
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c
2002 Society for Desing and Process Science

Modeling Techniques in Design-by-Refinement Methodologies

Jerry R. Burch1, Roberto Passerone1, Alberto L. Sangiovanni-Vincentelli2

1Cadence Berkeley Laboratories, Berkeley CA 94704
2Department of EECS, University of California at Berkeley, Berkeley CA 94720

ABSTRACT: Embedded system design methodologies
that are based on the effective use of multiple levels of ab-
straction hold promise for substantial productivity gains.
Starting the design process at a high level of abstraction
improves control over the design and facilitates verification
and synthesis. In particular, if we use a rigorous approach
to link the levels of abstraction, we can establish properties
of lower levels from analysis at higher levels. This process
goes by the name of “design by refinement”. To maximize
its benefit, design by refinement requires a formal semantic
foundation that supports a wide range of levels of abstrac-
tion (e.g., from differential equations describing physical
behaviors to high-level requirement specifications). We de-
scribe such a semantic foundation, and give examples of
how it integrates several well-known models for reactive
systems. The semantic foundation allows us to establish
the relationships among the different levels of abstractions
even when non-homogeneous models are used to describe
the design. These relationships are essential to establish
properties and to document assumptions about the way the
models are used, preventing common errors that are diffi-
cult to detect and may otherwise require long redesign cy-
cles.

I. INTRODUCTION

Microscopic devices, powered by ambient energy in their
environment, will be able to sense numerous fields, po-
sition, velocity, and acceleration, and communicate with
appropriate and sometimes substantial bandwidth in the
near area. Larger, more powerful systems within the in-
frastructure will be driven by the continued improvements
in storage density, memory density, processing capability,
and system-area interconnects as single board systems are
eclipsed by complete systems on a chip. Data movement
and transformation is of central importance in such applica-
tions. Future devices will be network-connected, channel-
ing streams of data into the infrastructure, with moderate
processing on the fly. Others will have narrow, application-
specific user interfaces. Applications will not be centered
within a single device, but stretched over several, forming
a path through the infrastructure. In such applications, the
ability of the system designer to specify, manage, and verify
the functionality and performance of concurrent behaviors
is essential.

Currently deployed design methodologies for embedded
systems are often based on ad hoc techniques that lack for-
mal foundations and hence are likely to provide little if any
guarantee of satisfying a set of given constraints and spec-
ifications without resorting to extensive simulation or tests

on prototypes. In the face of growing complexity and tight-
ening of time-to-market, cost and safety constraints, this
approach will have to yield to more rigorous methods. We
believe that it is most likely that the preferred approaches
to the implementation of complex embedded systems will
include the following aspects:
� Design time and cost are likely to dominate the decision-
making process for system designers. Therefore, design
reuse in all its shapes and forms, as well as just-in-time,
low-cost design debug techniques will be of paramount im-
portance.
� Designs must be captured at the highest level of abstrac-
tion to be able to exploit all the degrees of freedom that
are available. Such a level of abstraction should not make
any distinction between hardware and software, since such
a distinction is the consequence of a design decision.
� The implementation of efficient, reliable, and robust ap-
proaches to the design, implementation, and programming
of concurrent systems is essential. In essence, whether the
silicon is implemented as a single, large chip or as a col-
lection of smaller chips interacting across a distance, the
problems associated with concurrent processing and con-
current communication must be dealt with in a uniform and
scalable manner. In any large-scale embedded systems pro-
gram, concurrency must be considered as a first class cit-
izen at all levels of abstraction and in both hardware and
software.
� Concurrency implies communication among components
of the design. Communication is too often intertwined with
the behavior of the components of the design so that it is
very difficult to separate out the two issues. Separating
communication and behavior is essential to overcome sys-
tem design complexity. If in a design component behaviors
and communications are intertwined, it is very difficult to
re-use components since their behavior is tightly dependent
on the communication with other components of the origi-
nal design.

A great deal of excellent work has been done in a project
centered around Ptolemy, where the issues related to the
composition of models of computation and a general simu-
lation framework have been carefully studied [9], [10]. The
Ptolemy environment allows the efficient simulation and
analysis of functional behavior of heterogeneous systems.
In a companion project, we have advocated the introduction
of rigorous methodologies for system-level design for years
(e.g., [2], [20]) but we feel that there is still much to do.
Recently we have directed our efforts to a new companion
endeavor that tries to capture the requirements of present
day embedded system design: the Metropolis project.

The Metropolis project ([3]) has the objective of provid-

2

ing a design methodology and the software infrastructure
to enable the design of embedded systems. The focus of the
project is in a complete design system for embedded sys-
tems from specifications to implementation using method-
ologies such as platform-based design, communication-
based design and successive refinement. The focus is on
formal analysis and synthesis techniques for heterogeneous
embedded systems.

The word heterogeneous highlights the fact that in com-
plex designs that interact with the real world, different parts
of a design are likely to be modeled using very different
techniques. For this reason, Metropolis is centered around
its meta-model of computation, a set of primitives that can
be used to construct several different models of computa-
tion. The long term objective of this work is to lay the
foundations for providing a denotational semantics for the
meta-model. Here we begin by studying the semantic do-
main of several of the models of computation of interest,
and by studying how relationships between these models
can be established. To do so, we have created a mathemat-
ical framework in which to express semantic domains in a
form that is close to their natural formulation (i.e. the form
that is most convenient for a given domain), and yet struc-
tured enough to give us results that apply regardless of the
particular domain in question.

An important factor in the design of heterogeneous sys-
tems is the ability to flexibly use different levels of abstrac-
tion. Different abstractions are often employed for different
parts of a design (by way of different models of computa-
tion, for instance). Even each individual piece of the design
undergoes changes in the level of abstraction during the de-
sign process, as the model is refined towards a represen-
tation closer to the final implementation. Different levels
of detail are also used to perform different kinds of analy-
sis: for example, a high level functional verification versus
a detailed electromagnetic interference analysis. Thus, we
provide a mathematical framework that allows the user to
choose the best abstraction for the particular task at hand,
and to formally relate that abstraction to different abstrac-
tions used for other tasks. Here, we also recognize that
abstraction may come in very different forms that include
the model of computation, the scope or visibility of internal
structures, or the model of the data.

In our work, we concentrate on semantic domains for
concurrent systems and on the relations and functions over
those domains. We also emphasize the relationships that
can be constructed between different semantic domains.
This work is therefore independent of the specific syntaxes
and semantic functions employed. Likewise, we concen-
trate on a formulation that is convenient for reasoning about
the properties of the domain. As a result, we do not empha-
size finite representations or executable models, which we
defer for future work.

The following sections introduce our framework. The
exposition will focus on the definition of a natural semantic
domain for a specific application, and its formulation in the
framework. Later in the paper we consider examples of
relationships that can we can build between some of the
domains. These relationships are the basic tools to be used

in studying the properties of heterogeneous systems.

II. RELATED WORK

Several formal models have been proposed over the years
(see e.g. [12]) to capture one or more aspects of computa-
tion as needed in embedded system design. Many mod-
els of computation can be encoded in the Tagged Signal
Model [16]. However, because encoding is necessary, the
level of abstraction is effectively changed, so some of the
advantages of the original model of computation may be
lost. In this work, in contrast, we describe a framework that
is less restrictive than the Tagged Signal Model in terms of
what can be used to represent behaviors, and we concen-
trate on building relationships between the models that fit
in the framework.

The study of systems in which differnt parts are de-
scribed using different models of computation (hetero-
geneous systems) is the central theme of the Ptolemy
project [9], [10]. Our work shares the basic principles of
providing flexible abstractions and an environment that sup-
ports a structured approach to heterogeneity. The approach,
however, is quite different. In Ptolemy each model of com-
putation is described operationally in terms of a common
executable interface. For each model, a “director” deter-
mines the activations of the actors (for some models, the
actors are always active and run in their own thread). Sim-
ilarly, communication is defined in terms of a common
interface. The director together with an implementation
of the communication interface (a “receiver”) defines the
communication scheme and the possible interactions with
other models of computation. On the other hand, we base
our framework on a denotational representation and de-
emphasize executability. Instead, we are more concerned
with studying the process of abstraction and refinement in
abstract terms. For example, it is easy in our framework
to model the non-deterministic behavior that emerges when
an abstract model is embedded into a more detailed model.
Any executable framework would require an upfront choice
that would make the model deterministic, potentially hiding
some aspects of the composition.

There is a tradeoff between two goals: making the frame-
work general, and providing structure to simplify construct-
ing models and understanding their properties. While our
framework is quite general, we have formalized several as-
sumptions that must be satisfied by our domains of agents.
These include both axioms and constructions that build pro-
cess models (and mappings between them) from models of
individual behaviors (and their mappings). These assump-
tions allow us to prove many generic theorems that apply
to all semantic domains in our framework. In our experi-
ence, having these theorems greatly simplifies constructing
new semantic domains that have the desired properties and
relationships.

Process Spaces [17], [18] are an extremely general class
of concurrency models. However, because of their gener-
ality, they do not provide much support for constructing
new semantic domains or relationships between domains.
For example, by proving generic properties of broad classes
of conservative approximations, we remove the need to re-

3

prove these properties when a new conservative approxima-
tion is constructed.

We introduce the notion of a conservative approximation
to relate one domain of agents to another, more abstract,
domain. A conservative approximation has two functions.
The first, called the lower bound, is used to abstract agents
that represent the specification of a design. The second,
called the upper bound, is used to abstract agents that repre-
sent possible implementations of the specification. A con-
servative approximation is defined so that if the implemen-
tation satisfies the specification in the abstract domain, then
the implementation satisfies the specification in the more
detailed domain, as well. Our notion of conservative ap-
proximation is closely related to the Galois connection of
an abstract interpretations [6], [7]. In particular, the up-
per bound of a conservative approximation roughly corre-
sponds to the abstraction function of a Galois connection.
However, the lower bound of a conservative approximation
appears to have no analog in the theory of abstract inter-
pretations. To our knowledge, for abstract interpretations
a positive verification result in the abstract domain implies
a positive verification result in the concrete domain only if
there is no loss of information when mapping the specifica-
tion from the concrete domain to the abstract domain. Thus,
conservative approximations allow non-trivial abstraction
of both the implementation and the specification, while ab-
stract interpretations only allow non-trivial abstraction of
the implementation.

The ability to define domains of agents for different mod-
els of computation is also a central concept of the Rosetta
language [1]. In Rosetta, a domain is described declara-
tively as a set of assertions in some higher order logic. Dif-
ferent domains can be obtained by extending a definition in
a way similar to the sub-typing relation of a type system.
Domains that are otherwise unrelated can be composed by
constructing functions, called interactions, that (sometimes
partially) express the consequences of the properties and
quantities of one domain onto another. This process is par-
ticularly useful for expressing and keeping track of con-
straints during the refinement of the design. In contrast to
Rosetta we are not concerned with the definition of a lan-
guage. In fact, we define the domain directly as a collection
of elements of a set, not as the model of a theory. In this
sense, the approach taken by Rosetta seems more general.
As already discussed, however, the restrictions that we im-
pose on our models allow us to prove additional results that
help create and compare the models. A detailed analysis of
the relationships between the two frameworks is one of the
topics of our current research.

