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Abstract: Embedded system design methodologies that are based on the effective use of 
multiple levels of abstraction hold promise for substantial productivity gains. 
Starting the design process at a high level of abstraction improves control over 
the design and facilitates verification and synthesis. In particular, if we use a 
rigorous approach to link the levels of abstraction, we can establish properties 
of lower levels from analysis at higher levels. This process goes by the name 
of “design by refinement” . To maximize its benefit, design by refinement 
requires a formal semantic foundation that supports a wide range of levels of 
abstraction. We introduce such a semantic foundation and describe how it can 
integrate several models for reactive systems. 
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1. INTRODUCTION 

Currently deployed design methodologies for embedded systems are 
often based on ad hoc techniques that lack formal foundations and hence are 
likely to provide little if any guarantee of satisfying a set of given constraints 
and specifications without resorting to extensive simulation or tests on 
prototypes. In the face of growing complexity and tighter time-to-market, 
cost and safety constraints, this approach will have to yield to more rigorous 
methods. The objective of the Metropolis project [2] is to provide a design 
methodology and the software infrastructure for embedded systems design, 
from specification to implementation, using methodologies such as platform-
based design, communication-based design and successive refinement. The 
focus is on formal analysis and synthesis for heterogeneous systems, i.e. 
systems that use different modeling techniques for different parts of designs 
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that interact with the real world. Metropolis is thus centered on its meta-
model of computation, a set of primitives that are used to construct several 
different models. In this paper we lay the foundations for providing a 
denotational semantics for the meta-model. In particular we study the 
semantic domain of several models of computation of interest, and how 
relationships between these models can be established. To do so, we created 
a mathematical framework in which to express semantic domains in a form 
that is close to their natural formulation, i.e. the form that is most convenient 
for a model. The goal is to have a general framework that encompasses 
many models of computation, including different models of time and 
communication paradigms, and yet structured enough to give us results that 
apply regardless of the particular model in question. At the same time, the 
framework offers mathematical “ tools”  to help build new semantic domains 
from existing ones. Because the framework is based on algebraic structures, 
the results are independent of any particular design language, and therefore 
are not just specific to the Metropolis meta-model. 

An important factor in the design of heterogeneous systems is the ability 
to flexibly use different levels of abstraction. Each part of the design 
undergoes changes in the level of abstraction during the design process and 
different abstractions are often employed for different parts of a design by 
way of different models of computation. Abstraction thus comes in different 
forms that include the model of computation, the scope (or visibility) of 
internal structure, or the model of the data. Thus, we provide a mathematical 
framework that allows the user to choose the best abstraction (semantic 
domain) for the particular task at hand. In this work, we concentrate on 
semantic domains for concurrent systems and on the relations and functions 
over those domains. We also emphasize the relationships that can be 
constructed between different semantic domains. This work is therefore 
independent of the specific syntaxes and semantic functions employed. 
Likewise, we concentrate on a formulation that is convenient for reasoning 
about the properties of the domain. As a result, we do not emphasize finite 
representations or executable models, which we defer for future work. 

2. RELATED WORK 

In this section, we give a brief summary of the main approaches. We 
refer the reader to [6] for a more complete account of related work. 

Several formal models have been proposed over the years [9] to capture 
one or more aspects of computation in embedded systems. Many models of 
computation can be encoded in the Tagged Signal Model [10]. In contrast, 
we describe a framework that is less restrictive in terms of what can be used 



23. Modeling Techniques in Design-by-Refinement Methodologies 3
 
to represent behaviors, and we concentrate on building relationships between 
the models that fit in the framework.  

Our work shares the basic principles of the Ptolemy project [8] of 
providing flexible abstractions and an environment that supports a structured 
approach to heterogeneity. However, while in Ptolemy each model of 
computation is described operationally in terms of a common executable 
interface, we base our framework on a denotational representation and de-
emphasize executability. Instead, we are more concerned with studying the 
process of abstraction and refinement in abstract terms. Process Spaces [11] 
are also an extremely general class of concurrency models. However, 
because of their generality, they do not provide much support for 
constructing new semantic domains or relationships between domains. 

