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Abstract

Embedded system design methodologies that are based on the effective use of multiple

levels of abstraction hold promise for substantial productivity gains. Starting the design process

at a high level of abstraction improves control over the design and facilitates verification and

synthesis. In particular, if we use a rigorous approach to link the levels of abstraction, we

can establish properties of lower levels from analysis at higher levels. This process goes by

the name of “design by refinement”. To maximize its benefit, design by refinement requires

a formal semantic foundation that supports a wide range of levels of abstraction (e.g., from

differential equations describing physical behaviors to high-level requirement specifications).

We introduce such a semantic foundation and describe how it can integrate several models for

reactive systems. The semantic foundation allows us to establish the relationships among the

different levels of abstractions even when non-homogeneous models are used to describe the

design. These relationships are essential to establish properties and to document assumptions

about the way the models are used, preventing common errors that are difficult to detect and

may otherwise require long redesign cycles.

1 Introduction

Microscopic devices, powered by ambient energy in their environment, will be able to sense numer-

ous fields, position, velocity, and acceleration, and communicate with appropriate and sometimes

substantial bandwidth in the near area. Larger, more powerful systems within the infrastructure will

be driven by the continued improvements in storage density, memory density, processing capability,

and system-area interconnects as single board systems are eclipsed by complete systems on a chip.

Data movement and transformation is of central importance in such applications. Future devices

will be network-connected, channeling streams of data into the infrastructure, with moderate pro-

cessing on the fly. Others will have narrow, application-specific user interfaces. Applications will

not be centered within a single device, but stretched over several, forming a path through the infras-

tructure. In such applications, the ability of the system designer to specify, manage, and verify the

functionality and performance of concurrent behaviors is essential.



Currently deployed design methodologies for embedded systems are often based on ad hoc

techniques that lack formal foundations and hence are likely to provide little if any guarantee of

satisfying a set of given constraints and specifications without resorting to extensive simulation or

tests on prototypes. In the face of growing complexity and tightening of time-to-market, cost and

safety constraints, this approach will have to yield to more rigorous methods. We believe that it is

most likely that the preferred approaches to the implementation of complex embedded systems will

include the following aspects:

• Design time and cost are likely to dominate the decision-making process for system designers.

Therefore, design reuse in all its shapes and forms, as well as just-in-time, low-cost design

debug techniques will be of paramount importance.

• Designs must be captured at the highest level of abstraction to be able to exploit all the degrees

of freedom that are available. Such a level of abstraction should not make any distinction be-

tween hardware and software, since such a distinction is the consequence of a design decision.

• The implementation of efficient, reliable, and robust approaches to the design, implementa-

tion, and programming of concurrent systems is essential. In essence, whether the silicon is

implemented as a single, large chip or as a collection of smaller chips interacting across a

distance, the problems associated with concurrent processing and concurrent communication

must be dealt with in a uniform and scalable manner. In any large-scale embedded systems

program, concurrency must be considered as a first class citizen at all levels of abstraction

and in both hardware and software.

• Concurrency implies communication among components of the design. Communication is

too often intertwined with the behavior of the components of the design so that it is very

difficult to separate out the two issues. Separating communication and behavior is essential

to overcome system design complexity. If in a design component behaviors and communica-

tions are intertwined, it is very difficult to re-use components since their behavior is tightly

dependent on the communication with other components of the original design.

A great deal of excellent work has been done in a project centered around Ptolemy, where the

issues related to the composition of models of computation and a general simulation framework

have been carefully studied [11, 12]. The Ptolemy environment allows the efficient simulation

and analysis of functional behavior of heterogeneous systems. In a companion project, we have

advocated the introduction of rigorous methodologies for system-level design for years (e.g., [3,

24]) but we feel that there is still much to do. Recently we have directed our efforts to a new

companion endeavor that tries to capture the requirements of present day embedded system design:

the Metropolis project.

The Metropolis project ([4]) has the objective of providing a design methodology and the soft-

ware infrastructure to enable the design of embedded systems. The focus of the project is in a com-

plete design system for embedded systems from specifications to implementation using methodolo-

gies such as platform-based design, communication-based design and successive refinement. The

focus is on formal analysis and synthesis techniques for heterogeneous embedded systems.