In our framework we define a domain of agents that is
suitable for describing the behavior of systems that have
both continuous and discrete components. The term hy-
brid is often used to denote these systems. Many are the
models that have been proposed to represent the behavior
of hybrid systems. Most of them share the same view of the
behavior as composed of a sequence of steps; each step is
either a continuous evolution (a flow) or a discrete change
(a jump). Different models vary in the way they represent
the sequence. One example is the Masaccio model pro-

posed by Henzinger et al. [13], [14]. In Masaccio the rep-
resentation is based on components that communicate with
other components through variables and locations. During
an execution the flow of control transitions from one loca-
tion to another according to a state diagram that is obtained
by composing the components that constitute the system.
Each transition in the state diagram models a jump or a flow
of the system and constrains the input and output variables
through a difference or differential equation. The underly-
ing semantic model is based on sequences. legal jumps and
flows that can be taken during the sequence of steps.

In our framework we talk about hybrid models in terms
of the semantic domain only (which is based on functions
of a real variable rather than sequences). This is a choice
of emphasis: in Masaccio and other hybrid models the se-
mantic domain is used to describe the behavior of a system
which is otherwise represented by a transition diagram. In
contrast, in our framework the semantic domain is the only
concern and we seek results that are independent of the par-
ticular (finite state) representation that is used.

Another related concept that is found in models for hy-
brid systems is that of refinement. In our framework we
must distinguish between two notions of refinement. The
first is a notion of refinement within a semantic domain:
in our framework this notion is based on pure trace con-
tainment, and is analogous to those defined in the majority
of hybrid models. The second notion of refinement that is
present in our framework has to do with changes in the se-
mantic domain. This notion is embodied in the concept of
conservative approximation that relates models at one level
of abstraction to models at a different level of abstraction.
There is no counterpart of this notion in the hybrid models.

III. MOTIVATING EXAMPLE

As already mentioned, we require our framework to sup-
port multiple models of computation during the design pro-
cess. In this section we provide a motivating example for
this requirement, which we will use throughout the paper.
The example, shown in Figure 1, is an abstracted version
of the PicoRadio project ([19]), developed at the Berkeley
Wireless Research Center.

A PicoRadio is a node in a network that exchanges in-
formation with its neighboring nodes. Depending on the
application, a PicoRadio may function as the intercom end
of a communication system, or as a controller for a set of
sensors and actuators. Whatever its function is, the PicoRa-
dio must include several subsystems, as shown in Figure 1.
Since communication with neighboring nodes occurs on a
wireless link, a Radio Frequency (RF) subsystem is used to
interface the design to the channel. Demodulation and de-
coding is done at the baseband level, after conversion from
the high transmission frequency. The data streams obtained
from the baseband is interpreted by a protocol stack, which
feeds the application that ultimately interfaces with the user.

The design of such systems is complex, not so much in
terms of their size, but because of the very stringent con-
straints on power and because of the intrinsic interactive
nature of the nodes. Together, they call for a new design
methodology and indeed, developing the new methodology

4

RF

User

Manager Parameters
Tables and

Transport Layer

Network Layer

MAC Layer

Link Layer

Physical Layer

Application

c1
c1

f
m

m

+ s

f1

f2

f1 f2+

f1 f2−

f1 f2−

Process Networks

Continuous Time

CSP

Pre−Post
D

is
cr

et
e

E
ve

nt

Fig. 1. Full system

was the primary task during the design of the first version
of the Picoradio ([8]). Because power concerns are best at-
tacked at the algorithmic level, new protocols are being de-
vised whose primary purpose is to maximize the life-time
of the system. Consequently, the interaction between the
different subsystems becomes critical.

Each subsystem must be described in some model of
computation in order to properly verify its function through
simulation and verification. Ideally, for each subsystem,
we would like to use the model that is best suited for the
particular task. Hence, the design flow often includes sev-
eral different tools and models that offer characteristics ap-
propriate to the specific subsystem being considered. In
practice, however, the segmentation of the design process
that results makes the interaction between different subsys-
tems and the consequences of the design choices difficult
to analyze. Typically, the solution to the problem involves
simplifying the interfaces between subsystems by assum-
ing certain timing behaviors. However, this not only may
not be possible in certain situations, but it also amounts to
working at a lower level of abstraction where the benefits of
an application specific model could be diminished or lost.

The interaction between different models of computation
can be understood when the description of the models is
embedded in the same unifying framework. Trace algebras
is one such framework. The remaining sections of the pa-
per discuss the details of the framework by examining ap-
propriate models of computation for each of the subsystems
above.

IV. FORMAL FRAMEWORK

In this section and in those that follow we introduce our
formal framework.

Given a model of computation, the task of building the
corresponding model in the framework begins with the def-
inition of a set of elements and some functions that operate
on them, grouped together into an algebraic structure that
we call trace algebra. We call each element a trace. Traces
correspond intuitively to individual executions of agents in

the given model of computation. Despite their name, traces
are not limited to sequences, but, as we shall see in the ex-
amples, they can be any mathematical object that can be
defined to satisfy the laws of the algebra. The functions,
on the other hand, are analogous to the common operations
that can be performed on the executions in the model of
computation. The laws of the algebra ensure that the func-
tions behave according to their intuitive sense.

From the trace algebra, we construct a second algebra
whose elements are the agents of the model of computation,
expressed primarily as a set of traces. We call each agent a
trace structure, and the corresponding algebra a trace struc-
ture algebra. Likewise, we construct a set of functions on
the agents that satisfy the laws of the algebra and represent
operations such as composition and instantiation. The laws
are again defined to ensure the proper interpretation of the
operations.

For each model of computation we construct a trace al-
gebra and a trace structure algebra. Because different trace
algebras have the same structure in terms of the kind and
number of operations, one can understand how one model
relates to another by constructing mappings that preserve
the application of the operation on traces. These mappings
are then used to construct approximations (abstractions) on
the agents. The purpose of the framework is to make it easy
to construct the models and their relationships through the
application of general results that derive from the algebraic
structure.

In this section we present the basic concepts and defini-
tions by way of an example, i.e. the formalization of a se-
mantic domain suitable for the representation of behaviors
in a model of computation that supports continuous time.
We first present a formalization that can be considered nat-
ural for the domain of application, and then show how the
same can be cast in terms of a general set of definitions.

A. Traces and Trace Structures

In this section we present both the basic concepts of our
framework, and the example of the formalization of a se-
mantic domain for a model of computation based on con-
tinuous time.

The model of computation that we have in mind relies on
equations to express the relationships between the quanti-
ties that occur in the model. More specifically, we are inter-
ested in a model of computation where the quantities (vari-
ables) are functions over the set of reals. By convention, it
is assumed that the set of reals represents time, and we talk
about functions over time. Consequently, the equations we
are interested in are relations on functions over time, and
we denote the independent variable with the letter t.

Consider the following equation:

x = 3t: (1)

This is an equation in the unknown x. Traditionally, the
interpretation of the equation is done in terms of the set of
possible solutions. In our case, the set consists of functions
that are associated to the variable x. A function x :R 6� ! R

is a solution of the equation if, when substituted for the un-

5

known, the resulting relation is true. The notation R 6� de-
notes the set of non-negative reals (we use non-negative re-
als because we assume there exists an initial point in time).
In this particular case there is only one solution

x(t) = 3t:

In our framework we want to make the interpretation in
terms of the set of solutions more precise. More specifi-
cally, we are looking for a set of elements that can form the
range of a semantic function that denotes the interpretation
of the equation.

In the first place, the existence of variables in the above
formulation suggests that an important element in the
framework should be the ability to name elements that ap-
pear in the model. In general, these externally visible fea-
tures of agents could be actions, signals, state variables, etc.
In our formal framework we do not distinguish among the
different types, and we refer to them collectively as a set of
signals W . Each agent is then associated with an alphabet
A �W of the signal it uses. An agent is also characterized
by a signature, which we denote with the symbol
. The
structure of the signature depends on the particular model
of computation, and it uses the symbols in the alphabet to
model the visible interface of the agent.

For the equation in the example above, the alphabet A
consists of the names of the variables that appear in the
equation:

A = fxg:

Note in particular that t is not included in the alphabet, be-
cause of its special role as an independent variable. Note
also that the equation simply describes a condition for a
function to be a solution. Therefore, when constructing a
model for an agent represented by continuous time equa-
tions, we do not specify the direction of the signals (in-
put or output), but simply associate a set of signals to each
agent. Hence, the signature for agents in the continuous
time model of computation simply consists of the set of
symbols A:

 = A:

Consider again the equation 1. As mentioned, we in-
terpret the equation (agent) as the set of its possible solu-
tions. In turn, we may interpret each solution as one pos-
sible behavior of the agent. We generalize this concept by
always maintaining a clear distinction between models of
agents (a.k.a. processes) and models of individual execu-
tions (a.k.a. behaviors). In different models of computa-
tion, individual executions can be modeled by very differ-
ent kinds of mathematical objects. In our framework, we
always call these objects traces. In the specific case of func-
tions over time, an individual execution is a set of functions,
one for each unknown in the equation (a singleton in our
example, since there is only one dependent variable). An
agent is a set of sets of functions.

We define traces for the continuous time model to be a
close formalization of the natural interpretation of solution.
However, we should make the relationship between the so-
lution and the variable precise. Because the definition of a
trace must be independent of the particular agent, it must

take the alphabet as a parameter. In the case of the continu-
ous time model of computation, we must assign a function
over the reals to each of the symbols in the alphabet. For
our example, we could use traces of the form

A! (R6� ! V)

where the set V is the range of the functions. In our case we
have V = R. A trace thus contains both the solution, and
the association of each of the functions in the solution to
the variables that appear in the equation. For the example
above, the (only) solution can be expressed as a trace f :
A! (R 6� ! V) where

f(x) = �t[3t]:

Note that there might be several possible valid definitions
of a trace. For example, a trace might associate to each
moment in time the values of the functions. The traces are
thus functions of the form

R
6� ! (A! V):

The choice of alternative, isomorphic, definitions is often
a matter of convenience in defining the operations that we
discuss below, or it might reflect the desire to highlight cer-
tain aspects of the behavior.

In this particular example, the equation admits only one
solution. More in general, equations may have several so-
lutions. Consider for example the modified equation

x = 3t+ x0:

In this case the solution varies according to the values of
the parameter x0. We say that a function is a solution to
the equation if there exists a value of the parameter such
that the equation is satisfied. The solutions thus form a set.
Since traces are individual solutions, sets of traces are the
agents. More formally we can write the denotation of the
equation above as

P = ff :A! (R 6� ! V) : 9x0[f(x) = �t[3t+ x0]g

This example shows that, in general, an agent admits sev-
eral different possible behaviors. Hence, a model of an
agent, which we call a trace structure in our framework,
consists of the signature
 and of a set P of traces. We
usually denote the trace structure as the pair T = (
; P).
This is analogous to verification methods based on language
containment, where individual executions are modeled by
strings and agents are modeled by sets of strings. However,
our notion of trace is much more general and so is not lim-
ited to strings.