Our notion of conservative approximation is closely related to the Galois 
connection of an abstract interpretation [7]. In particular, the upper bound of 
a conservative approximation roughly corresponds to the abstraction 
function of a Galois connection. However, the lower bound of a conservative 
approximation appears to have no analog in the theory of abstract 
interpretations. Thus, conservative approximations allow non-trivial 
abstraction of both the implementation and the specification, while abstract 
interpretations only allow non-trivial abstraction of the implementation.  

In the Rosetta language [1] domains of agents for different models of 
computation are described declaratively as a set of assertions in some higher 
order logic. In contrast, we are not concerned with the definition of a 
language, and we define the domain directly as a collection of elements of a 
set. In this sense, the approach taken by Rosetta seems more general. 
However, the restrictions that we impose on our models allow us to prove 
additional results that help create and compare the models.  

3. OVERVIEW 

In the following sections we introduce our framework and concentrate on 
the basic principles underlying the definitions. We refer the reader to our 
previous publications [3][4][5][6] for an in depth presentation of specific 
examples of semantic domains and for a more formal presentation. 

3.1 Traces and Trace Structures 

The models of computation in use for embedded concurrent systems 
represent a design by a collection of agents (processes, actors, modules) that 
interact to perform a function. For any particular input to the system, the 
agents react with some particular execution, or behavior. In our framework 
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we maintain a clear distinction between models of agents and models of 
individual executions. In different models of computation, individual 
executions can be modeled by very different kinds of mathematical objects. 
We always call these objects traces. A model of an agent, which we call a 
trace structure, consists primarily of a set of traces. This is analogous to 
verification methods based on language containment, where individual 
executions are modeled by strings and agents are modeled by sets of strings. 
However, our notion of trace is quite general and so is not limited to strings.  

Traces often refer to the externally visible features of agents: their 
actions, signals, state variables, etc. We do not distinguish among the 
different types, and we refer to them collectively as a set of signals W . Each 
trace and each trace structure is then associated with an alphabet WA ⊆  of 
the signals it uses.  

We make a distinction between two different kinds of behaviors: 
complete behaviors and partial behaviors. A complete behavior has no 
endpoint. A partial behavior has an endpoint; it can be a prefix of a complete 
behavior or of another partial behavior. Complete traces and partial traces 
are used to model complete and partial behaviors, respectively. 

As an example we may consider traces that are suitable for modeling 
continuous time, synchronous discrete time and transformational (i.e. non-
reactive) systems. In the first case, we might define a trace as a mapping that 
associates to each signal a function from continuous time (the positive reals) 
to an appropriate set of values (for example, the reals again). A partial trace 
in this case is a mapping that associates functions from only a closed time 
interval ],0[ δ , where  δ > 0. For an alphabet A, the complete traces are 
defined by )()( ℜ→ℜ→= +AABC  , while partial traces are defined by 

).],0([)( ℜ→→= δAABP  We refer to these traces as metric-time traces.  
An example of a trace suitable for synchronous discrete time systems is a 

sequence. In this example we assume the signals represent events that occur 
at distinct instants in time. The corresponding traces are sequences whose 
elements are subsets of the set of signals (events) available from the 
alphabet, i.e. ∞= )2()( AAB  where the notation ∞ denotes both finite and 
infinite sequences. Here the partial traces are the finite sequences, while the 
complete traces are the infinite sequences. We refer to these traces as 
synchronous traces. 

Unlike the previous two examples, a transformational system is only 
concerned with the initial and final state of a computation. If the signals are 
interpreted as state variables, a corresponding trace may be defined as a pair 
of mappings associating the state to its initial and final value (from a set of 
values V ), respectively. The case of non-termination is modeled by adding a 
distinctive value⊥ to the set V. If we denote with }{⊥∪=⊥ VV , partial and 
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complete traces can be defined as ).()()( ⊥→×→= VAVAAB  We refer 
to these traces as pre-post traces.  

Note that a given object can be both a complete trace and a partial trace; 
what is being represented in a given case is determined from context. For 
example, a terminating trace above can represent both a complete behavior 
that terminates or it can represent a partial behavior. 