The word heterogeneous highlights the fact that in complex designs that interact with the real

world, different parts of a design are likely to be modeled using very different techniques. For this

reason, Metropolis is centered around its meta-model of computation [4], a set of primitives that can

be used to construct several different models of computation. The long term objective of this work

is to lay the foundations for providing a denotational semantics for the meta-model. In particular

we are studying the semantic domain of several of the models of computation of interest, and are



studying how relationships between these models can be established. To do so, we have created a

mathematical framework in which to express semantic domains in a form that is close to their natural

formulation, i.e. the form that is most convenient for a model of computation. The goal is to have

a general framework that encompasses many models of computation, including different models

of time and communication paradigms, and yet structured enough to give us results that apply

regardless of the particular model in question. At the same time, the framework offers mathematical

“tools” to help build new semantic domains from existing ones. Because the framework is based on

algebraic structures, the results are independent of any particular design language, and therefore are

not just specific to the Metropolis meta-model.

An important factor in the design of heterogeneous systems is the ability to flexibly use different

levels of abstraction. Different abstractions are often employed for different parts of a design (by

way of different models of computation, for instance). Even each individual piece of the design

undergoes changes in the level of abstraction during the design process, as the model is refined

towards a representation closer to the final implementation. Different levels of detail are also used to

perform different kinds of analysis: for example, a high level functional verification versus a detailed

electromagnetic interference analysis. Thus, we provide a mathematical framework that allows

the user to choose the best abstraction for the particular task at hand, and to formally relate that

abstraction to different abstractions used for other tasks. Here, we also recognize that abstraction

may come in very different forms that include the model of computation, the scope or visibility of

internal structures, or the model of the data.

In our work, we concentrate on semantic domains for concurrent systems and on the relations

and functions over those domains. We also emphasize the relationships that can be constructed

between different semantic domains. This work is therefore independent of the specific syntaxes

and semantic functions employed. Likewise, we concentrate on a formulation that is convenient for

reasoning about the properties of the domain. As a result, we do not emphasize finite representations

or executable models, which we defer for future work.

In the following sections we first survey some related work. We then introduce our framework

and concentrate on the basic principles underlying the definitions. We refer the reader to our previ-

ous publications [21, 14, 20, 23, 6, 7, 2, 8, 22] for an in depth presentation of specific examples of

semantic domains.

2 Related Work

Several formal models have been proposed over the years (see e.g. [13]) to capture one or more

aspects of computation as needed in embedded system design. Many models of computation can

be encoded in the Tagged Signal Model [17]. However, because encoding is necessary, the level of

abstraction is effectively changed, so some of the advantages of the original model of computation

may be lost. In this work, in contrast, we describe a framework that is less restrictive than the

Tagged Signal Model in terms of what can be used to represent behaviors, and we concentrate on

building relationships between the models that fit in the framework.

The study of systems in which differnt parts are described using different models of computa-

tion (heterogeneous systems) is the central theme of the Ptolemy project [11, 12]. Our work shares

the basic principles of providing flexible abstractions and an environment that supports a structured

approach to heterogeneity. The approach, however, is quite different. In Ptolemy each model of

computation is described operationally in terms of a common executable interface. For each model,

a “director” determines the activations of the actors (for some models, the actors are always active

and run in their own thread). Similarly, communication is defined in terms of a common interface.



The director together with an implementation of the communication interface (a “receiver”) defines

the communication scheme and the possible interactions with other models of computation. On the

other hand, we base our framework on a denotational representation and de-emphasize executabil-

ity. Instead, we are more concerned with studying the process of abstraction and refinement in

abstract terms. For example, it is easy in our framework to model the non-deterministic behavior

that emerges when an abstract model is embedded into a more detailed model. Any executable

framework would require an upfront choice that would make the model deterministic, potentially

hiding some aspects of the composition.

There is a tradeoff between two goals: making the framework general, and providing structure

to simplify constructing models and understanding their properties. While our framework is quite

general, we have formalized several assumptions that must be satisfied by our domains of agents.