Systems of equations do not present any additional prob-
lem. Consider for example the system

x = 3t+ x0;

y = 4t+ y0:

In this case we define the alphabet as the set A = fx; yg
and the signature as
 = A. However, the definition of a

6

trace and of a trace structure is unchanged. A trace is again
a function from the alphabet to the set of functions on time,
and a trace structure is the signature together with a set of
traces. What changes is the set of traces for this particular
agent, which is now expressed as the set

P = ff :A! (R 6� ! V) : 9x0; y0[f(x) = �t[3t+ x0]

^ [f(y) = �t[4t+ y0]g

Systems of equations can have two interpretations. On
the one hand, they represent an agent whose constraints on
the variables are expressed by different equations. On the
other hand, they may represent the interaction of different
agents, each represented by disjoint subsets of the equa-
tions in the system. The two views can be reconciled by
interpreting the agent as a whole as the result of the interac-
tion of the individual agents. We discuss the details of how
this fits into our framework after introducing an example
in continuous time that is more relevant to the PicoRadio
system introduced in Section III,

Once we have established the notion of a trace and of a
trace structure, the complexity of the equation doesn’t re-
ally matter. In fact, we are not interested in solving the
equation, but in providing a structured semantic domain
for its interpretation. In particular, interpreting differential
equations is no more complex than interpreting the simple
linear equations shown above. As an example, consider the
following differential equation

d2s

dt2
+ f2s = 0:

This is a homogeneous second order differential equation
in the variables f and s. The solutions of this equation de-
scribe an oscillatory behavior. In fact, this equation might
be used to model an oscillator that generates a signal (for
example a voltage) that we denote by the symbol s, whose
frequency is controlled by another signal, denoted by the
symbol f . Solutions to this equation are in the form of pairs
of functions s : R 6� ! V and f : R 6� ! V .

In general, solutions to differential equations depend on
arbitrary parameters, whose value can be fixed by provid-
ing appropriate initial conditions. For instance we might
require that

s(0) = 1;

ds

dt
(0) = 0:

Given the initial condition, one possible solution to this
equation is the following pair of functions:

s(t) = cos(10t);

f(t) = 10;

which represents a constant oscillation with frequency
10 r=s.

An agent, the denotation of the differential equation, is
a set of individual executions, i.e. the set of all possible

solutions. In our example, the trace structure has alpha-
bet A = fs; fg and signature
 = A. The trace structure
T = (
; P) is such that P is the set of traces that satisfy
the equation. Note that in the definition above the trace
structure doesn’t include an initial condition: this is inten-
tional, as we want the trace structure to model all possible
solutions. Initial and boundary conditions, if any, arise im-
plicitly as a result of the interaction (parallel composition)
of different trace structures.

B. Operations on Trace and Trace Structures

To complete our framework we define certain operations
on individual behaviors and on agents. These operations, as
we shall see, are defined to support common tasks used in
design, like that of scoping, instantiation and composition
of agents.

The first operation is called projection, and consists in
removing from a trace all information related to certain sig-
nals. In our example of functions over time, this corre-
sponds to retaining only the functions of interest (for in-
stance s) in the solution, and dropping the others (f is our
case). In our framework we denote the operation of projec-
tion by proj . If B � A is the set of signals that we want
to retain, we define the projection as a restriction on the do-
main of the functions that characterize a trace x. Formally
we write:

proj(B)(x) = �t 2 R
6��a 2 B[x(t; a)];

where the � notation introduces a function of the named
variable, as usual. Projection on trace structures (agents)
can be seen as the natural extension to sets of a correspond-
ing operation of projection on individual traces. When ap-
plied to agents, the operation of projection corresponds to
that of hiding internal variables in the equation. Note that
the constraints imposed by the equation on the variables are
retained, but their effect is only visible from outside through
the remaining signals. In other words, the scope of the hid-
den variables is limited to the equation they belong to.

The second operation is called renaming, and consists in
changing the names of the visible elements of the agent.
For functions over time, this corresponds to a substitution
of variables. This, however, must be done carefully to avoid
changing the underlying meaning of the equation. In our
framework, the renaming operation rename takes as argu-
ment a renaming function r that maps the elements of the
signatureA into a new signatureC, whereA andC are both
subsets of the common set of signals W . The function r is
required to be a bijection in W to avoid conflicts of names
and potentially a change in the behavior of the agents. If
r is a renaming function, we define renaming on traces as
the corresponding operation on the signals in the signature.
Formally:

rename(r)(x) = �t 2 R 6� :�a 2 A:x(t; r(a)):

As for projection, renaming of trace structures can be seen
as the natural extension to sets of the corresponding opera-
tion on individual traces. When applied to a trace structure,

7

the effect is that of a renaming of the variables in the corre-
sponding differential equation. This process corresponds to
that of instantiation of a master agent into its instances.

Projection and renaming, seen as operators for scoping
and instantiation, are common operations that are meaning-
ful to all models of computation. For trace structures, they
are always defined as the natural extension to sets of the
corresponding operations on traces. The combination of
the set of traces x for all alphabets A, and of the operations
proj and rename has the structure of an algebra 1. We call
this algebra a trace algebra, and we usually denote it with
the symbol C.

For all trace algebras (and therefore, for all models of
computation) we require that the operations on traces sat-
isfy certain properties. There are two reasons for doing
that. First, the properties ensure that the operations behave
as expected given their intuitive meaning. For example, we
expect that a projection followed by another projection be
the same as the second projection alone, or that a projection
that retains all symbols in the trace results in the very same
trace. Similarly for renaming and for certain combinations
of the operations.

Second, we can use these properties as assumptions to
prove results that are independent of the particular model
of computation in question. These results provide powerful
tools that the designer of the model can use to prove general
facts about the model and about its relationships with other
models.

Similarly to trace algebra, the combination of all trace
structures T and the operations of projection and renaming
on trace structures form an algebra, that we call trace struc-
ture algebra. However, before we formally define a trace
structure algebra, we introduce an additional operation on
trace structures.

The third operation that we introduce is that of parallel
composition of agents. A system of equations is an exam-
ple of a parallel composition in our model of computation
based on continuous time. Here, each equation is inter-
preted as a single agent. The system is also interpreted as
an agent, the one that is obtained by composing the indi-
vidual agents. An example of a system of equations is the
following:

d2s

dt2
+ f2s = 0 (2)

d2m

dt2
+ I2

1
m = 0 (3)

f = m+ I2 (4)

I2 = 3; (5)

I1 = 2: (6)

In the natural semantic domain, the agent that corre-
sponds to the system of equations is made of collections of
functions that are solutions to all equations. Intuitively, this
corresponds to having the agents associated to each equa-
tion run concurrently by sharing the common signals.

1An algebra is simply a set together with some functions over that set.

We can easily formalize this notion in the framework of
trace algebra. Let T1 = (
1; P1) and T2 = (
2; P2) be
two trace structures, and denote with T = T1 k T2 their
parallel composition. Clearly, to model this composition,
the signature of T must include the signals of both T1 and
T2. Hence:

A = A1 [A2;

 =
1 [
2:

The set of traces P of T must be such that each trace be-
longs to both T1 and T2. However the traces must first
be converted from one alphabet to another. This can be
achieved by first extending the set of traces P1 and P2 to
P e
1

and P e
2

, respectively, which are sets of traces over the
alphabet A such that

P e
1

= fx : proj(A1)(x) 2 P1g

P e
2

= fx : proj(A2)(x) 2 P2g:

The traces in P e
1

clearly satisfy the system of equations for
T1 (the additional functions are simply ignored), but do not
necessarily satisfy that for T2. Likewise, the traces in P e

2

satisfy the equation for T2 but do not necessarily satisfy that
for T1. The parallel composition is the set of those traces
that satisfy both,

P = P e
1
\ P e

2
:

Given this definition, it is straightforward to show that
parallel composition corresponds to the usual operation of
taking the intersection of the solutions of two different
equations. Consider again the system of differential equa-
tions in Equation 2. This system can be represented as the
parallel composition of 5 trace structures 2, as shown in Fig-
ure 2, where the rounds represent trace structures, and the
connections represent shared signals (functions over time).
The signature of the parallel composition is

A = fI1;m; I2; f; sg:

Each trace structure imposes its constraints to the overall
solution. For example, if x is a trace with alphabet A, then
the trace structure for I2 requires that proj(fI2g)(x) be the
function identically equal to 3.

s

2

I1

I2

I1

f
m

m

+

I

Fig. 2. Parallel composition of agents

The definition of parallel composition of agents shown
above for the continuous time model of computation can be

2Parallel composition turns out to be associative, therefore we can talk
about the operation of parallel composition of more than just 2 trace struc-
tures.

8

generalized in a straightforward way in our framework. Par-
allel composition corresponds to the concurrent execution
of two agents. As discussed above, the parallel composition
T = T1 k T2 is a set of traces in the union A of the alpha-
bets of T1 and T2 that is “compatible” with the restrictions
imposed by the agents being composed. We can formalize
the notion of compatibility by requiring that if x is a trace
of T with alphabet A, then its projection proj(A1)(x) on
the alphabet of T1 is in P1, and the projection proj(A2)(x)
on the alphabet of T2 is in P2. The set of traces in T must
be maximal with respect to that property. It can be shown
that the previous definition of parallel composition for the
continuous time model is equivalent to this formulation.

The combination of the set of trace structures and the op-
erations of projection, renaming and parallel composition
of trace structures forms an algebra that we call trace struc-
ture algebra. Similarly to the algebra for traces, the opera-
tions in a trace structure algebra must satisfy certain prop-
erties. For example we require that parallel composition be
commutative and associative, and that the extensions to sets
of projection and renaming also behave consistently. Note
that because these operations are predefined, given a trace
algebra, and the set of trace structures to be used as the
universe of agent models, a trace structure algebra is con-
structed in a fixed way. A fundamental result of this work is
that the properties of the trace algebra are sufficient to en-
sure that the corresponding trace structure algebra satisfies
its required properties.

To summarize, the first step in defining a model of com-
putation is to construct a trace algebra. The trace algebra
contains the universe of traces for the model of computa-
tion. The algebra also includes two operations on traces:
projection and renaming. These operations intuitively cor-
respond to encapsulation and instantiation, respectively.

The second step is to construct a trace structure algebra.
Here each element of the algebra is a trace structure, which
consists primarily of a set of traces from the trace algebra
constructed in the first step. A trace structure algebra also
includes three operations on trace structures: parallel com-
position, projection and renaming. Projection and renam-
ing are simply the natural extension to sets of the corre-
sponding operations on traces, while parallel composition
is derived from the definition of projection on traces. Thus,
constructing a trace algebra is the creative part of defining
a model of computation. Constructing the corresponding
trace structure algebra is much easier.

