
Overcoming Heterophobia: Modeling Concurrency in Heterogeneous Systems

Jerry Burch
Cadence Berkeley Laboratories

2001 Addison St third floor
Berkeley, CA 94709, USA

jrb@cadence.com

Roberto Passerone
Cadence Design Systems, Inc.

2670 Seely Road
San Jose, CA 95134
robp@cadence.com

Alberto L. Sangiovanni-Vincentelli
Department of EECS

University of California at Berkeley
Berkeley, CA 94720

alberto@eecs.berkeley.edu

Abstract

System level design is complex. One source of this com-
plexity is that systems are often heterogeneous: different
models of computation (e.g., dataflow, FSMs) are used to
describe different components of a system. Existing formal
methods for concurrent systems are typically based on one
particular model of computation, so it is difficult to formal-
ize the interaction between heterogeneous components. In
this paper, we develop a framework for formalizing the re-
lationships between different models of computation.

1 Introduction

Microscopic devices, powered by ambient energy in
their environment, will be able to sense numerous fields,
position, velocity, and acceleration, and communicate with
appropriate and sometimes substantial bandwidth in the
near area. Larger, more powerful systems within the in-
frastructure will be driven by the continued improvements
in storage density, memory density, processing capability,
and system-area interconnects as single board systems are
eclipsed by complete systems on a chip. Data movement
and transformation is of central importance in such applica-
tions. Future devices will be network-connected, channel-
ing streams of data into the infrastructure, with moderate
processing on the fly. Others will have narrow, application-
specific UIs. Applications will not be centered within a
single device, but stretched over several, forming a path
through the infrastructure. In such applications, the ability
of the system designer to specify, manage, and verify the

functionality and performance of concurrent behaviors is
essential.

Currently deployed design methodologies for embedded
systems are often based on ad hoc techniques that lack for-
mal foundations and hence are likely to provide little if any
guarantee of satisfying a set of given constraints and spec-
ifications without resorting to extensive simulation or tests
on prototypes. In the face of growing complexity and tight-
ening of time-to-market, cost and safety constraints, this
approach will have to yield to more rigorous methods. We
believe that it is most likely that the preferred approaches
to the implementation of complex embedded systems will
include the following aspects:

1. Design time and cost are likely to dominate the decision-
making process for system designers. Therefore, design
reuse in all its shapes and forms, as well as just-in-time,
low-cost design debug techniques will be of paramount
importance.

2. Designs must be captured at the highest level of abstrac-
tion to be able to exploit all the degrees of freedom that
are available. Such a level of abstraction should not
make any distinction between hardware and software,
since such a distinction is the consequence of a design
decision.

3. The implementation of efficient, reliable, and robust ap-
proaches to the design, implementation, and program-
ming of concurrent systems is essential. In essence,
whether the silicon is implemented as a single, large
chip or as a collection of smaller chips interacting across
a distance, the problems associated with concurrent pro-
cessing and concurrent communication must be dealt

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

with in a uniform and scalable manner. In any large-
scale embedded systems program, concurrency must be
considered as a first class citizen at all levels of abstrac-
tion and in both hardware and software.

4. Concurrency implies communication among compo-
nents of the design. Communication is too often inter-
twined with the behavior of the components of the de-
sign so that it is very difficult to separate out the two is-
sues. Separating communication and behavior is essen-
tial to overcome system design complexity. If in a de-
sign component behaviors and communications are in-
tertwined, it is very difficult to re-use components since
their behavior is tightly dependent on the communica-
tion with other components of the original design.

We have advocated the introduction of rigorous method-
ologies for system-level design for years (e.g., [1, 12]) but
we feel that there is still much to do. Recently we have di-
rected our efforts to a new endeavor that tries to capture the
requirements of present day embedded system design: the
Metropolis project.

The Metropolis project, supported by the Gigascale Sil-
icon Research Center, started two years ago and involves a
large number of people in different research institutions. It
is based on the following principles:

� Orthogonalization of concerns: In Metropolis, behav-
ior is clearly separated from implementation. Commu-
nication and computation are orthogonalized. Commu-
nication is recognized today as the main difficulty in
assembling systems from basic components. Errors in
software systems can often be traced to communication
problems. Metropolis was created to deal with com-
munication problems as the essence of the new design
methodology. Communication-based design will allow
the composition of either software or hardware blocks
at any layer of abstraction in a controlled way. If the
blocks are correct, the methodology ensures that they
communicate correctly.

� Solid theoretical foundations that provide the nec-
essary infrastructure for a new generation of tools:
We believe that without a rigorous approach, the goal
of correct, efficient, reliable and robust designs cannot
be achieved. The tools used in Metropolis will be in-
teroperable and will work at different levels of abstrac-
tion, they will verify, simulate, and map designs from
one level of abstraction to the next, help choose imple-
mentations that meet constraints and optimize the crite-
ria listed above. The theoretical framework is necessary
to make our claims of correctness and efficiency true.
Metropolis will deal with both embedded software and
hardware designs since it will intercept the design speci-
fication at a higher level of abstraction. The design spec-

ifications will have precise semantics. The semantics is
essential to be able to: (i) reason about designs, (ii) iden-
tify and correct functional errors, (iv) initiate synthesis
processes.

� Reduction of design time and cost by using plat-
forms: Platforms have been a common approach to re-
use. We have formalized and elaborated the concept of
platform to yield an approach that combines hardware
and software platforms to build a system platform. An
essential part of a platform is its communication archi-
tecture. Communication-based design principles have
been used to define standard communication schemes,
but we advocate a more abstract use of communication-
based design to allow more flexible and better-specified
communication architectures.

The Metropolis methodology, by leveraging these three
basic principles, builds an environment where the design of
complex systems will be a matter of days versus the many
months needed today Complex, heterogeneous designs will
be mapped into flexible system platforms by highly opti-
mized “design agents” and verified by “verification agents”
in a formal logic framework.

An essential aspect of the Metropolis methodology is
the adoption of formal definition of the semantics of com-
munication so that implementation choices will be correct
by construction.

Several formal models have been proposed over the
years (see e.g. [7]) to capture one or more aspects of com-
putation as needed in embedded system design. We have
been able to compare the most important models of compu-
tations using a unifying theoretical framework introduced
recently by Lee and Sangiovanni-Vincentelli [9].

However, this denotational framework has only helped
us to identify the sources of difficulties in combining differ-
ent models of computation that are certainly needed when
complex systems are being designed. In this case, the parti-
tion of the functionality of the design into different models
of computation is somewhat arbitrary as well as arbitrary
are the communication mechanisms used to connect the
“ports” of the different models. We believe that it is pos-
sible to optimize across model-of-computation boundaries
to improve performance and reduce errors in the design at
an early stage in the process.

There are many different views on how to accomplish
this. There are two essential approaches: one is to develop
encapsulation techniques for each pair of models that al-
low different models of computation to interact in a mean-
ingful way, i.e., data produced by one object are presented
to the other in a consistent way so that the object “under-
stands” [3, 4]. The other is to develop an encompassing
framework where all the models of importance “reside”
so that their combination, re-partition and communication

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

happens in the same generic framework and as such may be
better understood and optimized. While we realize that to-
day heterogeneous models of computation are a necessity,
we believe that the second approach will be possible and
will provide a designer a powerful mechanism to actually
select the appropriate models of computation, (e.g., FSMs,
Data-flow, Discrete-Event, that are positioned in the the-
oretical framework in a precise order relationship so that
their interconnection can be correctly interpreted and re-
fined) for the essential parts of his/her design.

In this paper, we focus on this very aspect of the ap-
proach: the formal definition of a framework where formal
models can be rigorously defined and compared, and their
interconnections can be unambiguously specified. We use
a kind of abstract algebra to provide the underlying math-
ematical machinery. We believe that this framework will
be essential to provide the foundations of an intermediate
format that will provide the Metropolis infrastructure with
a formal mechanism for interoperability among tools and
specification methods.

The paper is organized as follows. Section 2 describes
our view of the requirements for a formal model of hetero-
geneous systems. Sections 3 through 6 describe our frame-
work, which is based on trace algebra [2]. Section 7 sum-
marizes and describes future work.

2 Requirements for a Formal Model

This section describes our view of what a model of com-
putation is, our approach to constructing formal models,
and what assumptions that approach depends on.

2.1 What is a Model of Computation?

In our terminology, a model of computation is a distinc-
tive paradigm for computation, communication, etc. For
example, the Mealy machine model of computation is a
paradigm where data is communicated via signals and all
agents operate in lockstep (we use “agent” as a generic
term that includes both hardware circuits and software pro-
cesses). The Kahn Process Network model is a paradigm
where data carrying tokens provide communication and
agents operate asynchronously with each other (but coor-
dinate their computation by passing and receiving tokens).
Different paradigms can give quite different views of the
nature of computation and communication. In a large sys-
tem, different subsystems can often be more naturally de-
signed and understood using different models of computa-
tion.

The notion of a model of computation is related to, but
different from, the concept of a semantic domain for mod-
eling agents. A semantic domain is a set of mathematical

objects used to model agents. For a given model of com-
putation, there is often a most natural semantic domain.
For example, Kahn processes are naturally represented by
functions over streams of values. In the Mealy machine
model, agents are naturally represented by labeled graphs
interpreted as state machines.

However, for a given model of computation there is
more than one semantic domain that can be used to model
agents. For example, a Kahn process can also be modeled
by a state machine that effectively simulates its behavior.
Such a semantic domain is less natural for Kahn Process
Networks than stream functions, but it may have advan-
tages for certain types of analyses, such as finding relation-
ships between the Kahn process model of computation and
the Mealy machine model of computation.