These include both axioms and constructions that build process models (and mappings between

them) from models of individual behaviors (and their mappings). These assumptions allow us to

prove many generic theorems that apply to all semantic domains in our framework. In our expe-

rience, having these theorems greatly simplifies constructing new semantic domains that have the

desired properties and relationships.

Process Spaces [18, 19] are an extremely general class of concurrency models. However, be-

cause of their generality, they do not provide much support for constructing new semantic domains

or relationships between domains. For example, by proving generic properties of broad classes of

conservative approximations, we remove the need to reprove these properties when a new conser-

vative approximation is constructed.

We introduce the notion of a conservative approximation to relate one domain of agents to

another, more abstract, domain. A conservative approximation has two functions. The first, called

the lower bound, is used to abstract agents that represent the specification of a design. The second,

called the upper bound, is used to abstract agents that represent possible implementations of the

specification. A conservative approximation is defined so that if the implementation satisfies the

specification in the abstract domain, then the implementation satisfies the specification in the more

detailed domain, as well. Our notion of conservative approximation is closely related to the Galois

connection of an abstract interpretations [9, 10]. In particular, the upper bound of a conservative

approximation roughly corresponds to the abstraction function of a Galois connection. However,

the lower bound of a conservative approximation appears to have no analog in the theory of abstract

interpretations. To our knowledge, for abstract interpretations a positive verification result in the

abstract domain implies a positive verification result in the concrete domain only if there is no loss

of information when mapping the specification from the concrete domain to the abstract domain.

Thus, conservative approximations allow non-trivial abstraction of both the implementation and the

specification, while abstract interpretations only allow non-trivial abstraction of the implementation.

The ability to define domains of agents for different models of computation is also a central

concept of the Rosetta language [1]. In Rosetta, a domain is described declaratively as a set of

assertions in some higher order logic. Different domains can be obtained by extending a definition

in a way similar to the sub-typing relation of a type system. Domains that are otherwise unrelated

can be composed by constructing functions, called interactions, that (sometimes partially) express

the consequences of the properties and quantities of one domain onto another. This process is

particularly useful for expressing and keeping track of constraints during the refinement of the

design. In contrast to Rosetta we are not concerned with the definition of a language. In fact, we

define the domain directly as a collection of elements of a set, not as the model of a theory. In

this sense, the approach taken by Rosetta seems more general. As already discussed, however, the

restrictions that we impose on our models allow us to prove additional results that help create and

compare the models. A detailed analysis of the relationships between the two frameworks is one of



the topics of our current research.

In our framework we define a domain of agents that is suitable for describing the behavior of

systems that have both continuous and discrete components. The term hybrid is often used to denote

these systems. Many are the models that have been proposed to represent the behavior of hybrid

systems. Most of them share the same view of the behavior as composed of a sequence of steps;

each step is either a continuous evolution (a flow) or a discrete change (a jump). Different models

vary in the way they represent the sequence. One example is the Masaccio model proposed by

Henzinger et al. [15, 16]. In Masaccio the representation is based on components that communicate

with other components through variables and locations. During an execution the flow of control

transitions from one location to another according to a state diagram that is obtained by composing

the components that constitute the system. Each transition in the state diagram models a jump or a

flow of the system and constrains the input and output variables through a difference or differential

equation. The underlying semantic model is based on sequences. legal jumps and flows that can be

taken during the sequence of steps.

In our framework we talk about hybrid models in terms of the semantic domain only (which

is based on functions of a real variable rather than sequences). This is a choice of emphasis: in

Masaccio and other hybrid models the semantic domain is used to describe the behavior of a system

which is otherwise represented by a transition diagram. In contrast, in our framework the semantic

domain is the only concern and we seek results that are independent of the particular (finite state)

representation that is used.

Another related concept that is found in models for hybrid systems is that of refinement. In our

framework we must distinguish between two notions of refinement. The first is a notion of refine-

ment within a semantic domain: in our framework this notion is based on pure trace containment,

and is analogous to those defined in the majority of hybrid models. The second notion of refinement

that is present in our framework has to do with changes in the semantic domain. This notion is em-

bodied in the concept of conservative approximation that relates models at one level of abstraction

to models at a different level of abstraction. There is no counterpart of this notion in the hybrid

models.