The example of this section shows how to formalize
within our framework the natural semantic domain of a
model of computation based on continuous time and differ-
ential equations. It is worth noting how our representation
of the agents is completely denotational, in that no rule is
given to derive the output from the input. In addition, while
our formalization is close to the natural semantic domain of
traditional differential equations, the algebraic infrastruc-
ture introduces additional concepts such as hierarchy, in-
stantiation and scoping in a natural way. For instance, the
trace structures that correspond to the oscillators could be
viewed as instantiations of a primitive component obtained
by a renaming operation. Also, the frequency modulator

that results from the parallel composition outlined above
could be used as a primitive component: to that end, it is
enough to hide the internal signals fm; I2; fg through a
projection operation. These characteristics make our ap-
proach suitable as a foundation for the formal semantics of
popular design tools, such as Simulink.

C. Summary and Notation

In the previous two sections we have introduced the con-
cept of a trace algebra and a trace structure algebra. For-
mally a trace algebra C is a triple:

C = (B; proj ; rename);

where we use the symbolB to denote the set of traces for all
possible alphabets. We also use the symbol B as the func-
tion that to each alphabet A associates the set of possible
traces with that alphabet. We say that x 2 B(A) to denote
that x is a trace in the alphabet A.

A trace structure is a pair

T = (
; P);

where
 is a signature and P a set of traces in the alphabet
A of the trace structure (P � B(A)). A trace structure
algebra is a 4-tuple

A = (T ; proj ; rename; k);

where T is a set of trace structures. The operations of pro-
jection and renaming are obtained from the corresponding
operation on traces as extensions to sets. The symbol k de-
notes parallel composition. If T = T1 k T2, then the set of
traces P of T is obtained from the set of traces P1 and P2

of T1 and T2 as

P = fx 2 B(A) : proj(A1)(x) 2 P1 ^

proj(A2)(x) 2 P2g:

The signature of the parallel composition must also be ob-
tained from that of the agents being composed. Each model
of computation must define this operation, as well.

In the sections that follows we will present four more
models of computation at different levels of abstraction and
provide their formalization in the framework of trace alge-
bra.

D. Concatenation and Sequential Composition

In the case of differential equations, a system corre-
sponds to the parallel composition of agents. In other mod-
els of computation, however, the emphasis may be on a se-
quential “execution” of the agents. This could be seen as a
parallel composition where control flows from one agent to
another, thus making only one agent active at a time. Nev-
ertheless, this situation is so common that it warrants the
introduction of some special operations and notation.

For these models we introduce a third operation on traces
called concatenation, which corresponds to the sequential
composition of behaviors. Similarly to the other operations,

9

concatenation must also satisfy certain properties that en-
sure that its behavior is consistent with its intuitive inter-
pretation. Other than that, the definition of concatenation
depends upon the particular model of computation. Con-
catenation is also used to define the notion of a prefix of a
trace. We say that a trace x is a prefix of a trace z if there
exists a trace y such that z is equal to x concatenated with
y.

With concatenation, we distinguish between a complete
behavior and a partial behavior. A complete behavior has
no endpoint. Since a complete behavior goes on forever,
it does not make sense to talk about something happening
“after” a complete behavior. A partial behavior has an end-
point; it can be a prefix of a complete behavior or of an-
other partial behavior. Every complete behavior has partial
behaviors that are prefixes of it; every partial behavior is a
prefix of some complete behavior. The distinction between
a complete behavior and a partial behavior has only to do
with the length of the behavior (that is, whether or not it
has an endpoint), not with what is happening during the be-
havior; whether an agent does anything, or what it does, is
irrelevant.

Complete traces and partial traces are used to model
complete and partial behaviors, respectively. A given ob-
ject can be both a complete trace and a partial trace; what is
being represented in a given case is determined from con-
text. For example, a finite string can represent a complete
behavior with a finite number of actions, or it can represent
a partial behavior.

Like in the other cases, concatenation induces a corre-
sponding operation on trace structures that we call sequen-
tial composition. We can illustrate these concepts by ex-
tending the example of the previous section to a continuous
time model of computation that is suitable to studying hy-
brid systems, and that includes the operation of concatena-
tion.

A typical semantics for hybrid systems includes contin-
uous flows that represent the continuos dynamics of the
system, and discrete jumps that represent instantaneous
changes of the operating conditions. In our model we rep-
resent both flows and jumps with single piece-wise contin-
uous functions over real-valued time. The flows are contin-
uous segments, while the jumps are discontinuities between
continuous segments. In this paper we assume that the vari-
ables of the system take only real or integer values and we
defer the treatment of a complete type system for future
work. The sets of real-valued and integer valued variables
for a given trace are called VR and VN, respectively.

Traces may also contain actions, which are discrete
events that can occur at any time. Actions do not carry data
values. For a given trace, the set of input actions is MI and
the set of output actions is MO.

The signature
 of each agent is a 4-tuple of the above
sets of signals:

 = (VR; VN;MI ;MO):

The sets of signals may be empty, but we assume they are
disjoint. The alphabet of
 is

A = VR [VN [MI [MO:

The set of partial traces for a signature
 is BP (
). Each
element of BP (
) is as a triple x = (
; Æ; f). The non-
negative real number Æ is the duration (in time) of the par-
tial trace. The function f has domain A. For v 2 VR,
f(v) is a function in [0; Æ] ! R, where R is the set of
real numbers and the closed interval [0; Æ] is the set of real
numbers between 0 and Æ, inclusive. This function must be
piece-wise continuous and right-hand limits must exist at all
points. Analogously, for v 2 VN, f(v) is a piece-wise con-
stant function in [0; Æ] ! N, where N is the set of integers.
For a 2 MI [MO, f(a) is a function in [0; Æ] ! f0; 1g,
where f(a)(t) = 1 iff action a occurs at time t in the trace.

The set of complete traces for a signature
 is BC(
).
Each element ofBC(
) is as a pair x = (
; f). The function
f is defined as for partial traces, except that each occurrence
of [0; Æ] in the definition is replaced by R 6� , the set of non-
negative real numbers.

To complete the definition of this trace algebra, we must
define the operations of projection, renaming and concate-
nation on traces. The projection operation proj(B)(x) is
defined iff MI � B � A. The trace that results is the same
as x except that the domain of f is restricted to B. The re-
naming operation x0 = rename(r)(x) is defined iff r is a
one-to-one function from A to some A 0 �W . If x is a par-
tial trace, then x0 = (
0; Æ; f 0) where
 0 results from using
r to rename the elements of
 and f 0 = r Æ f .

The definition of the concatenation operator x3 = x1 �x2,
where x1 is a partial trace and x2 is either a partial or a
complete trace, is more complicated. If x2 is a partial trace,
then x3 is defined iff
1 =
2 and for all a 2 A,

f1(a)(Æ1) = f2(a)(0)

(note that Æ1, Æ2, etc., are components of x1 and x2 in the
obvious way). When defined, x3 = (
1; Æ3; f3) is such that
Æ3 = Æ1 + Æ2 and for all a 2 A

f3(a)(Æ) = f1(a)(Æ) for 0 � Æ � Æ1

f3(a)(Æ) = f2(a)(Æ � Æ1) for Æ1 � Æ � Æ3:

Note that concatenation is defined only when the end points
of the two traces match. The concatenation of a partial trace
with a complete trace yields a complete trace with a similar
definition. If x3 = x1 � x2, then x1 is a prefix of x3.

Trace structures in this model have again signature
.
Their definition must be extended to contain a set of com-
plete traces PC and a set of partial traces PP . We also de-
note with P = PC [PP the set of all traces (consistently
with the previous formulation). The sequential composition
T 00 = T �T 0 is then defined when A = A0, and in that case:

A00 = A = A0;

P 00C = PC [(PP � P
0
C);

P 00P = PP � P
0
P :

where concatenation is naturally extended to sets of traces.
As for parallel composition, the definition of sequential

composition is constructed from equivalent concepts in the
trace algebra. Therefore, the trace structure algebra can still
be constructed automatically.

10

V. MODELS OF COMPUTATION AND TRACE ALGEBRAS

The sections that follow introduce the formalization of
the semantic domain for more models of computation. In
all cases we follow the same pattern by first presenting the
natural formalization, and then the formalization in terms
of trace algebras.

For each model of computation we also sketch an ex-
ample of its typical applications. Each example is one of
the subsystems of the PicoRadio architecture shown before.
Later sections of this paper show how we can derive rela-
tionships between these models within the framework.

A. CSP

Communicating Sequential Processes were introduced
by Hoare [15]. It consists of a collection of agents that inter-
act through the exchange of actions. Actions are shared and
must be synchronized: when an agent wishes to perform an
action with another agent, it must wait until the other agent
is ready to perform the same action.

CSP is particularly well suited to handle cases where a
tight synchronization is required or to schedule access to a
shared resource. In our example we can use CSP to model a
manager subsystem that regulates access to a set of param-
eters and tables that can be set and read by the user and by
the protocol stack. To do this, the manager initially waits to
synchronize with either the protocol stack or the user input;
once synchronized with one of the two parties, it reserves
the shared resource and handles the communication by per-
forming a set of actions (e.g. read, write, update). At the
end of the transaction, the manager goes back to its initial
state and waits to synchronize again. Figure 3 shows a dia-
gram of this subsystem.

Manager Parameters
Tables and

User

Protocol Stack

Fig. 3. Table manager and UI interface

Constructing a trace algebra and a trace structure algebra
for this model is particularly simple because the commu-
nication model fits very easily in our framework. A single
execution of an agent (a trace) is simply a sequence of ac-
tions from the alphabet A of possible actions. Formally, we
define

B(A) = A1;

where the notationA1 includes both the finite and the infi-
nite sequences overA. Projection and renaming are defined
as expected: if x 2 B(A) and B � A, then proj(B)(x) is
the sequence formed from x by removing every symbol a
not in B. More formally, if x0 = proj(B)(x), then the
length of x0 (written len(x0)) is

len(x0) = jfj 2 N : 0 � j < len(x) ^ x(j) 2 Bgj

where len(x0) = ! when the set is infinite. The k-th ele-
ment of x0 corresponds to the k-th element of x that belongs
to B. Hence, if x(n) 2 B, then x0(k) = x(n) where

k = jfj 2 N : 0 � j < n ^ x(j) 2 Bgj:

Note that any n and k combination is unique.
For renaming, assume without loss of generality that x 2

B(A) is of the form

x = ha0; a1; a2; : : :i;

then

rename(r)(x) = hr(a0); r(a1); r(a2); : : :i:

Models of agents are obtained in the standard way, as a
collection of sequences. The signature
 of an agent in-
cludes a set of input actions I and a set of output actions O.
The parallel composition T = T1 k T2 is defined when O1

and O2 are disjoint, and in that case

I = (I1 [I2)� (O1 [O2);

O = O1 [O2:

Given the definition of projection, parallel composition
clearly requires that trace structures (agents) synchronize
on the shared actions.

