü ,
since "$#%	 is closed in "�,7#%	 under the operators, ü.;üM,�:S"'#%	 , É}��Ég, ,
and since for all)��J"$#%	 , ÊYÐ) , Ñ ��ü , ÊzÐ) , Ñ ��ü ,® (ÊZ��ÉGV¬ÊzÐ) , Ñ ��ü ® ÊzÐ) Ñ ��ü
since " has a ü -conformance order, by definition 7.3)�´]ÆO) ,

Theorem 8.51. Let " , be an ordered agent algebra with a mirror function mirror relative to ü , and let "
be a subalgebra of " , closed under mirror . Let üC.ü , :="$#%	 . Then " has a mirror function relative
to ü .

Proof: We show that that mirror is a mirror function for " relative to ü . Clearly mirror is a partial function.
Let now)¦�Å"$#%	 be an agent. If mirror �*)+� is defined, then, since " is closed under mir-

ror, mirror �*)+�;�ù"$#%	 . Since mirror is a mirror function relative to ü�, for "B, , by lemma 8.2,)�� mirror �*)+�B�»ü$, . Since)R�a"'#%	 , mirror �*)2����"$#%	 , and since " is closed under parallel composi-
tion,)�� mirror �*)+�f��"$#%	 . Therefore, since üu.Cü , :S"$#%	 ,)�� mirror �*)+�f�}ü . Hence, if mirror �*)2�
is defined, then there exists « (i.e. mirror �*)+�) such that)��h«���ü .

Conversely, if there exists «S��"$#%	 such that)}��«S�©ü , then, since "^�/" , , also)}��«=�Cü , .
Therefore, by definition 8.1, mirror �*)2� is defined.

Let now)S�L"$#%	 and) , �;"'#%	 . It remains to show that)S´J) , if and only if either mirror �*) , � is
undefined or)N� mirror �*)j,4���»ü .)�´ Æ) ,

since "L�u" ,)�´ Æ Á�) ,
since " , has a mirror function relative to ü , , by definition 8.1 mirror �*) , �Ï!$B])�� mirror �*) , �1�»ü ,
since " is closed under mirror and ü;.ü , :="$#%	 mirror �*) , �Ï!$B])�� mirror �*) , �1�»ü

65

9 Local Specification Synthesis

With conformance we have addressed the problem of characterizing substitutability under all possible con-
texts. Relative conformance has been introduced to reduce (whenever possible) the complexity of the prob-
lem by considering only a limited set of contexts. Relative conformance, however, when applicable, does
not change the notion of substitutability, since, in that case, relative and general conformance coincide
(cfr. theorem 7.17).

In this section we address the problem of deriving the local specification for an agent in a context, such that
when an agent that satisfies the local specification is substituted in the context, the resulting system satisfies
a global specification. Instances of this problem include supervisory-control synthesis [1], the rectification
and optimization problem [3], and protocol conversion [11]. We will show that, under certain conditions, a
mirror function provides us with a closed form solution.

Definition 9.1 (Local Specification). Let " be an ordered agent algebra, Ê an expression context, and let) , be an agent. A local specification for) , in Ê is an agent « such that for all agents) ,)�´a« ÊzÐ) Ñ ´K) , #
In the rest of this section we address the problem of deriving the local specification « , given the expression

context Ê and the global specification)+, . The solution involves the use of the mirror function. However,
to solve the equation for the local specification, the conformance set must have some additional closure
properties. We call a conformance set with these additional properties a rectification set.

Definition 9.2 (Rectification Set). Let " be an agent algebra. A set ü D "$#%	 is a rectification set if it
satisfies the following requirements:

Downward closure If)j,-�»ü and)�´K)-, , then)���ü .

Closure under projection If)���ü , then for all alphabets 5 , proj �75��9�*)2� is defined and proj �75��9�*)2�1�ü .

Closure under inverse projection If) � ü , then for all alphabets 5 and all agents) , , if
proj �75��9�*)-,º�G.=) then)-,+��ü .