We interpret the term “model of computation” slightly
differently than others. There, the meaning of the term is
based on designating one or more unifying semantic do-
mains. A unifying semantic domain is a (possibly param-
eterized) semantic domain that can be used to represent
a variety of different computation paradigms. Examples
of unifying semantic domains include the Tagged Signal
Model [9] and the operational semantics underlying the
Ptolemy II simulator [4]. In this context, a model of com-
putation is a way of encoding a computation paradigm in
one of the unifying semantic domains. With this interpre-
tation, it is common to distinguish different models of com-
putations in terms of the traits of the encoding: firing rules
that control when different agents do computation, commu-
nication protocols, etc. For example, in Ptolemy II, models
of computation (also known as a computation domains) are
distinguished by differences in firing rules and communi-
cation protocols.

Our interpretation of these terms highlights the distinc-
tion between a model of computation and a semantic do-
main. We use the term model of computation more broadly
to include computation paradigms that may not fit within
any of the semantic domains we consider.

2.2 Strategy for Constructing a Formal Model

It is not our goal to construct a single unifying seman-
tic domain, or even a parameterized class of unifying se-
mantic domains. Instead, we wish to construct a formal
framework that simplifies the construction and comparison
of different semantic domains, including semantic domains
that can be used to unify specific, restricted classes of other
semantic domains. Our aim therefore differs from that of
the Ptolemy II project where the provision of a simulator
leads to a notion of composition between different models
that is fixed in the definition of the domain directors, result-
ing in a single specific unifying domain; there, a different
notion of interaction requires redefining the rules of execu-

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

tion.
There is an important tradeoff when constructing a uni-

fying semantic domain. The unifying semantic domain can
be used more broadly if it unifies a large number of models
of computation. However, the more models of computa-
tion that are unified, the less natural the unifying semantic
domain is likely to be for any particular model of compu-
tation. We want the users of our framework to be able to
make their own tradeoffs in this regard, rather than be re-
quired to conform to a particular choice made by us.

2.3 Assumptions About Models of Computation

We wish to have a very general framework that can han-
dle a variety of models of computation. However, we make
some assumptions about the semantic domains that will be
used. We have proved many generic theorems that hold for
any semantic domain that satisfies these assumptions. To
analyze a newly constructed semantic domain within this
framework, one starts by proving that the domain satisfies
the assumptions. Then, the above generic theorems can be
used without having to reprove them.

Our most restrictive assumption is that all models of
computation will be linear time, rather than branching time.
Generally, there are two reasons why branching time mod-
els are used. First, branching time temporal logics such as
CTL can express useful non-linear properties that are rela-
tively inexpensive to verify using automatic model check-
ers. Although the semantics of CTL cannot be represented
in our framework, CTL can still be used as a specification
language to verify linear time models, which do fit in our
framework.

The second reason to use branching time models has to
do with certain semantic inadequacies of linear time mod-
els. Our approach to handling these inadequacies follows
Dill [6]. To describe this approach, we use the standard
CCS “Vending Machine” example, which is illustrated in
figure 1 (see page 54 of Dill for a similar discussion of this
example). The first vending machine inputs money (action
a) and lets the customer select one of two items by tak-
ing inputs b and c. To simplify the example, the vending
machine halts after just one transaction. The other vend-
ing machine takes money, then makes an internal decision
about which product it will allow the customer to choose
(without telling the customer). The customer selects item
b or c, and either gets it or not, depending on the decision
made by the machine.

These two vending machines should be distinguished.
However, the sets of traces of the two machines appears
to be the same: fab; acg. CCS and other process algebras
use a branching time semantics to distinguish the two ma-
chines. However there are other approaches. Notice that
the actions a, b and c are rendezvous in this model of com-

a

b c

a a

b c

(a) (b)

Figure 1. CCS-like trees for two “vending ma-
chines”

putation. One difference between the vending machines is
that if the customer makes choice b, then the first vending
machine is guaranteed to complete the b rendezvous while
the second vending machine may not. This difference is not
reflected in the trace set because there is no indication of a
rendezvous that is initiated by the customer but not com-
pleted by the machine. If the alphabet of the trace language
is enriched with symbols that indicate a partially complete
rendezvous (for example), then the two vending machines
can be distinguished by their trace sets, without requiring
branching time semantics.

The above argument that branching time is not needed in
many cases is, of course, merely suggestive, not definitive.
A long term goal of this research is to extend the frame-
work to include branching time models so we can more
precisely characterize when such models are needed. How-
ever, for the main goal of this research, improving formal
semantic methods for heterogeneous systems, we believe
that branching time semantics are not necessary.

Our current models of agents do not allow ports to be
of different types. Also, we do not explicitly model bidi-
rectional communication: all ports are designated as inputs
or outputs. However, the effects of these limitations are
more cosmetic than fundamental. Different port types can
be modeled using a value domain that is the union of all
types of interest. Bidirectional communication is modeled
by allowing multiple output ports to share control over sig-
nals. The fact that such output ports are “output” in name
only is why we consider this restriction to be merely cos-
metic. We plan to extend our framework to remove these
cosmetic restrictions.

There are many other traits that distinguish models
of computation, including: levels of abstraction, partial
orders models (e.g., POMSETS [11] and Mazurkiewicz
Traces [10]) vs total orders, action-based vs value-based,
different styles of computation, communication and coor-
dination. For all these traits, our framework is unbiased.
We have constructed different models with several differ-
ent combinations of these traits, all of which satisfy the

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

assumptions we place on semantic domains.

2.4 Overview

So far, we have discussed the considerations that influ-
enced our framework for formally modeling heterogeneous
systems. Now we can give an informal overview of the
framework before describing it formally in the remaining
sections.

Several methods for verifying concurrent systems are
based on checking for language containment or related
properties. In the simplest form of language containment-
based verification, each agent is modeled by a formal lan-
guage of finite (or possibly infinite) sequences. If agent
T is a specification and T 0 is an implementation, then T 0

is said to satisfy T if the language of T 0 is a subset the
language of T . The idea is that each sequence, some-
times called a trace, represents a behavior; an implemen-
tation satisfies a specification iff all the possible behav-
iors of the implementation are also possible behaviors of
the specification. Indeed this relationship between “imple-
mentation” and “specification” is a manifestation of a hi-
erarchy between models, whereby “specifications” are at
a higher level of abstraction than “implementations”. The
fact that a lower-level model is an “implementation” of an-
other higher-level model is verified by “behavior contain-
ment”. Thus we need a formal way of describing behavior
and containment to be able to establish this relationship.
Also we like to think of the relationships “implementation-
specification” as indeed the implementation being a “re-
finement” of the specification. Hence we may qualify re-
finement as the relationships between a higher-level model
and a lower one, while specification and implementation
may relate more properly to the model used to “enter” the
design process and implementaiton as the one with which
we “exit” the design process.

Our work in the framework is indeed inspired by rela-
tionships between “models” of this sort. Hence, our def-
initions and theorems will proceeed from a definition of
behavior and structural properties of models towards the
notion of “approximations” as a way of capturing the be-
havior containment idea. Once we have established this key
relationship, it is possible to compare and combine models
trying to find common grounds where behavior represen-
tations are consistent. Intuitively, we may find different
ways of approximating models and consequently compo-
sitions and comparisons are dependent of the approxima-
tions. This has actually been observed in applications when
heterogeneous models of computation are used for differ-
ent parts of a design. The different parts of the design have
of course to interact and they eventually do so in the final
implementation, but the way in which we march towards
implementation depends on our assumptions of the way the

two models communicate. These assumptions more often
than not are implicit and may be imposed by the tools de-
signers use. We do not want to be prisoners of this way
of designing that may yield sub-optimal and even incor-
rect implementations. This is the main motivation of the
heavy machinery we introduce. Bearing with us on this tor-
tuous path will hopefully yield the fruit of a rigorous way
of defining, composing and proving properties of heteroge-
neous models of computation.

In our framework, traces can be any mathematical object
that has certain properties. In section 3, these properties are
formalized in the axioms of trace algebra, which is a kind
of abstract algebra that has a set of traces as its domain.
Section 4 describes trace structure algebra, which has as
its domain a set of trace structures, each containing a sub-
set of the traces from a given trace algebra. The notion of
one trace structure satisfying another is based on trace set
containment.

Here is a simple example of a trace algebra and a trace
structure algebra. Let the set of traces over an alphabetA be
A1, which is the set of finite and infinite sequences overA.
A tuple ((I; O); P) is a trace structure if P � A1, where
I and O are sets of input and output signals, respectively,
and A = I [O is the alphabet of the trace structure.

We define the operations of parallel composition, pro-
jection (for abstracting away internal signals) and renam-
ing (for instantiating models with new port names) on trace
structures by first defining projection and renaming on in-
dividual traces. If x 2 A1 and B � A, then proj(B)(x)
is the string formed from x by removing all symbols not in
B. If r is a bijection with domain A, then rename(r)(x) is
the string formed from x by replacing every symbol a with
r(a).

Projection and renaming on trace structures are just
the natural extensions of the corresponding operations on
traces. In particular, if T = ((I; O); P) is a trace structure,
I � B � A and r is a bijection with domain A, then

proj(B)(T) = ((I; O \ B); proj(B)(P));

rename(r)(T) = ((r(I); r(O)); rename(r)(P));

where the operations of projection and renaming on traces
are naturally extended to sets of traces. If T = ((I; O); P)
is equal to the parallel composition of T 0 and T 00, then P is
the set of x 2A1 such that

proj(A0)(x) 2 P 0 ^ proj(A00)(x) 2 P 00:

Given our definition of projection on strings, this is a natu-
ral definition of parallel composition.

Looking at the above definitions more closely, we can
see how these concepts can be generalized to include many
different kinds of models. Rather than always using strings
in a formal language as the domain of traces, we can use
any domain that has projection and renaming operations

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

defined on it and that satisfies certain requirements. These
requirements are formalized in the axioms of trace algebra.
In each case, the operations on trace structures are defined
exactly as above, in terms of the operations on individual
traces. The resulting trace structure algebra enjoys certain
useful properties because the underlying traces satisfy the
axioms of trace algebra.