This model is based solely on actions that bear no value.
It is straightforward to extend the model to include a value
for each action. We define:

B(A) = (A� V)1;

where V is the set of possible values. Projection and re-
naming are extended by having them act only on the first
component of the pair. Formally, if x 2 B(A) and x 0 =
proj(B)(x) then the length of x0 (written len(x0)) is

len(x0) = jfj 2 N : 0 � j < len(x) ^ x(j) 2 (B; V)gj

and x0(k) = x(n) for all k < len(x0), where n is the unique
integer such that x(n) 2 (B; V) and

k = jfj 2 N : 0 � j < n ^ x(j) 2 (B; V)gj:

Likewise for renaming. Without loss of generality, assume

x = h(a0; v0); (a1; v1); : : :i;

then

rename(r)(x) = h(r(a0); v0); (r(a1); v1); : : :i:

With this definition we can construct a trace structure that
represents the table manager depicted in Figure 3. The sig-
nature
 includes inputs and outputs to and from both the
protocol stack and the user interface, with actions that set
and read the appropriate parameters. For example, the pa-
rameters could be a set of virtual connections, specified as
pair of addresses (vci and vpi) and the packet length. Two

11

typical traces for the manager deal with handling requests
from the protocol and from the user, as in

P = f< ps req; vci(10); vpi(13); ps release; : : : >;

< user req; length(1500); vpi(0); : : : >; : : :g;

where ps refers to the protocol stack, and user to the
user interface. Note that while the manager can non-
deterministically choose to serve the protocol stack or the
user, it must continue to serve the party that was chosen
until the shared resource is released.

Compared to the traditional CSP model, ours differ in
some respects. For example, in our model it is possible
for several agents to synchronize on the same action, thus
making it possible for one agent to broadcast an event. In a
more traditional model, only one of the listeners is able to
react to the event. This is a consequence of our definition
of parallel composition.

Another difference is that in our model (and in all other
models constructed using trace algebras), the operation of
parallel composition and renaming are clearly differenti-
ated. In other words, parallel composition in our model
does not create the connections, but is limited to construct-
ing an agent whose projections are compatible with the ones
being composed. Renaming must be invoked separately
(and before the composition) to create the appropriate in-
stances of the agents to be composed.

B. Process Networks

Process networks are collections of agents that operate
on infinite streams of data. Streams are traditionally im-
plemented as FIFO queues that connect processes that can
produce (write) and consume (read) tokens. Process net-
works are particularly well suited to modeling digital signal
processing applications, given the good match between the
typical data model of signal processing and the communi-
cation model of process networks.

As an example we might consider a demodulator that
uses a local reference to convert an incoming signal from
high to base band. The decoder receives a stream of tokens
that corresponds to, for instance, the output of the local os-
cillator described above in Section IV-A. At the same time
it receives a stream of data tokens to be demodulated. The
demodulator combines the two streams and then applies a
filter to retain only the component of interest. A diagram of
this subsystem is shown in Figure 4.

E

2

f2f2
f1 f2

1f +f1 −f1
−

R

D

f

Fig. 4. A signal demodulator

The important property of this model is that the exact
time at which tokens arrive at the input is irrelevant, and
that only their order within the same stream determines the

output stream (together, of course, with their value). The
natural domain for this kind of model is then clearly that
of a function on streams, which can in turn be formalized
as sequences. In the case of our demodulator, if we denote
with R andE the reference and the modulated streams, and
with D the demodulated stream, we can represent the de-
coder in the natural domain as a function f from the inputs
to the output:

D = f(R;E):

Parallel composition of agents is defined by composing
for each stream s the function whose range is s with the
function whose domain is s. This definition becomes circu-
lar in the presence of loops in the structure of the parallel
composition. In this case, the composition is defined by
breaking the loop at some point, and then looking for the
fixed points of the function that results. If we do not restrict
the range of the possible functions f , the parallel composi-
tion may have several fixed points (or even no fixed points
at all), and hence exhibit non-deterministic behavior. Be-
cause we ultimately want to model physical processes that
are deterministic, we must impose some constraints on f .

We say that a stream v is a prefix of a stream u if v is
equal to some initial segment of u. This relation can be
extended to sets of streams by requiring that all streams in
the first set are a prefix of the corresponding stream in the
second set. This relation is easily proved to be a partial
order on the streams.

To ensure that a composition of stream functions is de-
terminate, the function f of each of the components must
be continuous with respect to the prefix ordering on the
streams. If that is case, then we are assured that there ex-
ists a unique least fixed point, and the parallel composition
is defined in terms of that. In addition, continuity implies
monotonicity, which in turn ensures that the response of the
system to a specific input can be computed incrementally
from progressively longer prefixes.

In the following we will show two ways of describing
the process networks model in our framework. The first
method is closer to the semantic domain based on func-
tions on streams, but falls short in the definition of parallel
composition. The second method fixes this problem, at the
expense of modeling the traces at a more detailed level of
abstraction.

In our initial attempt we follow the natural semantic
rather closely. First we define the signature
 of a trace
structure. Process networks clearly distinguish between in-
puts and outputs, hence we define

 = (I; O);

where I and O are disjoint sets of input and output signals,
respectively. In the example above, we have

I = fR;Eg;

O = fDg:

Given a stream function, a trace is a single application from
a set of input streams to a set of output streams. If we de-
fine the alphabet of a trace to be the set A = I [O, and

12

formalize streams as the finite and infinite sequences over a
value domain V , denoted by V 1, then the set of all possible
traces is

B(A) = A! V1:

A trace structure is simply the signature together with a set
of traces, i.e. T = (
; P) where P � A ! V 1. If we
separate the contributions of the inputs and the outputs, the
set P of traces can be seen as (is isomorphic to) a subset of

(I ! V1)� (O ! V1);

that is, as a function on streams.
In order to comply with the process network model, we

also insist that the functions so identified have the necessary
continuity and monotonicity properties with respect to the
prefix ordering defined on the sequences. In other words,
not all set of traces may form a trace structure.

We define a functional trace structure as one that asso-
ciates at most one output stream to each input stream. More
formally, the condition is simply

proj(I)(x) = proj(I)(y)) x = y:

To define monotonicity we first need a partial order on
traces. We say that a trace x 2 B(A) is a prefix of a trace
y 2 B(A), written x v y, if x(a) is a prefix of y(a) for
all a 2 A. Let T = (
; P) be a trace structure. Then T is
monotonic if for all x; y 2 P ,

proj(I)(x) v proj(I)(y)) proj(O)(x) v proj(O)(y):

Note that, in particular, this also implies

proj(I)(x) v proj(I)(y)) x v y:

Finally we define the process network trace structure alge-
bra as the algebra that contains all and only the functional
and monotonic trace structures.

The operations of projection and renaming on traces are
easily defined. If x 2 B(A), B � A and r is a renaming
function, then

proj(B)(x) = �a 2 B[x(a)];

rename(r)(x) = �a 2 A[x(r(a))]:

Parallel composition on trace structures is defined as usual
in terms of the projection operation. Note that the trace
structure obtained from a composition contains all the
traces that are compatible with the agents being composed;
in particular, it will contain all the fixed-points in a com-
position that involves a feedback loop. Figure 5 illustrates
the point. Here two instances of the trace structure I are
composed so that the input of one corresponds to the output
of the other. The trace structures are also defined to be the
identity function on streams, i.e. they contain all pairs of
identical input and output streams. It is easy to show that
also the composition contains all pairs of identical streams.
This is a problem, as it doesn’t faithfully represent the se-
mantics of the original formulation of process networks,
that in this case includes only empty streams, the least of

the fixed-points in the composition. The problem with our
model is that whether a trace is included in the composition
or not depends exclusively on whether its projections are
part of the individual components. In order to include only
the least fixed-point, we would also need to check whether
other traces (more specifically, prefixes) are also included
in the composition.

A

Id

Id
B

Fig. 5. Parallel composition with feedback

Our solution to this problem avoids changing the defini-
tion of parallel composition (which is common to all trace
structure algebras), but requires us to develop a new seman-
tic domain at a more detailed level of abstraction. The addi-
tional information is enough the determine the result of the
parallel composition exactly.

In the new formalization, each trace is a totally ordered
sequence of events. Formally we have:

B(A) = (A� V)1:

Note that this is exactly the definition that we have for the
semantic domain for communicating sequential processes.
The definition of projection and renaming also parallels the
definitions given in Section V-A, and will not be repeated
here. The signature of the trace structures is again a pair
of disjoint sets
 = (I; O) as before. Despite the similari-
ties with CSP, this formulation results in a different model
of computation because the class of trace structures that we
construct must satisfy some additional conditions, as was
also the case in our initial formalization of process net-
works.

In the new formulation, the traces in the trace algebra
carry order information for all events. This means that we
can tell whether an input (or an output) event occurred be-
fore or after another input or output event. Because the
semantics of process networks is independent of this or-
dering, a trace structure must contain traces that represent
all orderings of inputs and outputs that are compatible with
a particular stream function. The word “compatible” here
has two meanings. First we must only include those order-
ings that result in monotonic functions. Second, inputs and
outputs can not occur arbitrarily ordered in a trace: output
tokens should never precede the input tokens that caused
them. The rest of this section makes these two requirements
more precise.

It is easy to construct a homomorphism h to the previous
trace algebra that loses the ordering information. Given a
trace x in the alphabetA, we isolate the sequence relative to

13

a signal a using a projection operation, and then construct
the appropriate function. More formally:

h(x) = �a 2 A�n 2 N[(proj (fag)(x))(n))v];

where the subscript v denotes the second component of a
pair in A � V . This function is a homomorphism in that
it commutes with the application of the other operations on
traces, projection and renaming.

The functionality and monotonicity conditions are best
expressed in the domain of stream functions, as we don’t
want the particular order of a trace to affect the prefix rela-
tion. A functional trace structure can be defined as follows.
For all x; y 2 P , the following condition must be satisfied:

h(proj(I)(x)) = h(proj(I)(y))) h(x) = h(y):

Similarly for monotonicity. If T = (
; P), then T is mono-
tonic if for all x; y 2 P ,

h(proj(I)(x)) v h(proj(I)(y)))
h(proj(O)(x)) v h(proj(O)(y)):

In order to include all orderings in the trace structures,
we might be tempted to state that if x 2 P , then any other
trace y such that h(y) = h(x) should be in P . Doing this
would remove all information regarding the ordering of in-
puts and outputs. As a result, the composition would again
suffer from the same problem (inclusion of all of the fixed-
points) that we had with the previous model. Instead, we
must strengthen this condition.