Closure under renaming If)ø�øü , then for all bijections 6 , if rename �>6?�9�*)+� is defined then
rename �>6?�9�*)+�1��ü .

An agent algebra must be normalizable to synthesize a local specification. In fact, we need two additional
properties to make sure that certain operations are well defined.

Definition 9.3 (Rectifiable Algebra). Let " be a normalizable agent algebra. Then " is rectifiable if it
satisfies the following axioms, where) is an agent:

A26. rename �>6?�9�*)+� is defined if and only if (��*)+�1� dom �>6?� .
A27. For all alphabets
 such that (��*)+�1�a
 , rename � id E¤�9�*)+�G.=) .

We can now state and prove the main result of this section.

66

Theorem 9.4 (Local Specification Synthesis). Let " be an ordered rectifiable algebra and let ü be a
rectification set, such that " has a ü -conformance order relative to composition. Assume " has a
mirror function relative to ü .

Let Ê be an expression context, and let) be an agent such that mirror �*)2� is defined. Let

proj �75��9� rename �>6?�9�>ýF�1�h«p�
be an expression in RCP normal form equivalent to Ê . Let
�b1. codom �>6p�+Is(1�7«p�+IY5 and let Ú6 � b be
an extension of 6H� b to
Mb such that Ú6q� b is a bijection. ThenÊYÐ ý Ñ ´K)
if and only ifým´ mirror � rename � Ú6 � b �9�7«�� proj �758�9� mirror �*)2�A�A�A� and (1�>ý¤��� dom �>6?�X#

Proof: The proof is composed of the following series of double implications.

proj �75��9� rename �>6?�9�>ýF�1�h«p��´K)
by the characterization of “ ´ ” in terms of ü , since mirror �*)+� exists proj �758�9� rename �>6?�9�>ýF���g«��1� mirror �*)+����ü
since ü is closed under projection and inverse projection proj �758�9� proj �758�9� rename �>6?�9�>ýF���h«p�t� mirror �*)+�A�1��ü
since, by A1, (1� proj �758�9� rename �>6p�9�>ý¤�1�g«p�A�1�a5 and

since (1� proj �758�9� rename �>6p�9�>ý¤�1�g«p��:<(�� mirror �*)+�A���a5 ,

therefore by A25 proj �758�9� proj �758�9� rename �>6?�9�>ýF���h«p�A��� proj �758�9� mirror �*)+�A�1��ü
by A20 proj �758�9� rename �>6?�9�>ýF���g«��1� proj �758�9� mirror �*)+�A�1��ü
by A20 proj �758�9� rename �>6?�9�>ýF���g«��1� proj �758�9� proj �758�9� mirror �*)2�A�A����ü
since, by A1, (1� proj �758�9� mirror �*)+�A�A�1�a5 and

since (1� rename �>6?�9�>ýF���h«p�2:<(�� proj �758�9� mirror �*)+�A�A���a5 ,

therefore by A25 proj �758�9� rename �>6?�9�>ýF���g«�� proj �758�9� mirror �*)+�A�A�1��ü
since ü is closed under projection and inverse projection rename �>6?�9�>ýF�1�h«]� proj �758�9� mirror �*)+�A�1��ü
by A27 rename � id E ÇX�9� rename �>6?�9�>ýF�1�g«]� proj �758�9� mirror �*)2�A�A�1��ü
since Ú6_� b is a bijection over
�b rename � Ú6fæ Ú6 � b �9� rename �>6?�9�>ýF���h«]� proj �758�9� mirror �*)+�A�A�B�Rü
by A21 rename � Ú6?�9� rename � Ú6 � b �9� rename �>6?�9�>ýF�1�g«�� proj �758�9� mirror �*)+�A�A�A�B�Rü