Trace structures algebras are best used in combination,
and indeed they must be related if we are to address the
problems of heterogeneous design. Hence, after provid-
ing some very general methods for constructing different
models of concurrent systems, we study how to prove rela-
tionships between these models. One of these relationships
is the concept of a conservative approximation [2]. Infor-
mally, a conservative approximation is a mapping between
the trace structures of two trace structure algebras such that
the following condition is satisfied: if an “implementation
satisfies” a specification in the first trace structure algebra,
then the corresponding “implementation also satisfies” the
corresponding specification in the second algebra. Conser-
vative approximations are useful when the second model
is accurate but difficult to use in proofs or with automatic
verification tools, and the first model is an abstraction that
simplifies verification and reasoning. In the paper we show
how to derive a conservative approximation from a relation
between the trace algebras underlying the trace structure
algebras.

While a conservative approximation is used to abstract
away details of a model to simplify the representation and
the verification task, inverses of conservative approxima-
tions can be used to refine a specification into a more de-
tailed one. In the paper we characterize the conditions un-
der which an inverse is defined, and we use it to solve the
problem of composing different models by mapping them
into a common refinement. The restrictions on the behav-
iors computed at the lower level are finally abstracted again
in the two original models. This approach can be applied
transitively to a set of models that are related by such map-
pings.

3 Trace Algebra

We make a distinction between two different kinds of
behaviors: complete behaviors and partial behaviors. A
complete behavior has no endpoint. Since a complete be-
havior goes on forever, it does not make sense to talk about
something happening “after” a complete behavior. A par-
tial behavior has an endpoint; it can be a prefix of a com-
plete behavior or of another partial behavior. Every com-
plete behavior has partial behaviors that are prefixes of it;
every partial behavior is a prefix of some complete behav-
ior. The distinction between a complete behavior and a par-
tial behavior has only to do with the length of the behavior

(that is, whether or not it has an endpoint), not with what
is happening during the behavior; whether an agent does
anything, or what it does, is irrelevant.

Complete traces and partial traces are used to model
complete and partial behaviors, respectively. A given ob-
ject can be both a complete trace and a partial trace; what is
being represented in a given case is determined from con-
text. For example, a finite string can represent a complete
behavior with a finite number of actions, or it can repre-
sent a partial behavior. The form of trace algebra we define
here has only complete traces; it is intended to represent
only complete behaviors. We use the symbol ‘C’ to denote
trace algebras. Since we only consider here trace algebras
with complete traces and without partial traces, we use a
subscript ‘C’ (e.g., ‘CC’) to denote the trace algebras used
in this paper.

We begin with a few preliminary definitions.

Definition 1. We use W to denote a set of signals. The set
W is usually infinite, but this is not required.

Definition 2. An alphabetA over W is any subset of W .

The rename operation uses a renaming function, which
is a bijection from one alphabet to another.

Definition 3. A function r with domain A and codomain
B, where A and B are alphabets over W , is a renaming
function over W if r is a bijection.

Definition 4. The function r j
B0!B00 is constructed from

the function r by restricting to domainB0 and codomain
B00.

Now we are ready to define trace algebra.

Definition 5. A trace algebra CC over W is a triple

(BC ; proj ; rename):

For every alphabet A over W , BC(A) is a non-empty
set, called the set of traces over A. Slightly abusing no-
tation, we also write BC as an abbreviation for

[
fBC(A) : A �Wg:

For every alphabet B over W and every renaming func-
tion r over W , proj(B) and rename(r) are partial func-
tions from BC to BC . The following axioms T1 through
T8 must also be satisfied. For all axioms that are equa-
tions, we assume that the left side of the equation is de-
fined.

T1. proj(B)(x) is defined iff there exists an alphabet A
such that x 2 BC(A) and B � A. When defined,
proj(B)(x) is an element of BC(B).

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

T2. proj(B)(proj(B0)(x)) = proj(B)(x).

T3. If x 2 BC(A), then proj(A)(x) = x.

T4. Let x 2 BC(A) and x0 2 BC(A0) be such that
proj(A \ A0)(x) = proj(A \ A0)(x0). For all A00

where A[A0 � A00, there exists x00 2 BC(A00) such
that x = proj(A)(x00) and x0 = proj(A0)(x00).

T5. rename(r)(x) is defined iff x is an element of the
set BC(dom(r)). When defined, rename(r)(x) is an
element of BC(codom(r)).

T6. rename(r)(rename(r0)(x)) = rename(r � r0)(x).

T7. If x 2 BC(A), then rename(idA)(x) = x, where
idA is the identity function with domain A.

T8. proj(r(B))(rename(r)(x)) =
rename(r j

B!r(B))(proj(B)(x)).

T1 and T5 state when the operations on traces are de-
fined. T2, T3, T6, T7 and T8 are clearly consistent with
the intuitive meaning of the projection and renaming op-
erations. The remaining axiom, T4 is a kind of “diamond
property”, as illustrated in figure 2. As an example of ap-
plying T4, consider the case where traces are sequences.
Let A = fa; bg, A0 = fb; cg, x = abab and x0 = bcb.
Clearly proj(A \ A0)(x) and proj(A \ A0)(x0) are both
equal to bb. Choosing x00 = abacb demonstrates the T4
holds for this pair of sequences. Intuitively, T4 requires
that if two traces x and x0 are compatible on their shared
signals (i.e., A \ A0), then there exists a trace x00 that cor-
responds to the synchronous composition of x and x0.

Note 6. We naturally extend the renaming and projection
operations on traces to operations on sets of traces. For
example, if rename(r)(x) is defined for every x in X ,
then rename(r)(X) is defined such that

rename(r)(X) = frename(r)(x) : x 2 Xg:

3.1 Examples

As an example trace algebra, we formalize the trace al-
gebra briefly described at the beginning of section 3, which
we call CI

C
. We always use the symbol ‘C’ to denote trace

algebras, and the superscript ‘I’ is a mnemonic for an (un-
timed) interleaving model; the subscript ‘C’ indicates that
there are only complete traces in the trace algebra (i.e., a
trace algebra without partial traces).

Definition 7. For a given set of signals W , the trace alge-
bra CI

C
= (BI

C
; proj I ; renameI) over W is defined as

follows:

� For every alphabetA overW , the setBI
C
(A) of traces

over A is A1, which is the set of finite and infinite
sequences over A.

� If x 2 BI
C
(A) and B � A, then proj I (B)(x) is the

sequence formed from x by removing every symbol
a not inB. More formally, if x0 = projI (B)(x), then
the length of x0 (written len(x0)) is

jfj 2 N : 0 � j < len(x) ^ x(j) 2 Bgj

and x0(k) = x(n) for all k < len(x0), where n is the
unique integer such that x(n) 2 B and

k = jfj 2 N : 0 � j < n ^ x(j) 2 Bgj:

� If x 2 BI
C
(A) and r is a renaming function over W

with domain A, then

rename(r)(x) = �n 2 N 6�[r(x(n))]:

Trace algebra can be used to construct a large vari-
ety of behavior models. The trace algebra CI

C
, for which

BC(A) = A1, is just one example. To provide more in-
tuition about the range of possible trace algebras, we infor-
mally describe several more examples.

The simplest possible trace algebra has exactly one
trace; call it x0. For any alphabet A, the set of traces over
A is BC(A) = fx0g. If B is an alphabet and r is a re-
naming function, then proj(B)(x0) and rename(r)(x0) are
defined and are equal x0. This trace algebra does not distin-
guish between any behaviors; all behaviors are represented
by the same trace. For this reason it is not a useful trace
algebra, but it does satisfy the necessary axioms.

A slightly more complicated trace algebra has BC(A) =
2A. For any trace x, proj(B)(x) is defined and is equal
to x \ B. On the other hand, rename(r)(x) is defined iff
x � dom(r); when defined, it is equal to r(x), where r is
naturally extended to sets. It is easy to show that this trace
algebra satisfies T1 through T8; in particular, if x and x0

satisfy the hypothesis of T4, then x00 = x [x0 is sufficient
to show that T4 is satisfied. Traces in this trace algebra
do not provide any information about actions occurring in
sequence, only information about what actions occurred a
non-zero number of times during a behavior. Alternatively,
if a 2 x, then this could be interpreted to mean that a oc-
curred an odd number of times during the behavior repre-
sented by x.

Traces in the last two examples provide less informa-
tion about a behavior than do traces in CI

C
. As an example

of a trace algebra that provides more information than CI
C

,
let BC(A) = (2A)!. For any trace x, proj(B)(x) is de-
fined and is formed from x by intersecting each element of
the sequence with B. The function rename(r) is the nat-
ural extension of r to sequences of sets. Unlike traces in
CI
C

, these traces can be interpreted as providing informa-
tion about the time at which events occur. If x is such a

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

v

x00 2 B(A00)

�
�
�
�

�
�

�
�

�
�
�	

proj(A)

vx 2 B(A)

@
@
@
@
@
@
@
@
@
@
@R

proj(A0)

v x0 2 B(A0)
@
@
@
@
@
@
@
@
@
@
@R

proj(A \A0)

�
�
�
�

�
�
�
�

�
�
�	

proj(A \ A0)

v

proj(A \ A0)(x) = proj(A \ A0)(x0)

Figure 2. According to T4, if there exists an x and an x0 that satisfy the lower half of the diamond,
then there exists an x00 that satisfies the upper half, for any alphabet A00 such that A [A0 � A00.

trace, then x(n) is the set of events that occurred at time n.
The set x(n) must be defined for all integers n; therefore,
each trace x must be an infinite sequence.

A trace algebra that provides an intermediate amount of
information between the last example and CI

C
can be con-

structed by letting BC(A) = (2A � f;g)1. The renaming
operation is the same as the last example, except that it is
also extended to finite sequences. Projection is similar to
the last example, except that after doing the intersection,
any instances of the empty set that result must be removed
from the sequence. Like CI

C
, this trace algebra is untimed;

however, it represent simultaneity explicitly, unlike inter-
leaving semantics.