3 Overview

This section presents the basic framework we use to construct semantic domains, which is based on

trace algebras and trace structure algebras. This overview is intended to highlight the relationships

between the concepts. A detailed formal definition can be found in [5, 6, 8].

3.1 Traces and Trace Structures

The models of computation in use for embedded concurrent systems represent a design by a col-

lection of agents (processes, actors, modules) that interact to perform a function. For any particular

input to the system, the agents react with some particular execution, or behavior. In our framework

we maintain a clear distinction between models of agents and models of individual executions. In

different models of computation, individual executions can be modeled by very different kinds of

mathematical objects. We always call these objects traces. A model of an agent, which we call

a trace structure, consists primarily of a set of traces. This is analogous to verification methods

based on language containment, where individual executions are modeled by strings and agents are

modeled by sets of strings. However, our notion of trace is quite general and so is not limited to

strings.



Traces often refer to the externally visible features of agents: their actions, signals, state vari-

ables, etc. We do not distinguish among the different types, and we refer to them collectively as a

set of signals W . Each trace and each trace structure is then associated with an alphabet A ⊆ W of

the signals it uses.

We make a distinction between two different kinds of behaviors: complete behaviors and partial

behaviors. A complete behavior has no endpoint. A partial behavior has an endpoint; it can be a

prefix of a complete behavior or of another partial behavior. Every complete behavior has partial

behaviors that are prefixes of it; every partial behavior is a prefix of some complete behavior. The

distinction between a complete behavior and a partial behavior has only to do with the length of the

behavior (that is, whether or not it has an endpoint), not with what is happening during the behavior;

whether an agent does anything, or what it does, is irrelevant. Complete traces and partial traces

are used to model complete and partial behaviors, respectively.

As an example we may consider traces that are suitable for modeling continuous time, syn-

chronous discrete time and transformational (i.e. non-reactive) systems. In the first case, we might

define a trace as a mapping that associates to each signal a function from continuous time (the pos-

itive reals) to an appropriate set of values (for example, the reals again). Hence, for an alphabet A,

the traces are defined by

B(A) = A → (R6− → R).

A partial trace in this case is a mapping that associates functions from only a closed time interval

[0, δ], δ > 0:

B(A) = A → ([0, δ] → R).

We refer to these traces as metric-time traces.

An example of a trace suitable for synchronous discrete time systems is a sequence. In this

example we assume the signals represent events that occur at distinct instants in time. The corre-

sponding trace is a sequence whose elements are subsets of the set of signals (events) available from

the alphabet:

B(A) = (2A)∞,

where the notation ∞ denotes both finite and infinite sequences. Here the partial traces are the

finite sequences, while the complete traces are the infinite sequences. We refer to these traces as

synchronous traces.

Unlike the previous two examples, a transformational system is only concerned with the initial

and final state of a computation. If the signals are interpreted as state variables, a corresponding

trace may be defined as a pair of mappings associating the state to its initial and final value (from a

set of values V ), respectively:

B(A) = (A → V )× (A → V ),

The case of non-termination is modeled by adding a distinctive value ⊥ to the set V . If we denote

with V⊥ = V ∪ {⊥}, complete traces can be defined as

B(A) = (A → V )× (A → V⊥).

We refer to these traces as pre-post traces.

Note that a given object can be both a complete trace and a partial trace; what is being rep-

resented in a given case is determined from context. For example, a terminating trace above can

represent both a complete behavior that terminates or it can represent a partial behavior.



3.2 Trace Algebra and Trace Structure Algebra

In our framework, the first step in defining a model of computation is to construct a trace algebra.

The carrier of a trace algebra contains the universe of partial traces and the universe of complete

traces for the model of computation. The algebra also includes three operations on traces: projec-

tion, renaming and concatenation. These operations, as we shall see, are defined to support common

tasks used in design, like that of scoping, instantiation and composition of agents.

