
Chapter 23

MODELING TECHNIQUES IN DESIGN-BY-
REFINEMENT METHODOLOGIES

Jerry R. Burch1, Roberto Passerone1, Alberto L. Sangiovanni-Vincentelli2

1Cadence Berkeley Labs, Berkeley, CA, 94704.
2Department of EECS, University of California at Berkeley, Berkeley, CA 94720

Abstract: Embedded system design methodologies that are based on the effective use of
multiple levels of abstraction hold promise for substantial productivity gains.
Starting the design process at a high level of abstraction improves control over
the design and facilitates verification and synthesis. In particular, if we use a
rigorous approach to link the levels of abstraction, we can establish properties
of lower levels from analysis at higher levels. This process goes by the name
of “design by refinement” . To maximize its benefit, design by refinement
requires a formal semantic foundation that supports a wide range of levels of
abstraction. We introduce such a semantic foundation and describe how it can
integrate several models for reactive systems.

Key words: Abstraction, refinement, heterogeneity, semantics.

1. INTRODUCTION

Currently deployed design methodologies for embedded systems are
often based on ad hoc techniques that lack formal foundations and hence are
likely to provide little if any guarantee of satisfying a set of given constraints
and specifications without resorting to extensive simulation or tests on
prototypes. In the face of growing complexity and tighter time-to-market,
cost and safety constraints, this approach will have to yield to more rigorous
methods. The objective of the Metropolis project [2] is to provide a design
methodology and the software infrastructure for embedded systems design,
from specification to implementation, using methodologies such as platform-
based design, communication-based design and successive refinement. The
focus is on formal analysis and synthesis for heterogeneous systems, i.e.
systems that use different modeling techniques for different parts of designs

2 Chapter 23

that interact with the real world. Metropolis is thus centered on its meta-
model of computation, a set of primitives that are used to construct several
different models. In this paper we lay the foundations for providing a
denotational semantics for the meta-model. In particular we study the
semantic domain of several models of computation of interest, and how
relationships between these models can be established. To do so, we created
a mathematical framework in which to express semantic domains in a form
that is close to their natural formulation, i.e. the form that is most convenient
for a model. The goal is to have a general framework that encompasses
many models of computation, including different models of time and
communication paradigms, and yet structured enough to give us results that
apply regardless of the particular model in question. At the same time, the
framework offers mathematical “ tools” to help build new semantic domains
from existing ones. Because the framework is based on algebraic structures,
the results are independent of any particular design language, and therefore
are not just specific to the Metropolis meta-model.

An important factor in the design of heterogeneous systems is the ability
to flexibly use different levels of abstraction. Each part of the design
undergoes changes in the level of abstraction during the design process and
different abstractions are often employed for different parts of a design by
way of different models of computation. Abstraction thus comes in different
forms that include the model of computation, the scope (or visibility) of
internal structure, or the model of the data. Thus, we provide a mathematical
framework that allows the user to choose the best abstraction (semantic
domain) for the particular task at hand. In this work, we concentrate on
semantic domains for concurrent systems and on the relations and functions
over those domains. We also emphasize the relationships that can be
constructed between different semantic domains. This work is therefore
independent of the specific syntaxes and semantic functions employed.
Likewise, we concentrate on a formulation that is convenient for reasoning
about the properties of the domain. As a result, we do not emphasize finite
representations or executable models, which we defer for future work.

2. RELATED WORK

In this section, we give a brief summary of the main approaches. We
refer the reader to [6] for a more complete account of related work.

Several formal models have been proposed over the years [9] to capture
one or more aspects of computation in embedded systems. Many models of
computation can be encoded in the Tagged Signal Model [10]. In contrast,
we describe a framework that is less restrictive in terms of what can be used

23. Modeling Techniques in Design-by-Refinement Methodologies 3

to represent behaviors, and we concentrate on building relationships between
the models that fit in the framework.

Our work shares the basic principles of the Ptolemy project [8] of
providing flexible abstractions and an environment that supports a structured
approach to heterogeneity. However, while in Ptolemy each model of
computation is described operationally in terms of a common executable
interface, we base our framework on a denotational representation and de-
emphasize executability. Instead, we are more concerned with studying the
process of abstraction and refinement in abstract terms. Process Spaces [11]
are also an extremely general class of concurrency models. However,
because of their generality, they do not provide much support for
constructing new semantic domains or relationships between domains.