3.2 Trace Algebra and Trace Structure Algebra 

In our framework, the first step in defining a model of computation is to 
construct a trace algebra. The carrier of a trace algebra contains the universe 
of partial and complete traces for the model of computation. The algebra also 
includes three operations on traces: projection, renaming and concatenation. 
These operations are defined to support common tasks used in design, like 
that of scoping, instantiation and composition of agents. The second step is 
to construct a trace structure algebra. Here each element of the algebra is a 
trace structure. Given a trace algebra a trace structure algebra is constructed 
in a fixed way. Thus, constructing a trace algebra is the creative part of 
defining a model of computation. A trace structure algebra includes four 
operations on agents: projection, renaming, parallel composition and 
sequential composition. 

The relationships between trace algebras and trace structure algebras are 
depicted in Figure 1. This figure also shows the relationships between 
different algebras that we will discuss later in the paper. 
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The first operation of trace algebra is called projection, and consists in 
retaining from a trace only the information related to certain signals. The 
projection operation proj takes as argument the set of signals B that should 
be retained. For metric-time traces, projection corresponds to restricting the 
mapping from the set A of signals to a subset B. This operation is defined 
similarly for pre-post traces. Conversely, for synchronous traces projections 
consists of removing the events not in B from each element of the sequence. 
Projection on trace structures (agents) corresponds to hiding the internal 
signals, and can therefore be seen as the natural extension to sets of the 
corresponding operation on individual traces. In other words, the scope of 
the hidden signals is limited to the agent they belong to.  

The second operation is called renaming, and consists in changing the 
names of the visible elements of a trace or an agent. The renaming operation 
rename takes as argument a renaming function r that maps the elements of 
the alphabet A into a new alphabet C. The function r is required to be a 
bijection in W to avoid conflicts of names and potentially a change in the 
behavior of the agents. In all examples, renaming corresponds to a 
substitution of signals, and is easily defined in terms of the renaming 
function r or of its inverse. As for projection, renaming of trace structures 
can be seen as the natural extension to sets of traces of the corresponding 
operation on individual traces. The effect is that of a renaming of all the 
signals in the agent: this process corresponds to that of instantiation of a 
master agent into its instances.  

Projection and renaming, seen as operators for scoping and instantiation, 
are common operations that are meaningful to all models of computation. 
For all trace algebras and all trace structure algebras we require that the 
operations on traces and trace structures satisfy certain properties. These 
properties ensure that the operations behave as expected given their intuitive 
meaning. In addition, we can use these properties as assumptions to prove 
results that are independent of the particular model of computation in 
question. These results provide powerful tools that the designer of the model 
can use to prove general facts about the model and about its relationships 
with other models.  

In the algebra of trace structures we introduce the additional operation of 
parallel composition. Note that this operation has no counterpart in the trace 
algebra. Intuitively, parallel composition corresponds to having several 
agents run concurrently by sharing some common signals. The result of the 
parallel composition is one agent that alone acts as the combination of the 
agents being composed. Let ),( 111 PAT = and ),( 222 PAT = be two agents 
that we want to compose, where 1A and 2A are the alphabets, and 1P and 2P  
the set of traces. The alphabet of the parallel composition 21 ||TTT = must 
include all signals from 1T  and 2T , so that 21 AAA ∪= . The set P of traces 
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of T must be “compatible”  with the restrictions imposed by the agents being 
composed. Thus if x is a trace of T with alphabet A, then its projection 

))(( 1 xAproj on the alphabet of 1T  must be in 1P , and the projection 
))(( 2 xAproj on the alphabet of 2T must be in 2P . The set of traces in T must 

be maximal with respect to that property. Formally: 

} .))(())((|)({ 2211 PxAprojPxAprojABxP ∈∧∈∈=  

 Similarly to projection and renaming, parallel composition of agents 
must satisfy certain properties. For example we require that it be 
commutative and associative. A fundamental result of this work is that the 
properties of the trace algebra are sufficient to ensure that the corresponding 
trace structure algebra satisfies its required properties.  

While parallel composition is at the basis of concurrent models of 
computation, in other models the emphasis may be on a ``sequential 
execution'' of the agents. For these models we introduce a third operation on 
traces called concatenation. In the case of synchronous traces, concatenation 
corresponds to the usual concatenation on sequences. Similarly we can 
define concatenation for metric-time traces. For pre-post traces, 
concatenation is defined only when the final state of the first trace matches 
the initial state of the second trace. The resulting trace has the initial state of 
the first component and the final state of the second. Note that the 
information about the intermediate state is lost.  