In the continuous time trace algebra CCTU
C

, each trace
over an alphabet A is an element of 2A�<

6�

, where < 6� is
the set of non-negative real numbers. Each trace is a set of
events; each event is an ordered pair of an action and a time
stamp. An isomorphic trace algebra can be constructed by
taking advantage of the natural bijection between 2A�<

6�

and < 6� 7! 2A. If x is a trace in < 6� 7! 2A, then x(t) is the
set of actions that occurred at time t.

All of the trace algebras we have described are action
based, but trace algebra can also be used for state-based
models. For an agent with alphabet A, we interpret each

a 2 A as a state variable. Let V be the set of values that can
be taken by state variables. Then, each state is an element
of A 7! V . A trace algebra based on sequences of states
would have BC(A) equal to (A 7! V)!, which can also be
written as N 6� 7! (A 7! V).

For a continuous time, state-based model, let BC(A) =
<6� 7! (A 7! V). If x is such a trace, then x(t) is the state
at time t. If V is the set of real numbers, then this trace al-
gebra could be used as a circuit model that represents both
continuous time and continuous voltage.

The following three examples will be used throughout
the rest of the paper to explore how we can characterize
different models of computation in terms of their underly-
ing traces. We will consider Kahn Process Networks, syn-
chronous or finite-state systems, and discrete-time systems.
In all three examples we only explicitly define the projec-
tion operation, while the renaming operation is implicitly
defined in the obvious way.

3.1.1 Kahn Process Networks

Kahn Process Networks, agents are characterized by a
function that takes a stream of values from each of the in-
puts, and produces streams of values on each of the out-

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

puts. In this section, we describe the trace algebra CK
C

used
in modeling Kahn Process Networks.

Assume, without loss of generality, that all inputs and all
outputs take values from a set V . Then we can represent the
set of streams at a particular input or output as a sequence
of values overV . The set of the finite and infinite sequences
from V is denoted as V1. A behavior of a Kahn Process is
composed of a stream for each of the inputs and each of the
outputs. If the alphabet A is the set of inputs and outputs
for a process, then a trace of a Kahn Process is a function
f : A 7! V1.

We define the projection operation for Kahn Processes
as follows: if B is a set of inputs and outputs, and B � A

then the projection proj(B)(f) of a trace f : A 7! V1 is
defined as the restriction f jB of the function f :

proj(B)(f) = f jB

To show that this is a trace algebra we must prove that it
satisfies the necessary axioms. T4 is the only axiom that
does not follow easily from the definitions:

Theorem 8. If f : A 7! V1 and f 0 : A0 7! V1 are traces
such that proj(A [A0)(f) = proj(A [A0)(f 0), then
for all A00, whereA[A0 � A00, there exists f 00 such that
f = proj(A)(f 00) and f 0 = proj(A0)(f 00).

Let f 00 : A00 7! V1 be such that f 00 agrees with f on A

and agrees with f 0 on A0. We know that f and f 0 agree on
the common elements of A and A0, so f 00 is well defined
and satisfies the theorem.

3.1.2 Synchronous Networks

A synchronous agent processes all of its inputs and outputs
in (a sequence of) atomic steps. This is the case, for ex-
ample, for Mealy machines. The definition of the traces in
this case differs slightly from the previous case because we
want a structure that can represent the simultaneity of the
events at the interface of a process. We denote this trace
algebra with CS

C
.

A synchronous process operates on sequences of values
that are synchronized. Consider the set of values V and the
set of inputs and outputs A as before. Then the set of value
that can be observed at any synchronization point (e.g. a
clock edge) is given by a function g : A 7! V . We are
interested in a sequence of these values. Hence a trace in
this case is an element of the set of sequences (A 7! V)1.
The operation of projection is defined in a similar way and
consists of restricting the domain of each of the functions
in the sequence to a smaller set of elements. Hence, if we
denote with hgii a sequence of functions, and for B � A,
we define the operation of projection as

proj(B)(hgii) = hgijBi:

As with Kahn Processes, the operation of projection satis-
fies T4.

In order to avoid having to change the alphabet when
using functions later in the paper, we always add an ele-
ment to A to represent a global clock signal. This is not
necessary at this level of abstraction and is done only for
convenience.

3.1.3 Discrete Time Networks

The last example trace algebra is a discrete-time model, in
which a process samples the sets of inputs and produces a
set of outputs at discrete instants in time. Moreover, the in-
stants in time are characterized by their distance, i.e. they
form a metric space. Without loss of generality, we will
consider discrete time models where the model of time is
represented by the positive integers N 6�. In practice, the
integers represent time in a particular unit, for example
picoseconds. Note also that we are considering a regular
sample time, while in general a discrete time model may
involve sampling at irregular times (for example the sam-
pling time may be adjusted according to the rate of varia-
tions of values in the signals). This trace algebra is denoted
by CD

C
.

In the discrete-time model each input and output signal
assumes a value at each time stamp. Hence, traces are ele-
ment of N 6� 7! (A 7! V).

As in the other two cases we can define the operation
of projection on traces by just restricting the function to a
subset of the domain A:

proj(B)(N 6� 7! g) = N 6� 7! gjB

As before, the validity of the axioms of trace algebra are
easy to verify.

4 Trace Structure Algebra

Agents communicate through signals. We associate
with each agent an agent signature (or just signature),
which describes sets of input signals and output signals.

Definition 9. The set of agent signatures � over W is the
set of ordered pairs (I; O) such that I and O are dis-
joint subsets of W . We use to denote agent signatures
(often called just signatures).

In a signature (I; O) over W , the set W is usually infi-
nite and the sets I and O are usually finite, but this is not
required. In future work, we plan to extend signatures to al-
low bidirectional signals and to associate type information
with each signal.

Definition 10. If = (I; O) is a signature over W , then
A = I [O is the alphabet of .

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Note 11. When we mention a signature , we also implic-
itly define I and O so that = (I; O). We also im-
plicitly define A to be the alphabet of . If the name
of the signature is decorated with primes and/or sub-
scripts, those decorations carry over to the implicitly de-
fined quantities. For example, mentioning a signature 01
implicitly defines I 01, O01 and A01.

The parallel composition of two agents T and T 0 (writ-
ten T k T 0) corresponds to, for example, joining two cir-
cuits or running two processes concurrently. In the result-
ing composition, T and T 0 communicate through shared
signals. We require that no signal be an output of both T

and T 0. The agent rename(r)(T) is formed from T by re-
naming the signals of T according to r. If B is a subset of
the alphabet of T , then proj(B)(T) has B as its alphabet;
the remaining signals of T are not externally visible. We
allow only outputs of T to be hidden, so B must contain all
of the inputs of T .

We are now ready to define the concept of a trace struc-
ture algebra. Trace structures are constructed from the
traces of a trace algebra, and are used to represent agents.
Here we consider trace structures that contain one set of
traces, which represents the set of possible behaviors of an
agent.

Definition 12. Let CC = (BC ; proj ; rename) be a trace al-
gebra over W . The set of trace structures over CC is the
set of ordered pairs (; P), where

� is a signature over W ,

� A is the alphabet of , and

� P is a subset of BC(A).

We call the signature and P the set of possible traces
of a trace structure T = (; P).

A trace structure (; P) represent an agent with signa-
ture ; each trace in P represents a possible complete be-
havior of the agent.

Note 13. When we mention a trace structure T , we implic-
itly define to be its signature and P to be its set of
possible traces. If the name of the trace structure is dec-
orated with primes and/or subscripts, those decorations
carry over to the implicitly defined quantities. For exam-
ple, mentioning a trace structure T 01 implicitly defines a
signature 01 and P 01. This, as described in note 11, also
implicitly defines I 01, O01 and A01.

Definition 14. If CC = (BC ; proj ; rename) is a trace alge-
bra overW and T is a subset of the trace structures over
CC , then AC = (CC ; T) is a trace structure algebra iff
the domain T is closed under the following operations
on trace structures: parallel composition (def. 15), pro-
jection (def. 16) and renaming (def. 17).

We use the subscript C inAC to denote a trace structure
algebra that is built from a trace algebra CC that has only
complete traces (no partial traces).

To complete the definition of trace structure algebra, we
need to define the operations on trace structures mentioned
in definition 14.

Definition 15. If O\O0 = ;, then T 00 = T k T 0 is defined
and

00 = ((I [I 0)� (O [O0); O [O0)

P 00 = fx 2 BC(A
00) : proj(A)(x) 2 P ^

proj(A0)(x) 2 P 0g:

Definition 16. If I � B � A, then

proj(B)(T) = ((I; O \B); proj(B)(P)):

Definition 17. If r is a renaming function with domain A,
then

rename(r)(T) = ((r(I); r(O)); rename(r)(P)):

It can be shown, using the axioms of trace algebra, that
the operations of parallel composition, projection and re-
naming on trace structures satisfy the following identities.
In all of the identities, there is an implicit assumption that
the left hand side of the equation is defined; in each case, if
the left hand side is defined, then so is the right hand side.

(T k T 0) k T 00 = T k (T 0 k T 00):

T k T 0 = T 0 k T:

rename(r)(rename(r0)(T)) = rename(r � r0)(T):

rename(r)(T k T 0) =
rename(r j

A!r(A))(T) k

rename(r j
A0!r(A0))(T

0):

rename(idA)(T) = T ,
where idA is the identity function with domain A.

proj(B)(proj(B0)(T)) = proj(B)(T):

proj(A)(T) = T:

proj(B)(T k T 0) =
proj(B \ A)(T) k proj(B \A0)(T 0),
if (A \ A0) � B.

proj(r(B))(rename(r)(T)) =
rename(r j

B!r(B))(proj(B)(T)):

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

We want to use trace structure algebras as the basis for
our approach, which requires defining what it means for
an “implementation to satisfy a specification” when both
are given by trace structures. Our notion of satisfaction is
based on trace set containment: an implementation satisfies
a specification iff it is contained by the specification.

Definition 18. We say T � T 0 (read T is contained in T 0)
iff = 0 and P � P 0.

The operations of parallel composition, renaming and
projection are monotonic with respect to trace structure
containment, e.g.,

T � T 0) proj(B)(T) � proj(B)(T 0):

The monotonicity of parallel composition is important for
using trace structure algebras as a basis for hierarchical ver-
ification techniques.