Our notion of conservative approximation is closely related to the Galois
connection of an abstract interpretation [7]. In particular, the upper bound of
a conservative approximation roughly corresponds to the abstraction
function of a Galois connection. However, the lower bound of a conservative
approximation appears to have no analog in the theory of abstract
interpretations. Thus, conservative approximations allow non-trivial
abstraction of both the implementation and the specification, while abstract
interpretations only allow non-trivial abstraction of the implementation.

In the Rosetta language [1] domains of agents for different models of
computation are described declaratively as a set of assertions in some higher
order logic. In contrast, we are not concerned with the definition of a
language, and we define the domain directly as a collection of elements of a
set. In this sense, the approach taken by Rosetta seems more general.
However, the restrictions that we impose on our models allow us to prove
additional results that help create and compare the models.

3. OVERVIEW

In the following sections we introduce our framework and concentrate on
the basic principles underlying the definitions. We refer the reader to our
previous publications [3][4][5][6] for an in depth presentation of specific
examples of semantic domains and for a more formal presentation.

3.1 Traces and Trace Structures

The models of computation in use for embedded concurrent systems
represent a design by a collection of agents (processes, actors, modules) that
interact to perform a function. For any particular input to the system, the
agents react with some particular execution, or behavior. In our framework

4 Chapter 23

we maintain a clear distinction between models of agents and models of
individual executions. In different models of computation, individual
executions can be modeled by very different kinds of mathematical objects.
We always call these objects traces. A model of an agent, which we call a
trace structure, consists primarily of a set of traces. This is analogous to
verification methods based on language containment, where individual
executions are modeled by strings and agents are modeled by sets of strings.
However, our notion of trace is quite general and so is not limited to strings.

Traces often refer to the externally visible features of agents: their
actions, signals, state variables, etc. We do not distinguish among the
different types, and we refer to them collectively as a set of signals W . Each
trace and each trace structure is then associated with an alphabet WA ⊆ of
the signals it uses.

We make a distinction between two different kinds of behaviors:
complete behaviors and partial behaviors. A complete behavior has no
endpoint. A partial behavior has an endpoint; it can be a prefix of a complete
behavior or of another partial behavior. Complete traces and partial traces
are used to model complete and partial behaviors, respectively.

As an example we may consider traces that are suitable for modeling
continuous time, synchronous discrete time and transformational (i.e. non-
reactive) systems. In the first case, we might define a trace as a mapping that
associates to each signal a function from continuous time (the positive reals)
to an appropriate set of values (for example, the reals again). A partial trace
in this case is a mapping that associates functions from only a closed time
interval],0[δ , where δ > 0. For an alphabet A, the complete traces are
defined by)()(ℜ→ℜ→= +AABC , while partial traces are defined by

).],0([)(ℜ→→= δAABP We refer to these traces as metric-time traces.
An example of a trace suitable for synchronous discrete time systems is a

sequence. In this example we assume the signals represent events that occur
at distinct instants in time. The corresponding traces are sequences whose
elements are subsets of the set of signals (events) available from the
alphabet, i.e. ∞=)2()(AAB where the notation ∞ denotes both finite and
infinite sequences. Here the partial traces are the finite sequences, while the
complete traces are the infinite sequences. We refer to these traces as
synchronous traces.

Unlike the previous two examples, a transformational system is only
concerned with the initial and final state of a computation. If the signals are
interpreted as state variables, a corresponding trace may be defined as a pair
of mappings associating the state to its initial and final value (from a set of
values V), respectively. The case of non-termination is modeled by adding a
distinctive value⊥ to the set V. If we denote with }{⊥∪=⊥ VV , partial and

23. Modeling Techniques in Design-by-Refinement Methodologies 5

complete traces can be defined as).()()(⊥→×→= VAVAAB We refer
to these traces as pre-post traces.

Note that a given object can be both a complete trace and a partial trace;
what is being represented in a given case is determined from context. For
example, a terminating trace above can represent both a complete behavior
that terminates or it can represent a partial behavior.