67

 rename � Ú6?�9� rename � Ú6 � b �9� rename �>6?�9�>ýF�1�g«�� proj �758�9� mirror �*)+�A�A�A�B�Rü
since ü is closed under rename (and consequently under inverse rename) rename � Ú6 � b �9� rename �>6?�9�>ýF�1�g«]� proj �758�9� mirror �*)2�A�A�1��ü
by A24 rename � Ú6 � b �9� rename �>6?�9�>ýF�A�1� rename � Ú6 � b �9�7«�� proj �758�9� mirror �*)+�A�A���»ü
by A21 rename � Ú6 � b æ16?�9�>ýF��� rename � Ú6 � b �9�7«�� proj �758�9� mirror �*)+�A�A���»ü
since Ú6 � b is an extension of 6 � b rename � id dom ã*â¬å �9�>ý¤�1� rename � Ú6 � b �9�7«�� proj �75��9� mirror �*)+�A�A���»ü
by A27 ýK� rename � Ú6 � b �9�7«�� proj �758�9� mirror �*)+�A�A�B��ü and (��>ýF�1� dom �>6?�
by the characterization of “ ´ ” in terms of ü ým´ mirror � rename � Ú6 � b �9�7«�� proj �758�9� mirror �*)+�A�A�A� and (1�>ýF�B� dom �>6?�

In the following example we show how to use the local specification synthesis technique in the IO Agent
Algebra.

Example 9.5 ((Locked) IO Agent Algebra). Consider the IO agent algebra described in example 8.24.
Figure 3 shows an intuitive graphical representation of the system

proj � ~��PVGRiV¬�cV¬ûDVGHpV��G�c�9�>ý}�D)gb1�P)-do�XV
where)�bë. � ~��-Vê�PVGSg�pV9~�ûH�c�XV)-dÅ. � ~�ûD�pV9~k�PVÏÝj�c�
and ý is an agent variable. Suppose we would like to solve the system for ý so that it satisfies the
specification) , .u� ~��PVGRi�pV9~��cV¬ûj�c�X#
As discussed in example 8.24, this algebra does not have mirrors, and therefore we are unable to apply
our solution to the local specification synthesis. However we can embed the model in the Locked IO
agent algebra described in example 8.25 as follows:)�bë{ � ~��-Vê�PVGSg�pV9~�ûH�pV�[p�XV)-dÅ{ � ~�ûD�pV9~k�PVÏÝj�pV�[p�) , { � ~��-VGRi�pV9~��cV¬ûP�pV�[p�X#
Because of the embedding, the system expression is unchanged. Thus, applying theorem 9.4 we obtain

proj � ~��PVGRiV¬�cV¬ûDVGHpV��G�c�9�>ý}�D)gb1�P)-do�1´K) ,
68

a

d
g

h

jPSfrag replacements

) b

)jd

ý
proj � ~��-VGRiV¬�iV¬ûPVGH�V��G�c�9�éÜ*�

Figure 3: IO agent system

if and only ifým´ mirror �*)gbB�D)jdf� proj � ~��-VGRiV¬�cV¬ûDVGH�V��t�c�9� mirror �*) , �A�A�
Substituting the real quantities for the symbols:

mirror �*)gbB�H)-d�� proj � ~��-VGR�V¬�cV¬ûPVGH�V��G�c�9�*) , �A�G.. mirror �A� ~��-Vê�PVGSh�pV9~�ûD�pV�[p���1� ~�ûD�pV9~k�PVÏÝj�pV�[p���� proj � ~��-VGRiV¬�iV¬ûPVGH�V��G�c�9� mirror �A� ~��-VGRi�pV9~��cV¬ûj�pV�[p�A�A�A�. mirror �A� ~��-VGSg�pV9~�ûDVê�PVÏÝ-�pV�[p��� proj � ~��-VGR�V¬�cV¬ûPV�HpV����c�9� ~��cV¬û-�pV9~��-VGRc�pVA�µlJ~��PVGRiV¬�cV¬û-�c�A�. mirror �A� ~��-VGSg�pV9~�ûDVê�PVÏÝ-�pV�[p��� proj � ~��-VGR�V¬�cV¬ûPV�HpV����c�9� ~��cV¬û-�pV9~��-VGRc�pV9~KH�V����c�A�. mirror �A� ~KS�V¬���pV9~��-VGR�V¬ûPVê�PVÏÝj�pV9~KHpV��¤�c�A�. � ~��-VGR�V¬ûPVê�PVÏÝj�pV9~KS�V¬���pVA�µl�~��PVGRiV¬�cV¬ûDVGHpV��jVê�PVGS2VÏÝ��c�
Recall that)S´�) , if and only if U��CU , , W , �uW �uW , IT� , and �©�U� , . If we only consider agents
that have �S.L[, the agents)<.u�7UPVXWOV���� that can be assigned to ý must be such that[��U8� ~��-VGRiV¬ûDVê�PVÏÝj�~��cVGS2� ��Wu� �ClJ~��-VGR�V¬ûPVGH�V��jVê�PVÏÝ+�
We interpret this result as follows. Agent) can have as input any of the inputs allowed by the specifi-
cation (i.e. � and R) and any of the outputs that are already present in the system (û , � and Ý), whether
they are retained (û) or not (� and Ý). It cannot have any additional input, since they would be left
“unconnected” and hidden, a situation that is not allowed by the definition of the algebra. Note that)
is not required to have any input, even though R (which is in the specification) is not already present.

69

That is because the order only requires that the set of inputs of the implementation be contained in the
set of inputs of the specification.

On the other hand,) must have outputs � and S in order for the system to satisfy the specification.
In fact, � is required by the specification and is not already present in the rest of the system, while S is
an input to)gb , and it must be converted to an output in order to project it away. Agent) can also have
additional outputs, but not � and R which are inputs to the system (having them as outputs would make
them outputs, contrary to the specification), û , � and Ý , which are already outputs in the system (and
thus would collide and make the parallel composition undefined), and H and � , which are retained in
the projection but are not allowed by the specification.

10 Current and Future Work

These notes present the framework of agent algebra, and provide some simple examples of its use in the
context of models of concurrent systems. In our current work we are concentrating on agent algebras that
include models of behavior. In particular we are considering trace structure algebra [2, 4] as a general
agent algebra model of concurrent behavior, and are studying different forms of refinement relationships
and their characterization in terms of conformance and mirror function. Using trace strcture algebras, we
are implementing the local specification synthesis technique to solve the problem of protocol conversion.

At the same time we have developed the theory of conservative approximations [6] for agent algebras (not
presented in these notes) and studied conditions for the existence of an embedding from abstract to refined
models. The embeddings are keys to the correct treatment of the problem of interaction of different models
of computation [5, 6].

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. DiBenedetto, A. Saldanha, and A. L. Sangiovanni-
Vincentelli. Supervisory control of finite state machines. In P. Wolper, editor, Proceedings of Computer
Aided Verification: 7th International Conference, CAV’95, Liege, Belgium, July 1995. Springer, 1995.
LNCS vol. 939.

[2] J. R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent Systems. PhD thesis,
School of Computer Science, Carnegie Mellon University, Aug. 1992.

[3] J. R. Burch, D. L. Dill, E. S. Wolf, and G. D. Micheli. Modeling hierarchical combinational circuits.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’93),
pages 612–617, November 1993.

[4] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Overcoming heterophobia: Modeling
concurrency in heterogeneous systems. In M. Koutny and A. Yakovlev, editors, Application of Con-
currency to System Design, 2001.

[5] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Using multiple levels of abstractions in
embedded software design. In Henzinger and Kirsch [10], pages 324–343.

[6] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Modeling techniques in design-by-
refinement methodologies. In Proceedings of the Sixth Biennial World Conference on Integrated De-
sign and Process Technology, June 23-28 2002.

70

[7] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In Henzinger and
Kirsch [10], pages 148–165.

[8] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, 1988. Also appeared as [9].

[9] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989.

[10] T. A. Henzinger and C. M. Kirsch, editors. Embedded Software, volume 2211 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[11] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-Vincentelli. Convertibility ver-
ification and converter synthesis: Two faces of the same coin. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’02), November 2002.

[12] J. C. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998.

71