4.1 Examples

Let us consider how some of the example trace alge-
bras discussed in section 3.1 can be used to construct trace
structures, and how the different definitions of projection
on traces lead to different notions of parallel composition
of trace structures.

Consider trace structures over the trace algebra CI
C

. The
set of possible traces of a trace structure with alphabetA is
a subset of BC(A), which in this case is A1. Consider the
trace structures

T = ((fa; bg; ;); fababg)

T 0 = ((fb; cg; ;); fbcbg):

By the definition of parallel composition in a trace structure
algebra, the set of possible traces of T 00 = T k T 0 is

P 00 = fx 2 BC(fa; b; cg) : proj(fa; bg)(x) 2 P ^

proj(fb; cg)(x) 2 P 0g

= fabacb; abcabg:

This example illustrates how parallel composition results
in nondeterminism in this model.

However, parallel composition does not lead to nonde-
terminism when the underlying trace algebra is the one with
BC(A) = (2A)! described in section 3.1. Let

T = ((fa; bg; ;); fhfa; bg; fag; fbgig)

T 0 = ((fb; cg; ;); fhfbg; fcg; fbgig)

Here the set of possible traces of T 00 = T k T 0 is the
singleton set

P 00 = fhfa; bg; fa; cg; fbgig:

The relevant difference between this model and the inter-
leaving model is that here each trace provides more infor-
mation about the time of occurrence of events. As a result,
the order of events is fully determined when “merging” to-
gether two local traces to form a global trace of a compo-
sition. Global traces are also fully determined in the cases
where traces over an alphabet A are elements of 2A�<

6�

,
(A 7! V)! or < 6� 7! (A 7! V).

Another case where parallel composition does lead to
nondeterminism is the one described in section 3.1 where
BC(A) = (2A � f;g)1. In this case, for T and T 0 defined
as above, the set of possible traces of T 00 = T k T 0 is

P 00 = fhfa; bg; fag; fcg; fbgi;

hfa; bg; fa; cg; fbgi;

hfa; bg; fcg; fag; fbgig:

The definitions of CK
C

, CS
C

, CD
C

also lead to the defini-
tion of the corresponding trace structure algebrasAK

C
,AS

C
,

AD
C

. The definition of the projection operation induces the
definition of parallel composition; in the case of AK

C
the

definitions ensure that the streams of connected Kahn Pro-
cesses are the same; for synchronous models they ensure
that composition is truly synchronous; and for discrete time
models that all processes share the same notion of time.

In addition we might want to impose constraints on the
set of trace structures that we consider in the trace struc-
ture algebra. For example, we could restrict our model of
Kahn Process Networks to only those processes that are
functional in the sense that the same output sequences is
obtained from the same input sequences. Note that in our
definition of trace algebra the alphabet A doesn’t distin-
guish between inputs and outputs. Once this distinction is
enacted, it is easy to define functional processes by requir-
ing that if two trace structuresT and T 0 have the same input
traces, then T = T 0. Likewise for the synchronous model:
in case we want to represent only finite state systems, we
might require that only the regular sequences be considered
and that the output be determinate once the input is.

4.2 Constructing Trace Structure Algebras

In a trace structure algebra AC = (CC ; T), the set of
trace structures T is required to be closed under the opera-
tions on trace structures. This section states three theorems
that make it easier to prove closure.

The first theorem states that if T is equal to the set of all
trace structures over CC , then T is closed under the opera-
tions on trace structures, so AC is a trace structure algebra.
Recall that the alphabet of a trace structure need not be a fi-
nite set. The second theorem shows that the set of all trace
structures with finite alphabets is closed under the opera-
tions on trace structures.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

For the third theorem, let (CC ; T) be a trace structure
algebra, where T is some subset of the set of trace struc-
tures over CC . For every alphabet B, let L(B) be a class
of sets of complete traces over B, that is, L(B) � 2BC(B).
Assume that L is closed under intersection, renaming, pro-
jection and “inverse projection” (this is formalized below).
Let T 0 be the set of trace structures (; P) 2 T such that P
is in L(A). Then T 0 is closed under the operations on trace
structures, so (CC ; T 0) is a trace structure algebra.

Let T I be the set of all trace structures over CI
C

. By the
first theorem, AI

C
= (CI

C
; T I) is a trace structure algebra.

Let T IR be the set of all trace structures (; P) over CI
C

for which has a finite alphabet and P is a mixed regular
set of sequences (that is, P is the union of a regular set
and an !-regular set). By the second and third theorems,
AIR

C
= (CI

C
; T IR) is also a trace structure algebra.

The remainder of this section formalizes these results.

Theorem 19. If CC is a trace algebra and T is the set of all
of the trace structures over CC , then T is closed under
the operations on trace structures, so AC = (CC ; T) is
a trace structure algebra.

Theorem 20. LetAC = (CC ; T) be a trace structure alge-
bra. Let T 0 be the set of trace structuresT 2 T such that
the alphabet of T is a finite set. Then A0

C
= (CC ; T 0) is

a trace structure algebra.

Definition 21. Let T be a set of trace structure over some
trace algebra CC . The set of alphabets of T is the set of
alphabets A of a signature in the set

f : 9P [(; P) 2 T]g:

Theorem 22. LetAC = (CC ; T) be a trace structure alge-
bra. For every alphabet B of T , let L(B) be a subset of
2BC(B). Let T 0 be the set of trace structures T 2 T such
that P is in L(A). ThenA0

C
= (CC ; T 0) is a trace struc-

ture algebra if the following requirements are satisfied
for every alphabet B of T .

L1. L(B) is closed under intersection.

L2. If B0 � B and X 2 L(B), then proj(B0)(X) 2
L(B0).

L3. If B � B0 and X 2 L(B), then

fx 2 BC(B
0) : proj(B)(x) 2 Xg 2 L(B0):

L4. If r is a renaming function with domain B and X 2
L(B), then rename(r)(X) 2 L(r(B)).

Definition 23. We define AI

C
to be the pair (CI

C
; T I),

where T I is the set of all trace structures over CI
C

. By
theorem 19, AI

C
is a trace structure algebra.

Definition 24. We define T IR to be the set of all trace
structures T = (; P) over CI

C
for which has a fi-

nite alphabet and P is a mixed regular set of sequences.
Also,AIR

C
is the ordered pair (CI

C
; T IR). By theorem 20

and theorem 22, AIR

C
is a trace structure algebra.

5 Conservative Approximations

A conservative approximation from AC = (CC ; T) to
A0
C

= (C0
C
; T 0) is an ordered pair 	 = (l;	u), where

	l and 	u are functions from T to T 0. For a given trace
structure T in AC , the trace structure 	l(T) is a kind of
lower bound of T , while 	u(T) is an upper bound (relative
to the ‘�’ ordering on trace structures). Here we require
that 	l(T) and 	u(T) have the same signature as T ; it is
also possible to allow conservative approximations that can
change the signature of a trace structure, but that is beyond
the scope of this paper.

As an example, consider the verification problem

proj(A)(T1 k T2) � T;

where T1, T2 and T are trace structures in T . This corre-
sponds to checking whether an implementation consisting
of two components T1 and T2 (along with some internal
signals that are removed by the projection operation) satis-
fies the specification T . By definition, if 	 is a conservative
approximation, then showing

proj(A)(u(T1) k 	u(T2)) � 	l(T)

is sufficient to show that the original implementation satis-
fies its specification. Thus, the verification can be done in
A0
C

, where it is presumably more efficient than in AC . A
conservative approximation guarantees that doing the ver-
ification in this way will not lead to a false positive result,
although false negatives are possible depending on how the
approximation is chosen. The following definition formal-
izes the notion of a conservative approximation.

Definition 25. Let AC = (CC ; T) and A0
C

= (C0
C
; T 0) be

trace structure algebras, and let 	l and 	u be functions
from T to T 0. We say 	 = (l;	u) is a conservative
approximation from AC to A0

C
iff the following condi-

tions are satisfied.

� For all T 2 T , the signature of 	l(T) and 	u(T) is
.

� Let E be an arbitrary expression potentially involv-
ing parallel composition, projection and renaming of
trace structures in T . Let E0 be formed from E

be replacing every instance of each trace structure
T with 	u(T). If T1 is a trace structure in T , and
E0 � 	l(T1), then E � T1.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Usually a conservative approximation	 = (l;	u) has
the additional property that 	l(T) � 	u(T) for all T , but
this is not required. Also, having 	l and 	u be monotonic
(relative to the containment ordering on trace structures) is
common but not required.

The simplest example of a conservative approximation
is 	 = (l;	u) is

	l(T) = (; ;)

	u(T) = (;B0C(A)):

This definition of 	 clearly satisfies the first condition of
definition 25. To see that it satisfies the second condition,
notice that the set of possible traces of E0 and 	l(T1) will
be the universal set and the empty set, respectively; thus, it
is never true thatE0 � 	l(T1). This particular conservative
approximation is not useful, however, because it always
leads to a negative verification result; it cannot be used to
show that an implementation satisfies a specification. In
section 5.2, we will show how a conservative approxima-
tion can be constructed using a homomorphism from one
trace algebra to another.

The remainder of this section states theorems that pro-
vide sufficient conditions for showing that some 	 is a
conservative approximation. The first theorem can be un-
derstood by recalling the example verification problem de-
scribed above, and by considering the following chain of
implications:

proj(A)(u(T1) k 	u(T2)) � 	l(T)

assuming 	u(T1 k T2) � 	u(T1) k 	u(T2)

) proj(A)(u(T1 k T2)) � 	l(T)

assuming 	u(proj(A)(T 0)) � proj(A)(u(T
0))

) 	u(proj(A)(T1 k T2)) � 	l(T)

assuming 	u(T
0) � 	l(T) implies T 0 � T

) proj(A)(T1 k T2) � T:

The theorem formalizes the above three assumptions (along
with a fourth assumption for the renaming operation) and
states that they are sufficient to show that 	 is a conserva-
tive approximation.