Similarly to the other operations, concatenation must also satisfy certain 
properties that ensure that its behavior is consistent with its intuitive 
interpretation. For example we require that it be associative (but not 
commutative!), and that it behaves consistently when used in combination 
with projection and renaming. Concatenation induces a corresponding 
operation on trace structures that we call sequential composition by naturally 
extending it to sets of traces. A more detailed account of sequential 
composition can be found in [5]. 

3.3 Refinement and Conservative Approximations 

In verification and design-by-refinement methodologies a specification is 
a model of the design that embodies all the possible implementation options. 
Each implementation of a specification is said to refine the specification. In 
our framework, each trace structure algebra has a refinement order that is 
based on trace containment. We say that an agent 1T  refines an agent 2T , 
written 21 TT ⊆ , if the set of traces of 1T  is a subset of the set of traces of 2T . 
Intuitively, this means that the implementation 1T  can be substituted for the 
specification 2T . Proving that an implementation refines a specification is 
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often a difficult task. Most techniques decompose the problem into smaller 
ones that are simpler to handle and that produce the desired result when 
combined. To make this approach feasible, the operations on the agents must 
be monotonic with respect to the refinement order. The definitions given in 
the previous section make sure that this is the case for our semantic domains.  

An even more convenient approach to the above verification consists of 
translating the problem into a different, more abstract semantic domain, 
where checking for refinement of a specification is presumably more 
efficient. A conservative approximation is a mapping of agents from one 
trace structure algebra to another, more abstract, algebra that serves that 
purpose. The two trace structure algebras do not have to be based on the 
same trace algebra. Thus, conservative approximations are a bridge between 
different models of computation (see Figure 1). 

A conservative approximation is actually composed of two mappings. 
The first mapping is an upper bound of the agent: the abstract agent 
represents all of the possible behaviors of the agent in the more detailed 
domain, plus possibly some more. This mapping is usually denoted by uΨ . 
The second is a lower bound: the abstract agent represents only possible 
behaviors of the more detailed one, but possibly not all. We denote it by lΨ .  

Conservative approximations are abstractions that maintain a precise 
relationship between verification results in the two trace structure algebras. 
In particular, a conservative approximation is defined to preserve results 
related to trace containment, such that if 1T  and 2T  are trace structures, then 

)()( 21 TT lu Ψ⊆Ψ  implies that .21 TT ⊆  When used in combination, the two 
mappings allow us to relate results in the abstract domain to results in the 
more detailed domain. The conservative approximation guarantees that this 
will not lead to a false positive result, although false negatives are possible. 

Defining a conservative approximations and proving that it satisfies the 
definition can sometimes be difficult. However, a conservative 
approximation between trace structure algebras can be derived from a 
homomorphism between the underlying trace algebras.  

A homomorphism h is a function between the domains of two trace 
algebras that commutes with projection, renaming and concatenation. 
Consider two trace algebras C and C’ . Intuitively, if h(x) = x' the trace x’  is 
an abstraction of any trace y such that h(y) = x'. Thus, x’  can be thought of as 
representing the set of all such y. Similarly, a set X’  of traces in C’  can be 
thought of as representing the largest set Y such that h(Y) = X', where h is 
naturally extended to sets of traces. If h(X) = X', then YX ⊆ , so X’  
represents a kind of upper bound on the set X. Hence, if A and A’  are trace 
structure algebras constructed from C and C’  respectively, we use the 
function uΨ  that maps an agent with traces P in A into the agent with traces 
h(P) in A’  as the upper bound in a conservative approximation. A sufficient 
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condition for a corresponding lower bound is: if Px∉ , then h(x) is not in 
the set of possible traces of )(TlΨ . This leads to the definition of a function 

)(TlΨ  that maps P into the set ))(()( PABhPh −− . The conservative 
approximation ),( ul ΨΨ=Ψ is an example of a conservative approximation 
induced by h. A slightly tighter lower bound is also possible (see [3]).  

Thus, one need only construct two models of individual behaviors and a 
homomorphism between them to obtain two trace structure models along 
with a conservative approximation between the trace structure models. 