The second step is to construct a trace structure algebra. Here each element of the algebra is a

trace structure, which consists primarily of a set of traces from the trace algebra constructed in the

first step. Given a trace algebra, and the set of trace structures to be used as the universe of agent

models, a trace structure algebra is constructed in a fixed way. Thus, constructing a trace algebra is

the creative part of defining a model of computation. Constructing the corresponding trace structure

algebra is much easier. A trace structure algebra includes four operations on agents: projection,

renaming, parallel composition and sequential composition.

The relationships between trace algebras and trace structure algebras are depicted in Figure 1.

This figure also shows the relationships between different algebras that we will discuss later in the

paper.
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Figure 1: Algebras and their relationships

The first operation is called projection, and consists in retaining from a trace only the informa-

tion related to certain signals. In our framework, the projection operation proj takes as argument the

set of signals B that should be retained. For metric-time traces, projection corresponds to restricting

the mapping from the set A of signals to a subset B. This operation is defined similarly for pre-post

traces. Conversely, for synchronous traces projections consists of removing the events not in B

from each element of the sequence.

Projection on trace structures (agents) can be seen as the natural extension to sets of a corre-

sponding operation of projection on individual traces. When applied to agents, the operation of

projection corresponds to that of hiding internal signals of the agent. In other words, the scope of

the hidden signals is limited to the agent they belong to.



The second operation is called renaming, and consists in changing the names of the visible

elements of a trace or an agent. In our framework, the renaming operation rename takes as argument

a renaming function r that maps the elements of the alphabet A into a new alphabet C, where A and

C are both subsets of the common set of signals W . The function r is required to be a bijection in

W to avoid conflicts of names and potentially a change in the behavior of the agents.

In all examples, renaming corresponds to a substitution of signals, and is easily defined in terms

of r or of its inverse. For example, if x is a synchronous trace 〈A1, A2, . . .〉, then rename(r)(x) =
〈r(A1), r(A2), . . .〉, where r is naturally extended to sets of signals.

As for projection, renaming of trace structures can be seen as the natural extension to sets of

traces of the corresponding operation on individual traces. The effect is that of a renaming of all

the signals in the agent: this process corresponds to that of instantiation of a master agent into its

instances.

Projection and renaming, seen as operators for scoping and instantiation, are common operations

that are meaningful to all models of computation. For all trace algebras and all trace structure

algebras (and therefore, for all models of computation that fit into our framework) we require that

the operations on traces and trace structures satisfy certain properties. There are two reasons for

doing that. First, the properties ensure that the operations behave as expected given their intuitive

meaning. For example, we expect that a projection followed by another projection be the same as

the second projection alone, or that a projection that retains all signals results in the very same trace

or agent. Similarly for renaming and for certain combinations of the operations.

Second, we can use these properties as assumptions to prove results that are independent of the

particular model of computation in question. These results provide powerful tools that the designer

of the model can use to prove general facts about the model and about its relationships with other

models.

In the algebra of trace structures we introduce the additional operation of parallel composition.

Note that this operation has no counterpart in the trace algebra. Intuitively, parallel composition

corresponds to having several agents run concurrently by sharing some common signals. The result

of the parallel composition is one agent that alone acts as the combination of the agents being

composed. Let T1 = (A1, P1) and T2 = (A2, P2) be two agents that we want to compose, where A1

and A2 are the alphabets, and P1 and P2 the set of traces. The alphabet of the parallel composition

T = T1 ‖ T2 must include all signals from T1 and T2, so that A = A1 ∪ A2. The set P of traces

of T must be “compatible” with the restrictions imposed by the agents being composed. We can

formalize the notion of compatibility by requiring that if x is a trace of T with alphabet A, then

its projection proj(A1)(x) on the alphabet of T1 is in P1, and the projection proj(A2)(x) on the

alphabet of T2 is in P2. The set of traces in T must be maximal with respect to that property.

Formally:

P = {x ∈ B(A) : proj(A1)(x) ∈ P1 ∧ proj(A2)(x) ∈ P2}.

Similarly to projection and renaming, parallel composition of agents must satisfy certain proper-

ties. For example we require that it be commutative and associative, and that it behaves consistently

when used in combination with projection and renaming. Note that these operations are predefined

for a trace structure algebra. A fundamental result of this work is that the properties of the trace

algebra are sufficient to ensure that the corresponding trace structure algebra satisfies its required

properties.