We do this in two steps. Given a trace structure T =
(
; P), we first look for a subset P0 � P of only those
traces that can be characterized as quiescent, in the sense
that all the outputs relative to the inputs have been pro-
duced. In fact, we are looking for the set P0 with the added
property that the outputs occur in the sequence as soon as
possible. This is similar to the fundamental model assump-
tion in asynchronous design. In the formalization that fol-
lows, we will assume that tokens have no value to simplify
the notation. Under this assumption, P0 can be formalized
as follows:

P0 = fz 2 P : 8x; y 2 B(A) 8b 2 I

z = xhbiy) x 2 Pg;

where the notation hbi denotes the sequence made of only
the symbol b. The intuition behind this definition is as fol-
lows. Assume that a trace z 2 P can be written as the con-
catenation xhbiy with x 2 P . Then, since T is functional,
for any trace x0 such that h(proj(I)(x0)) = h(proj(I)(x)),
we have h(proj(O)(x0)) = h(proj(O)(x)). So, in particu-
lar, none of the output tokens that are contained in the suffix
y ever occur before the input token b in any other trace in P
with the same inputs as x. If y starts with an output token
c, this condition tells us that c does not appear any sooner
in any other trace, and therefore that z outputs c as soon as
possible. The universal quantification on x, y and b extends
the property to the entire trace z.

Since P0 is the “fastest” subset of P , we can now con-
struct a new set that includes all possible delays of the out-
put. We construct this set by induction. Given a set X of
traces, we define a function F that adds all traces where
each output that precedes an input is delayed by one posi-
tion. Formally:

F (X) = X [fxhb; ciy 2 B(A) : (7)

xhc; biy 2 X ^ b 2 I ^ c 2 Og:

Intuitively we would like to repeatedly apply this function
starting from P0 until we reach a fixed-point. This function
is monotonic relative to set containment (given X1 � X2,
F (X2) will add at least the traces that F (X1) adds, plus
possibly some more). In addition, F creates progressively
larger sets, i.e.

8X [X � F (X)]:

When this is the case, we say that F is inflationary at X .
These two properties are enough to guarantee the existence
of a fixed-point. In fact, they guarantee the existence of
a least fixed-point greater than or equal to P0, the minimal
set that contains P0 and all the traces with delayed outputs3.
Let’s denote with Pfp(P) the fixed-point obtained by start-
ing the recursion with the P0 associated to P . Then we
define the trace structure algebra for process networks as
the one that contains only those trace structures such that

P = Pfp(P):

The system shown in Figure 5 now results in a correct
composition. In fact, the bottom trace structure I will re-
quire that the input at A appear before any output on B in
all its traces. Likewise, the top trace structure will require
its input, which corresponds to B, to occur before the out-
put A. This contradiction will rule out all traces except the
empty one, as dictated by the least fixed-point semantics.

C. Discrete Event

A discrete event system consists of agents that interact by
exchanging events on a set of signals. Each event is labeled
with a time stamp that denotes the time at which the event
occurred. The notion of time is global to the entire system,
so that if any two events have the same time stamp then
they are considered to occur at the same time. The set of
time stamps is often taken to be the set of positive integers
or real numbers, ordered by the usual order. The order is
then extended to the events so that events with smaller time
stamps precede events with higher time stamps. The model
is called discrete because it is required that for each signal
the set of time stamps is not dense in the reals.

Examples of discrete event systems abound, as both Ver-
ilog and VHDL use this model as their underlying simu-
lation semantics. For our example, we might consider the
subsystem that implements the protocol stack that handles
the data stream after it has been demodulated. The stack
includes functions that modify and depend on the tables

3Technically it is the greatest lower bound of the set of fixed-points of
F that are greater than or equal to P0

14

and parameters managed by the subsystem described in
the section on CSP (V-A). In addition, the protocol stack
interacts with the physical layer at the lower levels, and
then unpacks and delivers the raw data to the application.
The non-recurring nature of these operations, their unpre-
dictable timing and the dependency of the protocol behavior
on their timing make a discrete event model more suitable
than, say, a data-flow model. A typical protocol stack of
four layers is shown in Figure 6.

To physical layers

To the application

Transport Layer

Network Layer

MAC Layer

Link Layer

Fig. 6. Protocol Stack

In the natural semantic domain, each behavior of an agent
can be characterized as a sequence of events, each associ-
ated to an increasing time stamp. Note that events that oc-
cur in unrelated parts of the system are still ordered by their
time stamps. Different events may occur with the same time
stamp. In most cases, if two discrete event models differ at
all, they differ in the way events with the same time stamp
are handled. For the purpose of simulating such systems,
some models define a notion of a delta cycle that orders
the events with identical time stamps. Others don’t define
any specific way to handle this occurrence, leading to non-
determinism.

It is natural to construct a semantic domain in our frame-
work based on the interpretation of a behavior as a sequence
of events with time stamps. If A is the set of signals, V the
set of values andR 6� the set of non-negative reals, we define
the traces as follows:

B(A) = (A� V � R
6�)1:

Two conditions must be imposed on the time stamps of a
trace. First, the time stamps in the sequence must be non-
decreasing, i.e. if x is a trace and n and m are two natural
numbers such that n;m < len(x), then

n < m) x(n)t � x(m)t;

where the subscript t denotes the time stamp of the event.
Second, the time stamps of an infinite sequence x must be

divergent, i.e. for all t 2 R
6� , there is an event in x with

time stamp greater than t. Discreteness can be enforced by
requiring that for all non-negative reals t 2 R

6� , there is
only a finite number of events in x such that x(n) t < t.
Projection and renaming are defined similarly to the func-
tions defined for CSP in Section V-A.

The signature
 of a trace structure distinguishes between
the set of inputs I and the set of outputO, that together form
the alphabetA. Trace structures are then built as a signature
with a set of traces in a way similar to the models that we
have already presented. Constraints can be imposed on the
set P of traces of a trace structure, analogous to the mono-
tonicity and continuity requirements for process networks.

As an example from our protocol stack, one of the layers
may include, among others, two traces, one for a success-
ful operation, and the other for the occurrence of a timeout.
The discrete event model is required in this case, as the pro-
cess network model is unable to handle timeouts.

In some discrete event models, a new event occurs on a
signal if and only if the corresponding value for that signal
has changed since the previous occurrence. Traces that have
this property are called stutter free. If this is the case, it is
convenient in our framework to define the set of traces as
the subset of stutter free traces. We can do this by defining
a function that, given a trace, produces its unique stutter
free equivalent by removing the unnecessary events. We
call this process stutter removal. Note that discrete traces
result in discrete traces after stutter removal.

D. Pre-Post

In this last model of computation that we present we are
concerned with modeling non-interactive constructs, such
as the ones that occur in a programming language. In this
case we are interested only in an agents possible final states
given an initial state. This semantic domain could there-
fore be considered as a denotational representation of an
axiomatic semantics.

In our example, this model may be appropriate for the
higher levels of the protocol stack, and in particular for the
application layer where most of the functionality can be de-
scribed as non interactive procedure calls. Note how this
model of computation differs from those that were intro-
duced in the previous sections, all of which included some
notion of “evolution” of the system. Nontheless, traces
don’t necessarily require that notion, and we can easily fit
this model in our framework.

Traditionally, the semantics for this kind of models is
constructed by first defining a state as a set of variables
S = fsig, and then indicating the rules according to which
each construct in the programming language modifies this
state. A natural semantic domain for describing the con-
structs is therefore a set of pairs of initial and final state,
one for each possible initial state.

The formulation in the framework of trace algebra is al-
most identical to the natural domain. The signature
 of the
agents is simply the set of variablesA the agent depends on
and writes to. Each trace is made of pairs of states. A state
s is a function with domain A that to each variable a 2 A
associates a value s(a) from a set of values V . We also de-

15

fine a degenerate, undefined state ?. Given an alphabet A
a trace is simply a pair of states

B(A) = (si; sf);

where si; sf : A ! V denote the initial and the final state,
respectively. Here, the initial state must be non-degenerate.
A degenerate final state denotes constructs whose final state
is either undefined, or that fail to terminate.

If s : A ! V is a state, we can define projection and
renaming on states as follows:

proj(B)(s) = �a 2 B[s(a)];

rename(r)(s) = �a 2 A[s(r(a))]:

Then, if x = (si; sf) is a trace, we define projection and
renaming by the obvious extension:

proj(B)(x) = (proj(B)(si); proj(B)(sf));

rename(r)(x) = (rename(r)(si); rename(r)(sf)):

A trace structure is easily constructed as a set of traces.
As usual, the notion of parallel composition arises automat-
ically given the definition of projection. However, in this
particular model, parallel composition is not the main op-
eration of interest, since we are modeling the behavior on
non-interacting constructs. In fact, handling shared vari-
ables of concurrent programs is problematic with these def-
initions, and we define parallel composition to be undefined
when the signatures of two agents overlap. Instead, we con-
centrate on the concatenation operation which is relevant to
define the concept of sequential composition.

As mentioned in Section IV-D, we must distinguish be-
tween complete and partial traces. The above definition of
a trace can be interpreted either way, depending on whether
we consider the behavior to be completed or not. A non-
terminating trace could be considered as a partial trace,
assuming that non-termination occurs within a bounded
amount of time. This is quite unusual: it may occur, for
example, if the duration of an infinite loop decreases expo-
nentially from one iteration to the other.

If x = (si; sf) and x0 = (s0i; s
0
f) are traces, the concate-

nation operation x00 = x � x0 is defined if and only if x is a
partial trace, the signature A and A0 are the same, and the
final state of x is identical to the initial state of x0. As ex-
pected, when defined, x00 has alphabet A00 = A = A0 and
contains the initial state of x and the final state of x0:

x00 = (si; s
0
f):

Trace structures in this model have signature A and they
provide the semantics of statements in a programming lan-
guage. The signature A indicates the variables accessible
in the scope where the statement appears. For example, the
traces in the trace structure for an assignment to variable
v are of the form (si; sf), where si is an arbitrary initial
state, and sf is identical to si except that the value of v is
equal to the value of the right-hand side of the assignment
statement evaluated in state si (we assume the evaluation is
side-effect free).

The semantics of a procedure definition is given by a
trace structure with an alphabet fv1; : : : ; vrg where vk is
the k-th argument of the procedure. The semantics of
a procedure call proc(a, b) is the result of renaming
v1 ! a and v2 ! b on the trace structure for the defi-
nition of proc. The parameter passing semantics that re-
sults is value-result (i.e. no aliasing or references) with the
restriction that no parameter can be used for both a value
and result. More realistic (and more complicated) parame-
ter passing semantics can also be modeled.

To define the semantics of if-then-else we intro-
duce a function init(x; c) that is true if and only if the pred-
icate c is true in the initial state of trace x. The formal def-
inition depends on the particular trace algebra being used.
For pre-post traces, init(x; c) is false for all c if x has ?� as
its initial state.

For the semantics of if-then-else, let c be the con-
ditional expression and let PT and PE be the sets of possi-
ble traces of the then and else clauses, respectively. The
set of possible traces of the if-then-else is

P = fx 2 PT : init(x; c)g [fx 2 PE : :init(x; c)g

that is, we choose the traces from one or the other clause ac-
cording to the truth value of the condition. Notice that this
definition can be used for any trace algebra where init(x; c)
has been defined, and that it ignores any effects of the eval-
uation of c not being atomic. The semantics of other, more
complicated, constructs like loops could also be defined
using similar techniques. We refer the interested reader
to [5].