3.4 Inverses of Conservative Approximations 

Conservative approximations represent the process of abstracting a 
specification in a less detailed semantic domain. Inverses of conservative 
approximations represent the opposite process of refinement.  

Let A and A’  be two trace structure algebras, and let Ψ be a conservative 
approximation between A and A’ . Normal notions of the inverse of a 
function are not adequate for our purpose, since Ψ  is a pair of functions. 
We handle this by only considering the T in A for which )(TuΨ  and )(TlΨ  
have the same value T’ . Intuitively, T’  represents T exactly in this case, 
hence we define TTinv =Ψ )'( . When )()( TT lu Ψ≠Ψ  then invΨ  is not 
defined.  

The inverse of a conservative approximation can be used to embed a 
trace structure algebra at a higher level of abstraction into one at a lower 
level. Only the agents that can be represented exactly at the high level are in 
the image of the inverse of a conservative approximation. We use this as part 
of our approach for reasoning about heterogeneous systems that use models 
of computation at multiple levels of abstraction. Assume we want to 
compose two agents '1T  and '2T  that reside in two different trace structure 
algebras A1 and A2. To make sense of the composition, we first define a 
third, more detailed trace algebra that has homomorphisms into the other 
two. Thus we can construct a third, more detailed, trace structure algebra A 
with conservative approximations induced by the homomorphisms. The 
inverse of these conservative approximations are used to map '1T  and '2T  
into their corresponding detailed models T1 and T2. The composition then 
takes place in the detailed trace structure algebra. 

4.  CONCLUSIONS 

The goal of trace algebras is to make it easy to define and to study the 
relationship between the semantic domains for a wide range of models of 
computation. All the models of importance “ reside” in a unified framework 
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so that their combination, re-partition and communication may be better 
understood and optimized. This unified approach will provide a designer a 
powerful mechanism to actually select the appropriate models of 
computation for the essential parts of his/her design.  

Our representation of agents is denotational, in that no rule is given to 
derive the output from the input. The algebraic infrastructure allows us to 
formalize a semantic domain in a way that is close to a natural semantic 
domain for a model of computation. In addition it introduces additional 
concepts such as hierarchy, instantiation and scoping in a natural and 
consistent way. In particular we are concentrating on using the concept of a 
conservative approximation to study the problem of heterogeneous 
interaction. 

REFERENCES 

[1] The Rosetta web site. http://www.sldl.org. 
[2] F. Balarin, L. Lavagno, C. Passerone, A. L. S. Vincentelli, M. Sgroi, and Y. Watanabe. 

Modeling and designing heterogeneous systems. In J. Cortadella and A. Yakovlev, 
editors, Advances in Concurrency and System Design. Springer-Verlag, 2002.  

[3] J. R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent 
Systems. PhD thesis, School of Computer Science, Carnegie Mellon Univ., Aug. 1992.  

[4] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Overcoming heterophobia: 
Modeling concurrency in heterogeneous systems. In M. Koutny and A. Yakovlev, 
editors, Application of Concurrency to System Design, 2001.  

[5] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Using multiple levels of 
abstraction in embedded software design. In T. A. Henzinger and C. M. Kirsch, editors, 
1st International Workshop, EMSOFT 2001, vol. 2211 of LNCS. Springer-Verlag, 2001.  

[6] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Modeling techniques in 
design-by-refinement methodologies. In Proceedings of the Sixth Biennial World 
Conference on Integrated Design and Process Technology, June 23-28 2002.  

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static 
analysis of programs by construction or approximation of fixpoints. In Conference 
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symp. on Principles of 
Programming Languages, pages 238--252, Los Angeles, California, 1977.  

[8] J. Davis II, et al. Heterogeneous concurrent modeling and design in java. Technical 
Memorandum UCB/ERL M01/12, EECS, Univ. of California, Berkeley, Mar. 2001.  

[9] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded 
systems: Formal models, validation, and synthesis. Proc. of the IEEE, 85(3):366--390, 
Mar. 1997.  

[10] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for comparing models of 
computation. IEEE Transactions on CAD, 17(12):1217--1229, Dec. 1998.  

[11] R. Negulescu. Process spaces. In C. Palamidessi, editor, CONCUR, volume 1877 of 
Lecture Notes in Computer Science. Springer-Verlag, 2000. 