In addition, we show that if 	0 = (0
l
;	0u) provides

looser lower and upper bounds than a conservative approx-
imation 	 (i.e., 	0

l
(T) � 	l(T) and 	u(T) � 	0u(T) for

all T), then 	0 is also a conservative approximation. Also,
the functional composition of two conservative approxima-
tions yields another conservative approximation.

Theorem 26. Let AC = (CC ; T) and A0
C

= (C0
C
; T 0) be

trace structure algebras, and let 	l and 	u be functions
from T to T 0. Assume that for all T 2 T , the signature
of 	l(T) and 	u(T) is . If the following propositions
A1 through A4 are satisfied for all trace structures T , T1
and T2 in T , then 	 is a conservative approximation.

A1. 	u(T1 k T2) � 	u(T1) k 	u(T2).

A2. 	u(proj(B)(T)) � proj(B)(u(T)).

A3. 	u(rename(r)(T)) � rename(r)(u(T)).

A4. If 	u(T1) � 	l(T2), then T1 � T2.

Theorem 27. Let AC = (CC ; T) and A0
C

= (C0
C
; T 0)

be trace structure algebras, and let 	 = (l;	u) be a
conservative approximation from AC to A0

C
. If 	0 =

(0
l
;	0u) is such that 	0

l
(T) � 	l(T) and 	u(T) �

	0u(T) for all T 2 T , then 	0 is a conservative approxi-
mation.

Theorem 28. Let AC = (CC ; T), A0
C

= (C0
C
; T 0) and

A00
C

= (C00
C
; T 00) be trace structure algebras. Also, let

	 = (l;	u) and 	0 = (0
l
;	0u) be conservative ap-

proximations from AC to A0
C

and from A0
C

to A00
C

, re-
spectively. Then 	00 = (00

l
;	00u) is a conservative ap-

proximation fromAC to A00
C

, where

	00l (T) = 	0l(l(T))

	00u (T) = 	0u(u(T)):

5.1 Homomorphisms on Trace Algebras

We can define the notions of homomorphisms and iso-
morphisms between trace algebras. A homomorphism
commutes with rename and proj ; also, if x is a trace with
alphabet A, then a homomorphism maps x to a trace with
alphabet A. Thus, our definition of a homomorphism is
quite standard. We will show in the next section how homo-
morphisms can be used to construct conservative approxi-
mations. An isomorphism is a homomorphism that is also a
bijection. It is also possible to allow homomorphisms that
can change the alphabet of a trace, but that is beyond the
scope of this paper.

Definition 29. Let CC and C0
C

be trace algebras. Let h be
a function from BC to B0

C
such that for all alphabets A,

if x 2 BC(A), then h(x) 2 B0
C
(A). The function h is a

homomorphism from CC to C0
C

iff

h(rename(r)(x)) = rename(r)(h(x));

h(proj(B)(x)) = proj(B)(h(x)):

Here is a simple example of a homomorphism between
trace algebras. It involves two of the trace algebras de-
scribed in section 3.1. For all alphabetsA, let h map traces
in A1 to traces in 2A such that

h(x) = fa : 9n [a = x(n)]g:

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

It is easy to show that h is a homomorphism. Applying
h to a trace abstracts away information about the order of
events; all that remains is the set of actions that occurred
one or more times.

Definition 30. A homomorphism from CC to C0
C

is an iso-
morphism iff it is a bijection. CC are C0

C
isomorphic iff

there exists an isomorphism from CC to C0
C

.

Clearly if h is an isomorphism, then so is h�1. Also, an
isomorphism on trace algebras induces an isomorphism on
trace structure algebras, as follows.

Corollary 31. Let h be an isomorphism from CC to C0
C

.
Let AC = (CC ; T) and A0

C
= (C0

C
; T 0) be trace struc-

ture algebras such that

(; P) 2 T) (; h(P)) 2 T 0

(; P 0) 2 T 0) 9(; P) 2 T [P 0 = h(P)]:

Then AC and A0
C

are isomorphic.

As examples of homomorphisms between trace algebras
we show how to use the discrete time model CD

C
as a com-

mon refinement for both the Kahn Process Networks model
CK
C

and the synchronous model CS
C

.
Let’s first consider the abstraction from discrete time

processes to synchronous processes. In discrete time, we
must first define how the sampled time relates to the in-
terval in the sequences of the synchronous model. To do
that, the discrete time models needs a notion “clock tick”:
for example, we might introduce an additional signal (the
clock) in the signature of the process that can assume only
two values, denoted > and ?; we interpret these two val-
ues to indicate whether the time stamp corresponds to a
synchronous instant, or whether the corresponding value
should be discarded because it represents a non-visible be-
havior between synchronous instants. Then the homomor-
phism between the traces can be defined as the function that
takes a traceN 6� 7! (A 7! V) in the extended signature A
(that includes the clock signal) into the trace (A 7! V)1

where the additional signal (which, as noted in the defini-
tion of CS

C
, is always present) is empty and the sequence

is constructed by only considering the instants in the dis-
crete model where the clock signal is (for example) >. We
denote with h0 the function that takes a discrete time trace
and produces the corresponding synchronous trace. It is
also easy to show that this function preserves the operation
of projection and renaming. Figure 3 shows an example of
the application of this abstraction.

Let’s now consider the correspondence between discrete
time traces and Kahn Process traces. Here the discrete time
model needs a notion of arrival of a new piece of data. In
this example we will take the convention that a new piece

a b c d e f

g h j k l m
n o p q r s

a c d f

g j k m
n p q s

Figure 3. Abstraction of discrete into syn-
chronous time

of data (or token) arrives whenever the value on a partic-
ular signal changes. In this way the value itself encodes
the information that a new element of a stream is present
at the input (or is generated at the output). Here the ad-
vancement of the computation (the addition of a new token
in a stream) is not centrally regulated but depends on the
individual signals. We can therefore define a mapping that
takes a trace N 6� 7! (A 7! V), call this function m(i; a),
into the trace A 7! V1, call this f(a), where for each
a 2 A, the function f(a) is obtained by dropping the re-
peated values of the corresponding sequence m(i; a) over
the index variable i. We denote with h00 the function that
takes a discrete time trace and produces the corresponding
trace in the Kahn Process model. Again, it is also easy to
show that this function preserves the operation of projec-
tion and renaming. An example is shown in Figure 4.

a b b c e e

g j l m
n o p r s

a

g j m
n p s

g j

b c

l

p

o r
e

Figure 4. Abstraction of discrete into Kahn
Processes

The operations defined in this section are not the only
possible abstractions of discrete time into synchronous or
Kahn Process models. Indeed, we could have defined dif-
ferent mappings with different properties. As we will see

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

later, different mappings give rise to different notion of
compositions.

5.2 Homomorphisms and Approximations

Let h be a trace algebra homomorphism from CC to C0
C

,
and let x and x0 be traces in CC and C0

C
, respectively, such

that h(x) = x0. Intuitively, the trace x0 is an abstraction of
any trace y such that h(y) = x0. Thus, x0 can be thought
of as representing the set of all such y. Similarly, a set
X 0 of traces in C0

C
can be thought of as representing the

largest set Y such that h(Y) = X 0, where h is naturally
extended to sets of traces. If h(X) = X 0, then X � Y ,
so X 0 represents a kind of upper bound on the set X . This
motivates using the function 	u such that

	u(T) = (; h(P))

as the upper bound in a conservative approximation from a
trace structure algebra over CC to a trace structure algebra
over C0

C
. A sufficient condition for a corresponding lower

bound is: if x 62 P , then h(x) is not in the set of possible
traces of 	l(T). This leads to the definition

	l(T) = (; h(P)� h(BC(A)� P)):

The conservative approximation 	 = (l;	u) is an exam-
ple of a conservative approximation induced by h, which is
formalized in the definition below using a slightly tighter
lower bound for 	l. Using this concept, if one proves that
h is a homomorphism between two trace algebras (which
is often quite easy), then one obtains a conservative ap-
proximation between trace structures with no additional ef-
fort. A conservative approximation induced by a homo-
morphism h is closely related to homomorphisms on !-
automata [8].

Definition 32. Let h be a homomorphism from CC to C0
C

,
and let AC = (CC ; T) and A0

C
= (C0

C
; T 0) be trace

structure algebras. We naturally extend h to sets of
traces. Assume 	u and 	l are functions from T to T 0

such that

	u(T) � (; h(P))

	l(T) � (; h(P)� h(Y � P));

where Y is the union of the X � BC(A) such that

(;X) 2 T ^ h(X) � h(P):

It can be shown that 	 = (l;	u) is a conservative
approximation fromAC to A0

C
, which we call a conser-

vative approximation induced by h from AC to A0
C

. If
the two set inequalities above are replaced by equalities,
then 	 is called the tightest conservative approximation
induced by h fromAC to A0

C
.

Notice that h(P)�h(BC(A)�P) is a subset of h(P)�
h(Y � P), so

	u(T) = (; h(P))

	l(T) = (; h(P)� h(BC(A)� P))

(as described at the beginning of this section) is an exam-
ple of a conservative approximation induced by h. This
conservative approximation is independent of T ; the tight-
est conservative approximation induced by h depends on
both h and T .

Definition 32 defines both the class of conservative ap-
proximations induced by a homomorphism h and a dis-
tinguished approximation in that class, which we call the
tightest conservative approximation induced by h. It is ob-
vious that this distinguished approximation is in fact the
tightest approximation within the class we defined. That is,
if 	 is the tightest conservative approximation induced by
h and 	0 is any conservative approximation in induced by
h, then 	0

l
(T) � 	l(T) and 	u(T) � 	0u(T) for any trace

structure T .
However, it is not immediately clear that class of ap-

proximations we defined includes all conservative approx-
imations that might intuitively be “induced” by h. If there
is a larger class of conservative approximations “induced”
by h, then it might include an approximation that is tighter
then the tightest one given in definition 32. We provide
evidence that this is not the case in section 5.3, where we
consider the inverse of a conservative approximation. This
result depends on the particular set Y used in definition 32,
and would not be true if we replaced Y by a simpler ex-
pression such as BC(A).