VI. CONSERVATIVE APPROXIMATIONS AND
RELATIONSHIPS AMONG MODELS OF

COMPUTATION

In the previous section we have presented the formaliza-
tion of several models of computation at different levels of
abstraction, and how they can all be described in the frame-
work of trace algebra. For each model we have suggested
a particular application in the context of a system similar to
the PicoRadio project. The whole system is depicted in Fig-
ure 1. In order to understand the behavior and the properties
of the whole system, we need to understand the interplay
between the different subsystems. We can accomplish this
by relating the semantic domains that we have developed in
the previous section and study how the different notions of
computation fit together.

In what follows we develop a concept that we call con-
servative approximation. Intuitively a conservative approx-
imation is a mapping of agents from one semantic domain
to another, more abstract, domain. We actually employ
two such mappings. The first mapping represents an upper
bound of the agent: the abstract agent represents all of the
possible behaviors of the agent in the more detailed domain,
plus possibly some more. This mapping is usually denoted
by 	u. The second is a lower bound: the abstract agent rep-
resents only possible behaviors of the more detailed one,
but possibly not all. We denote it by 	l.

When used in combination, these two mappings allow us
to relate results in the abstract domain to results in the more

16

detailed domain. In particular, a conservative approxima-
tion is defined to preserve results related to trace contain-
ment, such that if T1 and T2 are trace structures, then:

	u(T1) � 	l(T2)) T1 � T2:

We refer to our previous work for more details ([4]).
Where the lower and the upper bound coincide we can

talk about an inverse of the approximation, by assigning to
the agent in the abstract domain the unique inverse image of
the two mappings. Where this function is defined, it can be
interpreted as a refinement or concretization of the abstract
semantic domain into the detailed one. One direction in our
research currently focuses on characterizing the properties
of this inverse function.

A. DE to PN

In this section we will explore the relationships between
the discrete event model presented in Section V-C and the
process network model presented in Section V-B. We will
use the simple version of DE that consists of a sequence of
events.

During the presentation we will refer to Figure 7 and Fig-
ure 8. Figure 7 depicts the mappings that relate traces in the
different domains. Figure 8 shows the corresponding map-
pings when applied to the domains of trace structures (sets
of traces).

g’ detailed

PN
natural

PN
abstract

isomorphism

DE

h

g

PN

Fig. 7. Relations between trace algebras

We have already pointed out that the natural domain is
that of functions on streams. Our initial abstract formal-
ization is a model of traces that is isomorphic to the set
of streams. However, the corresponding formalization in
terms of trace structures led to a problem with the composi-
tion operator: in the original model, composition is defined
so that it includes only the least fixed-point of the functions
that satisfy a certain equation; in our model, instead, com-
position includes all the fixed-points. Thus we are unable
to find an isomorphism between the trace structures of our
formalization and the agents in the natural domain, that is a
one-to-one mapping that preserves composition.

We have then developed a more detailed domain, in
which sequences are used to emphasize the order relation-
ships between inputs and outputs that allows us to build the

g’(P)
detailed

PN
natural

PN
abstract

DE

isomorphism

h−1(P)

h(P)

g(P)

PN

Fig. 8. Relations between trace structure algebras

fixed-point in the composition. By doing this we abandon
the isomorphism of the traces with the domain of streams.
To be classified as process network agents, trace struc-
tures in this formalization must satisfy constraints that en-
sure that a function on stream is in fact being constructed.
The discussion then suggests that there is an isomorphism
(which preserves the operation of composition) between the
detailed model of trace structures and the agents in the nat-
ural semantic domain.

Recall that traces in the abstract process network algebra
belong to the set:

B(A) = A! V1:

Traces in the more detailed algebra belong to the other set:

B(A) = (A� V)1:

As shown in Section V-B, traces in this more detailed model
can be mapped into traces in the more abstract model by
virtue of a homomorphism h that removes the order rela-
tionships across signals. When naturally extended to trace
structures (i.e. to set of traces), h maps agents in the de-
tailed domain into agents in the abstract domain. The ho-
momorphism on individual traces is obviously not one-to-
one. However, when considered as a mapping of trace
structures from the (restricted set of agents in the) detailed
trace structure algebra into the more abstract algebra, the
function is a one-to-one mapping. In fact, if two trace struc-
tures T1 and T2 map into the same trace structure in the
abstract algebra, then they must have the same fundamen-
tal mode representation P0. The inductive construction of
Equation 7 then shows that T1 = T2. Because h is one-to-
one when applied to agents, there is an inverse function h�1

from the abstract trace structure algebra into the detailed al-
gebra.

The relationships between the discrete event and the pro-
cess network model of computation can be described as a
mapping to one of the two formulations. Recall that traces
in the discrete event model are of the form:

B(A) = (A� V � R
6�)1:

17

A straightforward mapping can be constructed from the dis-
crete event traces to the detailed process network traces.
The mapping is a function g that simply removes the time
stamp from the sequence. In other words, if

x = h(a0; v0; t0); (a1; v1; t1); : : :i

is a discrete event trace, then

g(x) = h(a0; v0); (a1; v1); : : :i:

This mapping is a homomorphism on traces, in that it com-
mutes with the operations of projection and renaming. In
other words, if x is a discrete event trace, then

g(proj(B)(x)) = proj(B)(g(x));

g(rename(r)(x)) = rename(r)(g(x)):

The natural extension to sets of traces g(P) of the homo-
morphism g is a function that maps discrete event agents
into process network agents. This function is an upper
bound 	u of a conservative approximation:

	u(T) = (
; g(P)):

For the lower bound 	l we must map to a restricted set of
traces. Namely, the inverse image of 	l(P) should map to
traces that are only in P . This can be accomplished using
the homomorphism g as follows:

	l(T) = (
; g(P)� g(B(A)� P));

where B(A)�P is the complement of P with respect to the
universe of traces. This lower bound can be made tighter
by considering only the traces that occur in the agents that
form the trace structure algebra.

It can be shown that the two mappings so defined form a
conservative approximation. This formulation can be gen-
eralized. In fact, nothing in the derivation of 	u and 	l de-
pends on the particular models of computation considered.
Hence, whenever there is a homomorphism g between the
sets of traces of two different models of computation, we
can construct a conservative approximation using the same
formulation. We refer the reader to [4] for more details on
this technique.

What does this mapping look like? Consider for example
the inverter shown in Figure 9. It has an input a and an
output b. If we assume the inverter has a constant positive
delay Æ, then a possible trace of the agent in the discrete
event model might look like the following:

x = h(a; 0; 0); (b; 1; Æ); (a; 1; 3:5); (b; 0; 3:5+ Æ); : : :i;

assuming that Æ < 3:5. The corresponding trace in the pro-
cess networks model is

x0 = h(a; 0); (b; 1); (a; 1); (b; 0); : : :i:

This trace is included in the upper bound computed by 	u.
If the agent does not contain a trace for any possible delay
Æ, then this trace is not included in the lower bound 	 l. In

fact, a trace y with a similar sequence of events, but dif-
ferent delay, would be in B(A) but not in P ; because g
discards the delays, g(x) = g(y) and, by definition of 	 l

above, x is removed from the mapping. In other words, the
process network model does not distinguish between agents
with different delays and we are indeed computing an ap-
proximation.

δ

a b

Fig. 9. Inverter agent with delay Æ

It is interesting to consider the inverse of this conserva-
tive approximation. The inverse mapping corresponds to
trying to embed an agent of the process networks model
into a discrete event context. Here we must find agents T
such that 	u(T) = 	l(T) = T 0. Because of the particu-
lar abstraction we have employed, this occurs whenever the
agent T has non-deterministic delay. In this case, given a
trace x, all other traces y with the same sequence of events
but different delay are included in the set of possible traces
of the agent, and therefore retained in the computation of
the lower bound. Hence, for every agent T 0 in the pro-
cess network model of computation, there exists an agent
T = 	inv(T

0) in the discrete event model, where T has
the same behaviors as T 0 and chooses non-deterministically
the delay of the outputs. Any deterministic implementation
of this embedding will therefore have to make an upfront
choice regarding the timing of the agent.

The functions 	u and 	l that we have just defined cer-
tainly constitute an abstraction. However, in this particular
case the abstraction does not ensure that the correspond-
ing trace structure in the process network algebra satisfies
the constraints for that model defined in Section V-B in-
volving equation 7. In fact, for each trace in the discrete
event model there should correspond several (possibly in-
finitely many) traces in the process network model that in-
clude all possible delayed outputs. It is possible to consider
only a restricted version of the discrete event trace struc-
tures that maps correctly in the detailed process network
algebra. To simplify this task, we will take an alternative
route and use the abstract process network algebra as an
intermediate step.

Notice that the abstract process network trace structure
algebra requires that agents be monotonic and functional.
This requirement must still be satisfied by the discrete event
agent that we want to abstract. An equivalent constraint that
can be imposed at the discrete event level is that of recep-
tiveness. Intuitively, a trace structure is receptive if it can’t
constrain the value of its inputs. The technical definition
of receptiveness (see [11]) requires the device of infinite
games: an agent is receptive if it can always respond to an
input with outputs that make the trace one of its possible
traces.

18

We can show that if a discrete event agent T is both re-
ceptive and functional, then it is also monotonic (where the
prefix order corresponds to the usual prefix on sequences).
In fact, assume it is not monotonic. Then there are traces
x and y in T such that proj(I)(x) v proj(I)(y), but
proj(O)(x) 6v proj(O)(y). But if T is receptive, then
x can be extended to a trace x0 such that proj(I)(x0) =
proj(I)(y) and x0 2 T . By the functionality assumption,
x0 = y. But x v x0, a contradiction. Hence T must be
monotonic.

A homomorphism g 0 between the discrete event traces
and the abstract process network traces is given by the com-
position of g and h. The natural extension to sets gives us
a mapping g0(P) on trace structures and a corresponding
conservative approximation. An approximation from the
discrete event trace structure algebra to the detailed process
networks trace structure algebra can now be constructed by
taking the composition of the mapping g 0 and h�1 as shown
in Figure 8.

B. CT to DE

To construct an approximation from the continuous time
to the discrete event model of computation we must first
define the notion of an event at the level of the continu-
ous time traces. Abstraction, in this case, can be done in
several ways. One, for example, is to consider an event as
the snapshot of the state at certain regular intervals. An-
other technique consists of abstracting the value domain,
and identify an event whenever the signals cross certain dis-
crete thresholds. In this paper we take yet another approach,
and identify an event whenever any of the signals changes
with respect to its previous value. Here, the notion of “pre-
vious” value must be made precise, since in general there is
no immediate predecessor in the continuos real time.