While parallel composition is at the basis of concurrent models of computation, in other models

the emphasis may be on a “sequential execution” of the agents. This could be seen as a parallel

composition where control flows from one agent to another, thus making only one agent active at

a time. Nevertheless, this situation is so common that it warrants the introduction of some special



operations and notation. For these models we introduce a third operation on traces called concate-

nation, which corresponds to the sequential composition of behaviors. In the case of synchronous

traces, concatenation corresponds to the usual concatenation on sequences. Similarly we can define

concatenation for metric-time traces. For pre-post traces, concatenation is defined only when the

final state of the first trace matches the initial state of the second trace. The resulting trace has the

initial state of the first component and the final state of the second. Note that the information about

the intermediate state is lost.

Similarly to the other operations, concatenation must also satisfy certain properties that ensure

that its behavior is consistent with its intuitive interpretation. For example we require that it be

associative (but not commutative!), and that it behaves consistently when used in combination with

projection and renaming. Concatenation induces a corresponding operation on trace structures that

we call sequential composition by naturally extending it to sets of traces. A more detailed account

of sequential composition can be found in [7].

4 Refinement and Conservative Approximations

In verification and design-by-refinement methodologies a specification is a model of the design that

embodies all the possible implementation options. Each implementation of a specification is said to

refine the specification. In our framework, each trace structure algebra (semantic domain of a model

of computation) has a refinement order that is based on trace containment. We say that an agent T1

refines an agent T2, written T1 ⊆ T2, if the set of traces of T1 is a subset of the set of traces of T2.

Intuitively, this means that the implementation T1 can be substituted for the specification T2. It is

easy to show that the refinement relationships constitutes a (pre)order on the set of trace structures.

Proving that an implementation refines a specification is often a difficult task. Most techniques

decompose the problem into smaller ones that are simpler to handle and that produce the desired

result when combined. To make this approach feasible, the operations on the agents must be mono-

tonic with respect to the refinement order. The definitions given in the previous section make sure

that this is the case for our semantic domains.

An even more convenient approach to the above verification consists of translating the problem

into a different, more abstract semantic domain, where checking for refinement of a specification

is presumably more efficient. A conservative approximation is a mapping of agents from one trace

structure algebra to another, more abstract, algebra that serves that purpose. The two trace structure

algebras do not have to be based on the same trace algebra. Thus, conservative approximations

are a bridge between different models of computation. We will refer to Figure 1 for the rest of the

exposition.

A conservative approximation is actually composed of two mappings. The first mapping is an

upper bound of the agent: the abstract agent represents all of the possible behaviors of the agent in

the more detailed domain, plus possibly some more. This mapping is usually denoted by Ψu. The

second is a lower bound: the abstract agent represents only possible behaviors of the more detailed

one, but possibly not all. We denote it by Ψl.

Conservative approximations are abstractions that maintain a precise relationship between ver-

ification results in the two trace structure algebras. In particular, a conservative approximation is

defined to preserve results related to trace containment, such that if T1 and T2 are trace structures,

then:

Ψu(T1) ⊆ Ψl(T2) ⇒ T1 ⊆ T2.

Thus, when used in combination, the two mappings allow us to relate results in the abstract domain

to results in the more detailed domain. The conservative approximation guarantees that this will not



lead to a false positive result, although false negatives are possible. We refer to our previous work

for more details ([6]) and for several examples ([7, 8]).

4.1 Homomorphisms and Conservative Approximations

Defining a conservative approximations and proving that it satisfies the definition can sometimes be

difficult. However, a conservative approximation between trace structure algebras can be derived

from a homomorphism between the underlying trace algebras.

A homomorphism h is a function between the domains of two trace algebras that commutes

with projection, renaming and concatenation. Consider two trace algebras C and C′. Intuitively,

if h(x) = x′ the trace x′ is an abstraction of any trace y such that h(y) = x′. Thus, x′ can be

thought of as representing the set of all such y. Similarly, a set X ′ of traces in C′ can be thought

of as representing the largest set Y such that h(Y ) = X ′, where h is naturally extended to sets

of traces. If h(X) = X ′, then X ⊆ Y , so X ′ represents a kind of upper bound on the set X .