A trace x is in Y iff it is contained in a trace structure
T1 2 T such that h(P1) � h(P). If T1 6� T , it is required
that 	u(T1) 6� 	l(T). In this case, there exists a trace x 2
P1�P , which implies x 2 Y �P . Thus, h(x) is in 	u(T1)
but not in 	l(T), so the requirement is satisfied. On the
other hand, if there is no T1 2 T such that h(P1) � h(P)
and T1 6� T , then Y = P . In this case, 	l(T) = 	u(T),
showing that the particular definition of Y in definition 32
makes	 a tighter conservative approximation than it would
otherwise be.

It is straightforward to take the general notion of a con-
servative approximation induced by a homomorphism, and
apply it to specific models. Simply construct trace algebras
C and C0, and a homomorphism h from C to C0. Recall that
these trace algebras act as models of individual behaviors.
Using the results described so far in this section (without
any additional proofs), one can construct the trace structure
algebras A = (C; T) and A0 = (C0; T 0), and a conserva-
tive approximation 	 induced by h (where T and T 0 are
the sets of all trace structures over C and C0, respectively).
Thus, one need only construct two models of individual be-
haviors and a homomorphism between them to obtain two

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

trace structure models along with a conservative approxi-
mation between the trace structure models.

5.3 Inverses of Conservative Approximations

Let 	 = (l;	u) be a conservative approximation from
AC = (CC ; T) toA0

C
= (C0

C
; T 0). Let T 2 T and T 0 2 T 0

be such that T 0 = 	u(T). As we have discussed, T 0 rep-
resents a kind of upper bound on T . It is natural to ask
whether there is a trace structure in T that is represented
exactly by T 0 rather than just being bounded by T 0. If no
trace structure in T can be represented exactly, then 	 is
abstracting away too much information to be of much use.
If every trace structure in T can be represented exactly,
then 	l and 	u are equal and are isomorphisms from AC

to A0
C

. These extreme cases illustrate that the amount of
abstraction in 	 is related to what trace structures T are
represented exactly by 	u(T) and 	l(T).

To formalize what it means to be represented exactly in
this context, we define the inverse of the conservative ap-
proximation	. Normal notions of the inverse of a function
are not adequate for this purpose, since 	 is a pair of func-
tions. We handle this by only considering those T 2 T for
which 	l(T) and 	u(T) have the same value, call it T 0. In-
tuitively, T 0 represents T exactly in this case; the key prop-
erty of the inverse of 	 (written	inv) is that 	inv (T 0) = T .
If 	l(T) 6= 	u(T), then T is not represented exactly in
A0
C

. In this case, T is not in the image of 	inv . Character-
izing when 	inv (T

0) is defined (and what its value is) helps
to show what trace structures in T can be represented ex-
actly (not just conservatively) by trace structures in T 0. The
remainder of this section formalizes the idea of the inverse
of a conservative approximation, and characterizes the in-
verse of the tightest conservative approximation induced by
a homomorphism h.

Lemma 33. Let 	 = (l;	u) be a conservative approx-
imation from AC = (CC ; T) to A0

C
= (C0

C
; T 0). For

every T 0 2 T 0, there is at most one T 2 T such that
	l(T) = T 0 and 	u(T) = T 0.

Definition 34. Let 	 = (l;	u) be a conservative ap-
proximation from AC = (CC ; T) to A0

C
= (C0

C
; T 0).

Let T1 be the set of T 2 T such that 	l(T) = 	u(T).
Let T 01 be the image of T1 under 	l. The inverse of 	 is
the partial function 	inv with domain T 0 and codomain
T that is defined for all T 0 2 T 01 so that 	inv (T 0) = T ,
where T is the unique (by lemma 33 and the defini-
tion of T 01) trace structure such that 	l(T) = T 0 and
	u(T) = T 0.

Theorem 35. Let h be a trace algebra homomorphism
from CC to C0

C
, and let 	 = (l;	u) be the tightest

conservative approximation induced by h from AC =

(CC ; T) to A0
C

= (C0
C
; T 0). If T 0 2 T 0 is such that the

set

Z = fX � BC(A
0) : (0; X) 2 T ^ h(X) � P 0g;

contains a unique maximal (by inclusion) element P for
which P 0 = h(P), then 	inv (T

0) = (0; P); otherwise,
	inv (T

0) is undefined.

The above theorem completely characterizes the in-
verse of any tightest conservative approximation induced
by a homomorphism h. The final theorem of this section
specializes this result to trace structures algebras that are
closed under finite and infinite unions, a property enjoyed
by many of the trace structure algebras we consider. This
specialization results in a simpler characterization of when
	inv is defined. In particular, 	inv (T 0) is defined iff there
exists a T 2 T such that 	u(T) = T 0. This is a strong
result. Clearly the existence of such a T is a necessary con-
dition for the inverse of any conservative approximation to
be defined on T 0; when T is closed under finite and infinite
unions, and 	 is the tightest conservative approximation
induced by a homomorphism, it is also a sufficient condi-
tion.

Definition 36. Let AC = (CC ; T) be a trace structure al-
gebra. We sayAC is closed under finite (infinite) unions
iff for every signature the set

fP � BC(A) : (; P) 2 T g

is closed under finite (infinite) unions.

Theorem 37. Let h be a trace algebra homomorphism
from CC to C0

C
, and let 	 = (l;	u) be the tightest

conservative approximation induced by h from AC =
(CC ; T) to A0

C
= (C0

C
; T 0). Assume AC is closed un-

der finite and infinite unions. If T 0 2 T 0 is such that
	u(T) = T 0 for some T 2 T , then 	inv (T

0) is defined
and its set of possible traces is

[
fX � BC(A

0) : (0; X) 2 T ^ h(X) � P 0g;

otherwise, 	inv (T 0) is undefined.

6 Modeling Heterogeneous Systems

Our method for modeling heterogeneous systems makes
use of the inverses of conservative approximations. If an in-
verse is not defined for a particular trace structure, then the
lower level model is not adequate to represent the higher
level. In addition, we must also insure that the inverse of
the approximation preserves the operations of trace struc-
ture algebra.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

Given agents in two different models of computation, a
formal semantics of their parallel composition can be con-
structed as follows.

1. Construct trace algebras C0
C

and C00
C

(def. 5) appropriate
for the two different models of computation. These alge-
bras are models of individual behaviors (or executions),
rather than agents. Thus, they should be relatively easy
to construct.

2. Construct trace structure algebras A0
C

= (C0
C
; T 0) and

A00
C

= (C00
C
; T 00) (def. 14). These algebras are models

of agents. The generic theorems of section 4.2 simplify
their construction from the corresponding trace algebras
C0
C

and C00
C

.

3. Within the trace structure algebras A0
C

and A00
C

, con-
struct trace structures T 0 and T 00 for the two agents. No-
tice that these first three steps are only necessary to bring
the agent models into our framework. If the agent mod-
els were originally constructed within the framework as
trace structures, then we can begin with step 4.

4. Construct a third trace algebra CC that is at a lower level
of abstraction than C0

C
and C00

C
and can serve as the basis

for a unifying model of computation.

5. Use the theorems of section 4.2 to construct a trace
structure algebra AC = (CC ; T) from the trace algebra
CC .

6. Construct trace algebra homomorphisms h0 from CC to
C0
C

and h00 from CC to C00
C

(def. 29).

7. The homomorphisms h0 and h00 induce conservative ap-
proximations 	0 and 	00 (def. 32), which map trace
structures from A to A0 and A00, respectively.

8. The inverses of the above conservative approximations,
	0
inv

and 	00
inv

(def. 34), map trace structures from A0

and A00, respectively, to the unifying semantic domain
A. There, the parallel composition of the original agent
models is

	0inv (T
0) k 	00inv (T

00):

As an example we now consider the problem of com-
posing two objects: a trace structure T 0 of the synchronous
model AS

C
and a trace structure T 00 of the Kahn Process

model AK
C

. Because these trace structures are drawn from
different algebras we don’t have a definition of a composi-
tion. And in fact, there are several different, and all valid,
ways that a composition could be defined. We prefer to de-
fine this operation in terms of the common refined discrete
time model where composition is defined. As noted above,

a different refinement would lead to a different composi-
tion of the two models. We have already defined the ho-
momorphism h0 and h00 on trace algebras. They, in turn,
induce conservative approximations 	0 and 	00 whose in-
verses 	0inv and 	00inv will be used in the composition.

We proceed as follows. Let T1 be the discrete time
model such that 	0

inv
(T 0) = T1, and let T2 be the discrete

time model such that 	00
inv

(T 00) = T2. Because T1 and T2
are both discrete time models, we can obtain their compo-
sition V = T1 jj T2.

We now want to reflect the effect of this composition
back to the higher levels of abstraction. To do so, we con-
sider the minimal V1 � T1 and V2 � T2 such that the
composition of V1 and V2 is V (minimality is inteded with
respect to trace containment). These objects represent the
behaviors of T1 and T2 that are mutually compatible and
concur in creating a behavior of the compound object V .
In other words, V1 and V2 represent the behaviors of T1
and T2 as constrained by the composition. This procedure
is represented graphically in Figure 5.

T1

T

V2

V

V

invΨ’

T
V

T2

V1

invΨ

’ ’’
’ ’’

’’

Figure 5. Example of composition

We can now abstract these two objects and obtain
	0u(V1) = V 0 � T 0 and 	00u(V2) = V 00 � T 00. These
objects represent at the higher level of abstraction the con-
strained behaviors that are due to the effect of the compo-
sition.

The result of applying this procedure is not to obtain
a new compound object, as such an object might not be
defined in either the synchronous or the Kahn Process do-
main alone. Rather we act as to obtain in each domain the
restricted behavior that is caused by the existence of an in-
teraction. The particular effect of the interaction can only
be understood at a lower level of abstraction that can talk
about both models at the same time. Hence the composition
is not only dependent upon the definition of composition at
the lower level, but also on the particular process of refine-
ment employed to derive the new model.