In the continuous time model signals may change value
simultaneously. In the discrete event model, on the other
hand, events are totally ordered, even when they have the
same time stamp. Hence, after identifying an event, we
must also decide how to order simultaneous events in the
same time stamp. Because there is no obvious choice, we
map each event in continuous time to the set of all possi-
ble orderings in discrete event. This choice implies that for
each trace in the continuous time model there correspond
several traces in the discrete event model. Consequently,
the approach based on the homomorphism on traces out-
lined in the previous section will not work.

To formalize these notions we start from the concept of
an event. Intuitively, an event occurs when any of the sig-
nals changes value. It is easier, however, to define the
opposite condition, i.e. when all signals are constant. If
f : R6� ! V is a function over the reals, we say that f is
stable at t0 2 R

6� if and only if there exists an � > 0 such
that f is constant on the interval (t0� �; t0]. Recall now the
definition of a continuous time trace:

B(A) = R
6� ! (A! V):

We say that a trace x 2 B(A) is stable on signal a 2 A at
t0 2 R

6� if and only if the function f(t) = x(t; a) is stable
at t0. We say that a continuous time trace x has an event

for signal a 2 A at t0 whenever x is not stable on a at t0.
Because at time t0 = 0 there is no left interval, we always
assume that a trace has an event at time 0 for all signals.

To construct a trace in the discrete event model we must
create a sequence where each element corresponds to an
event for some signal at some time in continuous time. To
simplify the task, we introduce two additional, and some-
what more elaborate, trace algebras for the discrete event
model.

In the first trace algebra, we construct a “sequence” by
taking the set of reals as an index set, and by mapping the
index set to sequences of events that represent the delta cy-
cles for each particular time stamp. An empty sequence of
delta cycles denotes the absence of events for the particular
time stamp. Formally, we define the set of possible traces
as:

B(A) = R
6� ! (A� V)1;

where A is, as usual, the set of signals, and V is the corre-
sponding set of possible values. This formulation clearly
includes systems that are not discrete: imagine, for in-
stance, that the sequence corresponding to the delta cycles
is non-empty for every t 2 R

6� . Thus we must further re-
strict the set of possible traces to only those whose set of
non-empty time stamps is discrete, as was discussed in Sec-
tion V-C.

Projection and renaming are defined as expected. Their
formal definition gives us the opportunity to introduce a
construction theorems that allows one to build new trace al-
gebras from existing ones. In this particular case, note how
the set of traces is defined as a function whose range is the
set of traces defined in Section V-A for the CSP model. The
following theorem proves that when projection and renam-
ing are defined appropriately, the result is always another
trace algebra.

Theorem 1. Let C 0 = (B0(A); proj ; rename) be a trace al-
gebra and let Z be a set. Then the trace algebra C such
that:

B(A) = Z ! B0(A);

proj(B)(x) = �d 2 Z[proj(B)(x(d))];

rename(r)(x) = �d 2 Z[rename(r)(x(d))];

is a trace algebra.

In our particular case we let B 0(A) = (A � V)1, Z =
R
6� and projection and renaming as defined in Section V-A.

Hence for a trace x 2 R 6� ! (A� V)1 we have

proj(B)(x) = �t 2 R 6� [proj(B)(x(t))];

rename(r)(x) = �t 2 R
6� [rename(r)(x(t))]:

A trace structure has again signature
 = (I; O) and is
otherwise obtained as usual as a set of traces.

The second trace algebra that we introduce is similar to
the one just presented, but without ordering information
within a time stamp. Then we build a mapping from each of
the new traces to a set of discrete event traces, that contain
all possible interleavings of the events.

19

Recall (see above) that traces in the discrete event model
of computation are of the form:

B(A) = R
6� ! (A� V)1:

The ordering information in the sequence of delta cycles
can be removed by considering the more abstract set of
traces:

B0(A) = R
6� ! 2A�V :

It is easy to construct a functionh fromB toB 0 that removes
the ordering information. If x 2 B(A) is of the form x =
x(t; n), we define x0 = h(x) as the trace x0 = x0(t) such
that for all t 2 R 6�

x0(t) = f(a; v) 2 A� V : 9n 2 N[x(t; n) = (a; v)g:

It is easy to show that h is well defined, and that it is onto.
However h is not one-to-one, so that its inverse h�1 maps a
single trace x0 2 B0(A) to a set of traces in B(A). This set
of traces corresponds to all possible interleavings of the set
of pairs of signals and values, with or without repetitions.

It is now easy to define a function g from traces in the
continuous time to traces in the discrete event model with-
out ordering. If y = y(t; a) is a continuous time trace, then
define x0 = g(y) as the trace x0 = x0(t) such that for all
t 2 R

6�

x0(t) = f(a; v) 2 A� V : x has an event on

signal a at time t ^ x(t; a) = vg:

We can now define an approximation between the contin-
uous time and the discrete event model based on the func-
tions g and h.

Let T = (
; P) be a trace structure in the continuous
time model. To build an upper bound we naturally extend
the functions g and h to sets of traces as follows:

	u(T) = (
; h�1(g(P))):

A lower bound could be constructed in several ways. Note,
however, that without any further constraint the discrete
event model can represent continuous functions exactly. In
other words, since our mapping on trace structures is actu-
ally one-to-one, it does not constitute an abstraction. The
obvious choice in this case is therefore to simply have

	l(T) = 	u(T);

for all T .
The key to getting a real abstraction is that of defining

exactly the conditions that make the discrete event model
discrete. This can be done by replacing the set of reals in
the definition of the trace algebra with a different set D.
The result is a parametrized trace algebra

B(A) = D ! (A� V)1:

Depending on the choice of D different kinds of abstrac-
tions are possible.

VII. CONCLUSIONS

We presented the theoretical foundation of the Metropo-
lis project whose goal is to build an environment where the
design of complex systems will be a matter of days versus
the many months needed today.

All the models of importance “reside” in a unified frame-
work so that their combination, re-partition and communi-
cation happens in the same generic framework and as such
may be better understood and optimized. While we real-
ize that today heterogeneous models of computation are a
necessity, we believe that this unified approach is possible
and will provide a designer a powerful mechanism to ac-
tually select the appropriate models of computation, (e.g.,
FSMs, Data-flow, Discrete-Event, that are positioned in the
theoretical framework in a precise order relationship so that
their interconnection can be correctly interpreted and re-
fined) for the essential parts of his/her design.

We used trace algebra to provide the underlying mathe-
matical machinery. In particular, we showed how to formal-
ize within our framework the natural semantic domain of a
model of computation based on continuous time and differ-
ential equations. Then we introduced the formalization of
the semantic domain for four more commonly used models
of computation. In all cases, we followed the same pattern
by first presenting the natural formalization, and then the
formalization in terms of trace algebras. For each model
of computation we also sketched an example of its typical
applications.

For each model we have also suggested a particular ap-
plication in the context of a system similar to the PicoRadio
project. In order to understand the behavior and the proper-
ties of the entire system, we needed to understand the inter-
play between the different subsystems. We accomplished
this by relating the semantic domains that we have devel-
oped in this paper and studied how the different notions of
computation fit together.

We believe that this framework is essential to provide the
foundations of an intermediate format that will provide the
Metropolis infrastructure with a formal mechanism for in-
teroperability among tools and specification methods.

REFERENCES

[1] The rosetta web site. http://www.sldl.org.
[2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The Polis Approach. Kluwer Academic Press, June 1997.

[3] F. Balarin, L. Lavagno, C. Passerone, A. S. Vincentelli, M. Sgroi,
and Y. Watanabe. Modeling and designing heterogeneous systems.
In J. Cortadella and A. Yakovlev, editors, Advances in Concurrency
and System Design. Springer-Verlag, 2002.

[4] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Over-
coming heterophobia: Modeling concurrency in heterogeneous sys-
tems. In M. Koutny and A. Yakovlev, editors, Application of Con-
currency to System Design, 2001.

[5] J. R. Burch, R. Passerone, and A. Sangiovanni-Vincentelli. Using
multiple levels of abstraction in embedded software design. In M. A.
Henzinger and C. M. Kirsch, editors, First International Workshop,
EMSOFT 2001, volume 2211 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Conference Record of the Fourth Annual ACM

20

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[7] P. Cousot and R. Cousot. Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation, invited
paper. In M. Bruynooghe and M. Wirsing, editors, Proceedings of
the International Workshop Programming Language Implementation
and Logic Programming, PLILP ’92,, Leuven, Belgium, 13–17 Au-
gust 1992, Lecture Notes in Computer Science 631, pages 269–295.
Springer-Verlag, Berlin, Germany, 1992.

[8] J. L. da Silva Jr., j. Shamberger, M. J. Ammer, C. Guo, S. Li, R. Shah,
T. Tuan, M. Sheets, J. M. Rabaey, B. Nikolic, A. L. Sangiovanni-
Vincentelli, and P. Wright. Design methodology for picoradio net-
works. In Proceedings of the Design Automation and Test in Europe,
Munich, Germany, March 2001.

[9] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu,
X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay,
and Y. Xiong. Overview of the ptolemy project. ERL Technical Re-
port UCB/ERL No. M99/37, Dept. EECS, University of California,
Berkeley, July 1999.

[10] J. Davis II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Mu-
liadi, S. Neuendorffer, J. Tsay, B. Vogel, and Y. Xiong. Heteroge-
neous concurrent modeling and design in java. Technical Memoran-
dum UCB/ERL M01/12, EECS, University of California, Berkeley,
Mar. 2001.

[11] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. ACM Distinguished Dissertations. MIT
Press, 1989.

[12] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli.
Design of embedded systems: Formal models, validation, and syn-
thesis. Proceedings of the IEEE, 85(3):366–390, Mar. 1997.

[13] T. Henzinger. Masaccio: a formal model for embedded compo-
nents. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. Mosses, and
T. Ito, editors, TCS 00: Theoretical Computer Science, volume 1872
of Lecture Notes in Computer Science, pages 549–563. Springer-
Verlag, 2000.

[14] T. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee rea-
soning for hierarchical hybrid systems. In M. di Benedetto and
A. Sangiovanni-Vincentelli, editors, HSCC 00: Hybrid Systems—
Computation and Control, volume 2034 of Lecture Notes in Com-
puter Science, pages 275–290. Springer-Verlag, 2001.

[15] C. A. R. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice-Hall, 1985.

[16] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for com-
paring models of computation. IEEE Trans. Comput.-Aided Design
Integrated Circuits, 17(12):1217–1229, Dec. 1998.

[17] R. Negulescu. Process Spaces and the Formal Verification of Asyn-
chronous Circuits. PhD thesis, University of Waterloo, Canada,
1998.

[18] R. Negulescu. Process spaces. In C. Palamidessi, editor, CON-
CUR, volume 1877 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[19] J. Rabaey, M. Ammer, J. S. jr., D. Patel, and S. Roundy. Picoradio
supports ad hoc ultra-low power wireless networking. IEEE Com-
puter Magazine, July 2000.

[20] J. Rowson and A. Sangiovanni-Vincentelli. Felix initiative pursues
new co-design methodology. Electronic Engineering Times, pages
50, 51, 74, June 1998.