Hence, if A and A′ are trace structure algebras constructed from C and C′ respectively, we use the

function Ψu that maps an agent with traces P in A into the agent with traces h(P ) in A′ as the upper

bound in a conservative approximation. A sufficient condition for a corresponding lower bound is:

if x 6∈ P , then h(x) is not in the set of possible traces of Ψl(T ). This leads to the definition of a

function Ψl(T ) that maps P into the set h(P ) − h(B(A) − P ). The conservative approximation

Ψ = (Ψl,Ψu) is an example of a conservative approximation induced by h. A slightly tighter lower

bound is also possible (see [5]).

It is straightforward to take the general notion of a conservative approximation induced by a

homomorphism, and apply it to specific models. Simply construct trace algebras C and C′, and

a homomorphism h from C to C′. Recall that these trace algebras act as models of individual

behaviors. One can construct the trace structure algebras A over C and A′ over C′, and a conservative

approximation Ψ induced by h. Thus, one need only construct two models of individual behaviors

and a homomorphism between them to obtain two trace structure models along with a conservative

approximation between the trace structure models.

4.2 Inverses of Conservative Approximations

Conservative approximations represent the process of abstracting a specification in a less detailed

semantic domain. Inverses of conservative approximations represent the opposite process of refine-

ment.

Let A and A′ be two trace structure algebras, and let Ψ be a conservative approximation between

A and A′. Normal notions of the inverse of a function are not adequate for our purpose, since Ψ is a

pair of functions. We handle this by only considering the T in A for which Ψu(T ) and Ψl(T ) have

the same value T ′. Intuitively, T ′ represents T exactly in this case, hence we define Ψinv(T
′) = T .

When Ψu(T ) 6= Ψl(T ) then Ψinv is not defined.

The inverse of a conservative approximation can be used to embed a trace structure algebra at a

higher level of abstraction into one at a lower level. Only the agents that can be represented exactly

at the high level are in the image of the inverse of a conservative approximation. We use this as

part of our approach for reasoning about heterogeneous systems that use models of computation

at multiple levels of abstraction. Assume we want to compose two agents T ′
1

and T ′
2

that reside

in two different trace structure algebras A1 and A2. To make sense of the composition, we first

define a third, more detailed trace algebra that has homomorphisms into the other two. Thus we can

construct a third, more detailed, trace structure algebra A with conservative approximations induced

by the homomorphisms. The inverse of these conservative approximations are used to map T ′
1

and



T ′
2

into their corresponding detailed models T1 and T2. The composition then takes place in the

detailed trace structure algebra. Figure 2 illustrates this procedure.

T

Ψinv Ψinv

T’1A1
T’2

A2

T2

1

Figure 2: Composition of heterogeneous models

5 Conclusions

In this extended abstract with have presented the framework of trace algebras, whose goal is to

make it easy to define and to study the relationship between the semantic domains for a wide range

of models of computation. All the models of importance “reside” in a unified framework so that

their combination, re-partition and communication happens in the same generic framework and as

such may be better understood and optimized. While we realize that today heterogeneous models

of computation are a necessity, we believe that this unified approach is possible and will provide

a designer a powerful mechanism to actually select the appropriate models of computation, (e.g.,

FSMs, Data-flow, Discrete-Event, that are positioned in the theoretical framework in a precise order

relationship so that their interconnection can be correctly interpreted and refined) for the essential

parts of his/her design.

We used trace algebra to provide the underlying mathematical machinery. Our representation

of agents is denotational, in that no rule is given to derive the output from the input. The algebraic

infrastructure allows us to to formalize a semantic domain in a way that is close to a natural semantic

domain for a model of computation. In addition it introduces additional concepts such as hierarchy,

instantiation and scoping in a natural and consistent way.

In particular we are concentrating on using the concept of a conservative approximation to study

the problem of heterogeneous interaction. Our current research also focuses on a generalized notion

of refinement as substitutability. General results that relate the refinement relationships to the other

functions of the algebra, including conservative approximations, will provide powerful tools for the

development of verification and synthesis techniques that are independent of the particular model

of computation.
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