It is instructive to note that a more direct relation be-

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

tween synchronous trace structures and Kahn Process trace
structures could be obtained by observing that both mod-
els actually operate on sequences of values. The intuitive
way of combining these two models would therefore be to
convert each sequence in one model into a corresponding,
identical, sequence in the other. This straighforward con-
version however fails to acknowledge the fact that compu-
tation in the Kahn Process model advances on individual
signals, while the synchronous model advances on all sig-
nals at the same time. The result is a different notion of
composition. This is not to say that this different notion of
composition is wrong or not valid; it shows that there are
possibly many different ways of combining heterogeneous
models that result in different underlying properties. In this
section we have shown a methodology that derives a notion
of composition that is consistent with the chosen notion of
refinement to a common model.

The use of inverses of conservative approximation can
also help us define what it means for one agent model to
be a refinement of another. Within a single trace structure
algebra, the relation of one agent implementing a specifi-
cation is simply represented by trace containment. Let T 0

and T be trace structures in a trace structure algebra AC .
Then T 0 is a refinement of T iff T 0 � T (def. 18).

A more interesting case is when T 0 and T are in different
trace structure algebrasA0

C
and AC , respectively. This can

happen, for example, if A0
C

is a functional model and AC

is a more detailed model used to introduce timing and/or
power constraints. Given an inverse conservative approxi-
mation 	inv from A0

C
to AC , then T is a refinement of T 0

iff

T � 	inv (T
0):

The simple example of composition shown in this sec-
tion can be carried forward to include a set of different
models. This generates a framework of models in which
the notion of refinement through inverses of conservative
approximations is used to determine the interaction of those
that are not directly related. That is, if we can always find
a common refinement. Because the relation of refinement
is a partial order in this set, we can organize our models
in their order of implementation details; by lifting this set
with a model that can refine (perhaps transitively by going
through other models) all other models, we satisfy that re-
quirement and we can define a composition that is driven
by the refinement to a common model for all pairs of mod-
els.

In addition it is also easy to provide a model that con-
tains no information into which every other model could be
abstracted (for example by employing the simple trace al-
gebra that contains only one trace). By doing this we gen-
erate a lattice structure, as the one shown in Figure 6. In
a lattice structure we can transitively apply the techniques

8

Φ
Φ Φ

Φ
Φ

Φ

Φ

Φ

Φ

3

5

4

7

6

9

1
2

Figure 6. A lattice of models

presented above. For example, the composition driven by
refinement can be carried out on models that can only indi-
rectly be put in relation to a common refinement by recur-
sively applying the transformation until the greatest lower
bound is found.

7 Summary and Future Work

In our framework, each agent is represented by a trace
structure, which is an ordered pair of a signature (the in-
terface of the agent) and a set P of possible traces. Each
trace in P represents a possible behavior of the agent. Both
implementations and specifications are represented by trace
structures. One trace structure satisfies the specification
given by another trace structure iff the set of possible traces
of the first is contained in the set of possible traces of the
second. This notion of trace set containment is a gener-
alization of standard verification techniques based on lan-
guage containment.

The above description of trace structures does not say
what kinds of mathematical objects are used as traces. In
normal language containment methods, a trace is a finite or
infinite sequence, so a set of traces is a formal language.
We want to be much more general than this, because we
do not want our use of trace structures to limit the kinds
of models we can consider. On the other hand, we do not
want to allow completely arbitrary traces because we want
to have general theorems that are true of all trace structures
(so the theorems do not have to be reproven every time a
new class of trace structures is constructed).

We satisfy these constraints by using the idea of a trace
algebra. A trace algebra (def. 5) is an abstract algebra with
a set of traces as its domain, where each trace is interpreted
as an abstraction of a physical behavior. There are two op-
erations in a trace algebra: projection and renaming. These
operations must satisfy axioms T1 through T8, the axioms
of trace algebra. Other than these axioms, no other restric-

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

tions are placed on what kinds of mathematical objects can
be used as traces in a trace algebra.

Once trace algebra is formalized, it is possible to formal-
ize trace structures. The set of trace structures (def. 12)
over a trace algebra C is the set of ordered pairs (; P),
where is a signature and P is a subset of the traces of C
with the same alphabet (i.e., set of signals) as . A trace
structure algebra is an ordered pairA = (C; T), where C is
a trace algebra and T is a subset of the set of trace structures
over C. The operations of parallel composition, projection
and renaming are defined on trace structures in T using the
operations of projection and renaming on individual traces
in C (def. 15, def. 16 and def. 17). The set of trace struc-
tures T must be closed under these operations. The axioms
of trace algebra are quite weak, but they are strong enough
to guarantee that the operations on trace structures satisfy
several useful identities.

Using these ideas to construct agent models only re-
quires constructing a domain of traces, along with projec-
tion and renaming operations, and proving that they sat-
isfy the axioms of trace algebra. A trace structure algebra
can be constructed from the trace algebra without having
to prove any additional theorems. Thus, our general results
greatly simplify the task of constructing new agent models.

One of the uses of being able to easily build new agent
models is to study the relationships between models that
can be efficiently mechanized and models that accurately
represent physical reality. Ideally, correctness proofs (of
trace set containment) in the efficient model would be
logically equivalent to correctness proofs in the accurate
model, but this is rarely the case. The best we can usu-
ally do is to have correctness in the efficient model im-
ply correctness in the accurate model. This is formalized
by using a conservative approximation from the accurate
model to the efficient model (def. 25). Let AC = (CC ; T)
and A0

C
= (C0

C
; T 0) be trace structure algebras. A con-

servative approximation from AC to A0
C

is an ordered pair
	 = (l;	u), where 	l and 	u are functions from T to
T 0. For a given trace structure T in AC , the trace structure
	l(T) is a kind of lower bound of T , while 	u(T) is an
upper bound (relative to trace set containment). By defi-
nition, if a verification problem in CC is converted into a
verification problem in C0

C
by applying a conservative ap-

proximation 	, then a correctness proof in the latter prob-
lem implies a correctness result in the former problem.

A general method for constructing conservative ap-
proximations involves homomorphisms on trace algebras
(def. 29). A homomorphism from C to C0 is just a function
from the traces of C to the traces of C0 that satisfies the stan-
dard homomorphism laws for the operations of trace alge-
bra. A conservative approximation induced by h (def. 32)
is a conservative approximation from AC = (CC ; T) to
A0
C

= (C0
C
; T 0), for appropriate T and T 0. To take advan-

tage of these results we need only construct the appropriate
trace algebras and homomorphisms; the trace structure al-
gebras and the conservative approximations are obtained
without any additional effort.

We also showed how our framework can be used to
model heterogeneous systems. Inverses of conservative ap-
proximations (def. 34) can be used to embed traces struc-
tures from two different models of computation into a uni-
fying trace structure algebra, and to check refinement be-
tween different models of computation.

The most important area of future work for our frame-
work is to apply it to more examples of models of com-
putation. This includes not only different models of func-
tional behavior, but also models of lower-level issues such
as timing, power and noise. Conservative approximations
should be generalized to allow for 	u(T) and 	l(T) to
have different signatures than T . This makes it possible
to remove signals that are not relevant for the more ab-
stract agent model. Also, the signatures of trace structures
should be generalized to allow explicit modeling of data
types and bidirectional communication. More theoretical
possible extensions include handling branching time mod-
els and integrating Dill’s [6] approach for distinguishing
success and failure traces.

References

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Ju-
recska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki, and B. Tab-
bara. Hardware-Software Co-Design of Embedded
Systems: The Polis Approach. Kluwer Academic
Press, June 1997.

[2] J. R. Burch. Trace Algebra for Automatic Verifica-
tion of Real-Time Concurrent Systems. PhD thesis,
School of Computer Science, Carnegie Mellon Uni-
versity, Aug. 1992. Technical Report CMU-CS-92-
179.

[3] J. Davis II, M. Goel, C. Hylands, B. Kienhuis,
E. A. Lee, J. Liu, X. Liu, L. Muliadi, S. Neuen-
dorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong.
Overview of the ptolemy project. ERL Technical Re-
port UCB/ERL No. M99/37, Dept. EECS, University
of California, Berkeley, July 1999.

[4] J. Davis II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu,
X. ojun Liu, L. Muliadi, S. Neuendorffer, J. Tsay,
B. Vogel, and Y. Xiong. Heterogeneous concurrent
modeling and design in java. Technical Memorandum
UCB/ERL M01/12, EECS, University of California,
Berkeley, Mar. 1986.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

[5] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors. Linear Time, Branching Time and Partial Or-
der in Logics and Models for Concurrency, volume
354 of Lecture Notes in Computer Science. Springer-
Verlag, 1989.

[6] D. L. Dill. Trace Theory for Automatic Hierarchi-
cal Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989.

[7] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: Formal
models, validation, and synthesis. Proceedings of the
IEEE, 85(3):366–390, Mar. 1997.

[8] R. P. Kurshan. Computer-Aided Verification of Co-
ordinating Processes: The Automata-Theoretic Ap-
proach. Princeton University Press, 1995.

[9] E. A. Lee and A. L. Sangiovanni-Vincentelli. A
framework for comparing models of computation.
IEEE Trans. Comput.-Aided Design Integrated Cir-
cuits, 17(12):1217–1229, Dec. 1998.

[10] A. Mazurkiewicz. Basic notions of trace theory. In
de Bakker et al. [5].

[11] V. R. Pratt. Modelling concurrency with partial or-
ders. International Journal of Parallel Programming,
15(1):33–71, Feb. 1986.

[12] J. Rowson and A. Sangiovanni-Vincentelli. Felix ini-
tiative pursues new co-design methodology. Elec-
tronic Engineering Times, pages 50, 51, 74, June
1998.

Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD�01)
0-7695-1071-X/01 $10.00 © 2001 IEEE