3.2 Trace Algebra and Trace Structure Algebra

In our framework, the first step in defining a model of computation is to
construct a trace algebra. The carrier of a trace algebra contains the universe
of partial and complete traces for the model of computation. The algebra also
includes three operations on traces: projection, renaming and concatenation.
These operations are defined to support common tasks used in design, like
that of scoping, instantiation and composition of agents. The second step is
to construct a trace structure algebra. Here each element of the algebra is a
trace structure. Given a trace algebra a trace structure algebra is constructed
in a fixed way. Thus, constructing a trace algebra is the creative part of
defining a model of computation. A trace structure algebra includes four
operations on agents: projection, renaming, parallel composition and
sequential composition.

The relationships between trace algebras and trace structure algebras are
depicted in Figure 1. This figure also shows the relationships between
different algebras that we will discuss later in the paper.

Refined Domain

Abstract Domain

H
om

om
or

ph
is

m

derive
Ψ Ψ

Ψ

u l

inv

An agent is a set of behaviors

Individual behaviors Agents

A

A’

C

Trace Algebra

h

C’

Trace Structure
Algebra

Trace Structure
Algebra

Trace Algebra

Figure 23-1. Algebras and their relationships

6 Chapter 23

The first operation of trace algebra is called projection, and consists in
retaining from a trace only the information related to certain signals. The
projection operation proj takes as argument the set of signals B that should
be retained. For metric-time traces, projection corresponds to restricting the
mapping from the set A of signals to a subset B. This operation is defined
similarly for pre-post traces. Conversely, for synchronous traces projections
consists of removing the events not in B from each element of the sequence.
Projection on trace structures (agents) corresponds to hiding the internal
signals, and can therefore be seen as the natural extension to sets of the
corresponding operation on individual traces. In other words, the scope of
the hidden signals is limited to the agent they belong to.

The second operation is called renaming, and consists in changing the
names of the visible elements of a trace or an agent. The renaming operation
rename takes as argument a renaming function r that maps the elements of
the alphabet A into a new alphabet C. The function r is required to be a
bijection in W to avoid conflicts of names and potentially a change in the
behavior of the agents. In all examples, renaming corresponds to a
substitution of signals, and is easily defined in terms of the renaming
function r or of its inverse. As for projection, renaming of trace structures
can be seen as the natural extension to sets of traces of the corresponding
operation on individual traces. The effect is that of a renaming of all the
signals in the agent: this process corresponds to that of instantiation of a
master agent into its instances.

Projection and renaming, seen as operators for scoping and instantiation,
are common operations that are meaningful to all models of computation.
For all trace algebras and all trace structure algebras we require that the
operations on traces and trace structures satisfy certain properties. These
properties ensure that the operations behave as expected given their intuitive
meaning. In addition, we can use these properties as assumptions to prove
results that are independent of the particular model of computation in
question. These results provide powerful tools that the designer of the model
can use to prove general facts about the model and about its relationships
with other models.

In the algebra of trace structures we introduce the additional operation of
parallel composition. Note that this operation has no counterpart in the trace
algebra. Intuitively, parallel composition corresponds to having several
agents run concurrently by sharing some common signals. The result of the
parallel composition is one agent that alone acts as the combination of the
agents being composed. Let),(111 PAT = and),(222 PAT = be two agents
that we want to compose, where 1A and 2A are the alphabets, and 1P and 2P
the set of traces. The alphabet of the parallel composition 21 ||TTT = must
include all signals from 1T and 2T , so that 21 AAA ∪= . The set P of traces

23. Modeling Techniques in Design-by-Refinement Methodologies 7

of T must be “compatible” with the restrictions imposed by the agents being
composed. Thus if x is a trace of T with alphabet A, then its projection

))((1 xAproj on the alphabet of 1T must be in 1P , and the projection
))((2 xAproj on the alphabet of 2T must be in 2P . The set of traces in T must

be maximal with respect to that property. Formally:

} .))(())((|)({ 2211 PxAprojPxAprojABxP ∈∧∈∈=

 Similarly to projection and renaming, parallel composition of agents
must satisfy certain properties. For example we require that it be
commutative and associative. A fundamental result of this work is that the
properties of the trace algebra are sufficient to ensure that the corresponding
trace structure algebra satisfies its required properties.

While parallel composition is at the basis of concurrent models of
computation, in other models the emphasis may be on a ``sequential
execution'' of the agents. For these models we introduce a third operation on
traces called concatenation. In the case of synchronous traces, concatenation
corresponds to the usual concatenation on sequences. Similarly we can
define concatenation for metric-time traces. For pre-post traces,
concatenation is defined only when the final state of the first trace matches
the initial state of the second trace. The resulting trace has the initial state of
the first component and the final state of the second. Note that the
information about the intermediate state is lost.

Similarly to the other operations, concatenation must also satisfy certain
properties that ensure that its behavior is consistent with its intuitive
interpretation. For example we require that it be associative (but not
commutative!), and that it behaves consistently when used in combination
with projection and renaming. Concatenation induces a corresponding
operation on trace structures that we call sequential composition by naturally
extending it to sets of traces. A more detailed account of sequential
composition can be found in [5].

3.3 Refinement and Conservative Approximations

In verification and design-by-refinement methodologies a specification is
a model of the design that embodies all the possible implementation options.
Each implementation of a specification is said to refine the specification. In
our framework, each trace structure algebra has a refinement order that is
based on trace containment. We say that an agent 1T refines an agent 2T ,
written 21 TT ⊆ , if the set of traces of 1T is a subset of the set of traces of 2T .
Intuitively, this means that the implementation 1T can be substituted for the
specification 2T . Proving that an implementation refines a specification is

8 Chapter 23

often a difficult task. Most techniques decompose the problem into smaller
ones that are simpler to handle and that produce the desired result when
combined. To make this approach feasible, the operations on the agents must
be monotonic with respect to the refinement order. The definitions given in
the previous section make sure that this is the case for our semantic domains.

An even more convenient approach to the above verification consists of
translating the problem into a different, more abstract semantic domain,
where checking for refinement of a specification is presumably more
efficient. A conservative approximation is a mapping of agents from one
trace structure algebra to another, more abstract, algebra that serves that
purpose. The two trace structure algebras do not have to be based on the
same trace algebra. Thus, conservative approximations are a bridge between
different models of computation (see Figure 1).

A conservative approximation is actually composed of two mappings.
The first mapping is an upper bound of the agent: the abstract agent
represents all of the possible behaviors of the agent in the more detailed
domain, plus possibly some more. This mapping is usually denoted by uΨ .
The second is a lower bound: the abstract agent represents only possible
behaviors of the more detailed one, but possibly not all. We denote it by lΨ .

Conservative approximations are abstractions that maintain a precise
relationship between verification results in the two trace structure algebras.
In particular, a conservative approximation is defined to preserve results
related to trace containment, such that if 1T and 2T are trace structures, then

)()(21 TT lu Ψ⊆Ψ implies that .21 TT ⊆ When used in combination, the two
mappings allow us to relate results in the abstract domain to results in the
more detailed domain. The conservative approximation guarantees that this
will not lead to a false positive result, although false negatives are possible.

Defining a conservative approximations and proving that it satisfies the
definition can sometimes be difficult. However, a conservative
approximation between trace structure algebras can be derived from a
homomorphism between the underlying trace algebras.

A homomorphism h is a function between the domains of two trace
algebras that commutes with projection, renaming and concatenation.
Consider two trace algebras C and C’ . Intuitively, if h(x) = x' the trace x’ is
an abstraction of any trace y such that h(y) = x'. Thus, x’ can be thought of as
representing the set of all such y. Similarly, a set X’ of traces in C’ can be
thought of as representing the largest set Y such that h(Y) = X', where h is
naturally extended to sets of traces. If h(X) = X', then YX ⊆ , so X’
represents a kind of upper bound on the set X. Hence, if A and A’ are trace
structure algebras constructed from C and C’ respectively, we use the
function uΨ that maps an agent with traces P in A into the agent with traces
h(P) in A’ as the upper bound in a conservative approximation. A sufficient

23. Modeling Techniques in Design-by-Refinement Methodologies 9

condition for a corresponding lower bound is: if Px∉ , then h(x) is not in
the set of possible traces of)(TlΨ . This leads to the definition of a function

)(TlΨ that maps P into the set))(()(PABhPh −− . The conservative
approximation),(ul ΨΨ=Ψ is an example of a conservative approximation
induced by h. A slightly tighter lower bound is also possible (see [3]).

Thus, one need only construct two models of individual behaviors and a
homomorphism between them to obtain two trace structure models along
with a conservative approximation between the trace structure models.

3.4 Inverses of Conservative Approximations

Conservative approximations represent the process of abstracting a
specification in a less detailed semantic domain. Inverses of conservative
approximations represent the opposite process of refinement.

Let A and A’ be two trace structure algebras, and let Ψ be a conservative
approximation between A and A’ . Normal notions of the inverse of a
function are not adequate for our purpose, since Ψ is a pair of functions.
We handle this by only considering the T in A for which)(TuΨ and)(TlΨ
have the same value T’ . Intuitively, T’ represents T exactly in this case,
hence we define TTinv =Ψ)'(. When)()(TT lu Ψ≠Ψ then invΨ is not
defined.

The inverse of a conservative approximation can be used to embed a
trace structure algebra at a higher level of abstraction into one at a lower
level. Only the agents that can be represented exactly at the high level are in
the image of the inverse of a conservative approximation. We use this as part
of our approach for reasoning about heterogeneous systems that use models
of computation at multiple levels of abstraction. Assume we want to
compose two agents '1T and '2T that reside in two different trace structure
algebras A1 and A2. To make sense of the composition, we first define a
third, more detailed trace algebra that has homomorphisms into the other
two. Thus we can construct a third, more detailed, trace structure algebra A
with conservative approximations induced by the homomorphisms. The
inverse of these conservative approximations are used to map '1T and '2T
into their corresponding detailed models T1 and T2. The composition then
takes place in the detailed trace structure algebra.

4. CONCLUSIONS

The goal of trace algebras is to make it easy to define and to study the
relationship between the semantic domains for a wide range of models of
computation. All the models of importance “ reside” in a unified framework

10 Chapter 23

so that their combination, re-partition and communication may be better
understood and optimized. This unified approach will provide a designer a
powerful mechanism to actually select the appropriate models of
computation for the essential parts of his/her design.

Our representation of agents is denotational, in that no rule is given to
derive the output from the input. The algebraic infrastructure allows us to
formalize a semantic domain in a way that is close to a natural semantic
domain for a model of computation. In addition it introduces additional
concepts such as hierarchy, instantiation and scoping in a natural and
consistent way. In particular we are concentrating on using the concept of a
conservative approximation to study the problem of heterogeneous
interaction.

REFERENCES

[1] The Rosetta web site. http://www.sldl.org.
[2] F. Balarin, L. Lavagno, C. Passerone, A. L. S. Vincentelli, M. Sgroi, and Y. Watanabe.

Modeling and designing heterogeneous systems. In J. Cortadella and A. Yakovlev,
editors, Advances in Concurrency and System Design. Springer-Verlag, 2002.

[3] J. R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent
Systems. PhD thesis, School of Computer Science, Carnegie Mellon Univ., Aug. 1992.

[4] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Overcoming heterophobia:
Modeling concurrency in heterogeneous systems. In M. Koutny and A. Yakovlev,
editors, Application of Concurrency to System Design, 2001.

[5] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Using multiple levels of
abstraction in embedded software design. In T. A. Henzinger and C. M. Kirsch, editors,
1st International Workshop, EMSOFT 2001, vol. 2211 of LNCS. Springer-Verlag, 2001.

[6] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Modeling techniques in
design-by-refinement methodologies. In Proceedings of the Sixth Biennial World
Conference on Integrated Design and Process Technology, June 23-28 2002.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 238--252, Los Angeles, California, 1977.

[8] J. Davis II, et al. Heterogeneous concurrent modeling and design in java. Technical
Memorandum UCB/ERL M01/12, EECS, Univ. of California, Berkeley, Mar. 2001.

[9] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded
systems: Formal models, validation, and synthesis. Proc. of the IEEE, 85(3):366--390,
Mar. 1997.

[10] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on CAD, 17(12):1217--1229, Dec. 1998.

[11] R. Negulescu. Process spaces. In C. Palamidessi, editor, CONCUR, volume 1877 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

