
P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Journal of VLSI Signal Processing 19, 5–18 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Design and Implementation of the PAPRICA Parallel Architecture

A. BROGGI AND G. CONTE
Dipartimento di Ingegneria dell’Informazione, Università di Parma, Italy

F. GREGORETTI, C. SANSÒE, R. PASSERONE AND L.M. REYNERI
Dipartimento di Elettronica, Politecnico di Torino, Italy

Received August 7, 1996; Revised March 13, 1997

Abstract. In this paper PAPRICA, a massively parallel coprocessor devoted to the analysis of bitmapped images
is presented considering first the computational model, then the architecture and its implementation, and finally
the performance analysis. The main goal of the project was to develop a subsystem to be attached to a standard
workstation and to operate as a specialized processing module in dedicated systems. The computational model is
strongly related to the concepts of mathematical morphology, and therefore the instruction set of the processing
units implements basic morphological transformations. Moreover, the specific processor virtualization mechanism
allows to handle and process multiresolution data sets. The actual implementation consists of a mesh of 256 single
bit processing units operating in a SIMD style and is based on a set of custom VLSI circuits. The architecture
comprises specific hardware extensions that significantly improved performances in real-time applications.

1. Introduction

A number of processor arrays with a bidimensional
grid interconnection scheme and a SIMD process-
ing paradigm have been conceived starting from the
original ideas of Unger [1]. The availability and
widespread use of VLSI technologies of the 80s and
the natural mapping of a bidimensional interconnec-
tion scheme over the planar structure of a silicon chip
led to an explosion of different proposals and im-
plementations [2–6]. Most of the designs share com-
mon characteristics such as the bidimensional mesh
interconnection scheme and a bit serial computation
paradigm while other ones have either increased the
complexity of the interconnection network, as the Con-
nection Machine CM-2 [5], or widened the data path
of the elementary PE, as the CLIP7 [7] or MasPar [8]
systems.

The architecture of the PAPRICA system [9, 10],
described in this paper and shown in Fig. 1(a), has the
main characteristics of a conventional mesh-connected
SIMD array but it has been specialized to the following
objectives:

• to directly support a computational paradigm based
on mathematical morphology [11] also on data struc-
tures larger than the physical size of the machine;
• to support hierarchical data structures;
• to provide a low cost experimental workbench for re-

search in the fields of image processing, VLSI design
automation, neural algorithms, etc.

The kernel of the system is a Processor Array (PA)
of single-bit Processing Elements (PEs) with a bidi-
mensional mesh interconnection to the 8 neighbors as
shown in Fig. 1(b).

The instruction set of each PE can be described
in terms of mathematical morphology operators [11],
augmented with logical operations. All PEs operate
according to a SIMD paradigm and a set of control
flow statements are also provided. The virtualization
of the operation of the physically limited array over a
large bidimensional data structure stored in a linearly
addressable memory is managed at the hardware level.
An additional mechanism allows to map more complex
hierarchical data structures on the same bidimensional
processing grid.

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

6 Broggi et al.

Figure 1. (a) The complete system; (b) interconnection topology of the SIMD array.

The PAPRICA system has been designed to oper-
ate as a coprocessor of a general purpose host work-
station. Data and instructions are transferred to and
from the host through a multi-port memory connected
to a standard VME bus, whereas processing is con-
current with host activities. The current implementa-
tion is based on a number of custom integrated cir-
cuits, which have been designed with a particular
emphasis on global project management issues such
as cost and development time. For this reason con-
servative design and engineering choices have often
been taken leading to performance limitations both
in terms of processing speed and in the maximum
number of PEs. The original target of the PAPRICA
system was the acceleration of tasks related to the
design and verification of IC layouts and masks [9]
and this led to the implementation of ad hoc instruc-
tions which are seldom used in other applications.
Nevertheless the generality of the mathematical mor-
phology computational paradigm [11] allows an ef-
ficient use of the architecture in many tasks related
to the processing of bidimensional data structures
[12–14].

The paper is organized as follows. Section 2 in-
troduces the PAPRICA computational paradigm and
describe the external architecture and the instruction
set. Section 3 describes the current hardware imple-
mentation, presents an overview of the major building
blocks and explains the main choices which have been
taken at the system level, while Section 4 presents a
synthetic theoretical evaluation of the performances
of the system and measurements on benchmarks
and real applications. Finally, Section 5 presents the
conclusions.

2. The Instruction Set of PAPRICA

The computational model which has inspired the de-
sign of PAPRICA derives from Mathematical Mor-
phology [11, 15], a bitmap approach to the process-
ing of discrete images derived from the set theory.
The computational paradigm of PAPRICA is based on
the concept ofmatching operators, which are derived
from thehit-miss transformdescribed by Serra [11],
a rather general approach which includes the other
morphological operators as special cases. In parti-
cluar, it is possible to synthesize more complex grey-
level morphological operations as chains of binary
ones.

Matching Operators are applied by each PE to its
own neighborhood and the results are stored back in an
internal register. The operation is based upon amatch-
ing template, a ternary mask of the same size of the
neighborhood, whose values may be 0, 1 or− (mean-
ing don’t care); a matching template can be sketched
using the following notation:

x x x
x x x
x x x

,

where “x” (0, 1,−) is the mask value. The center of the
matrix corresponds to the PE itself. The application of
a matching operator over a binary image corresponds
to the bitwise comparison between the template and the
values of the pixels of the image: the comparison leads
to a hit if the template equals the PE’s neighborhood
completely (don’t care pixels always match the image)
giving 1 as a result; conversely, it leads to amiss if

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 7

at least one pixel of the template does not match the
corresponding pixel on the image, giving 0 as a result.
The resulting image is given by the set of the individual
comparison results.

As an example, the elementary matching

− − −
1 − −
− − −

produces an image which is displaced by one pixel in
the east direction. Conventionally, the superscriptc
declares that the result be logically inverted, while the
subsequent application of different matching templates
is denoted by a simple comma-separated list. A nu-
meric constantK ∈ [2, 4, 8] placed in front of a tem-
plate is a short form for the list of its possible rotations
by 360/K degrees.

The instruction set of PAPRICA can be partitioned
into three different classes, namely:

• Morphological and logical statementswhich are ex-
ecuted every PE of the array.
• Mapping statementsto virtualize the PA on images

larger than its size.
• Control flowstatements.

2.1. Morphological and Logical Statements

Each PAPRICA instruction is the cascade of agraphic
operator G(·) and alogic operator∗. A PAPRICA
instruction in assembly format is

L D = G(LS1) ∗ LS2 [%A], (1)

whereL D, LS1, LS2 ∈ [0, . . . ,63] are the identifiers of
three 1-bit registers of each PE. This specificstructure-
matchingoperates onLS1 andLS2 and stores the re-
sult into L D. The graphic operatorG is one of the 16
composite matching operators listed in Table 1, while
the logical operator ‘∗’ is one of the 8 unary, binary
or ternary Boolean operators listed in Table 2. The
optional switch %A introduces an additional OR op-
eration between the result of the instruction and an
internal accumulator. A sample sequence of vertical
and horizontal expansion/erosion is shown in Fig. 2.

2.2. Mapping Statements

PAPRICA uses a specific constructU calledUpdate
Block which is a sequence of several simpler

Table 1. List of PAPRICA graphic operatorsG(L1).

Name Description Structuring element

NOP(L1) No OPeration
− − −
− 1 −
− − −

INV (L1) INVersion
− − −
− 0 −
− − −

NMOV (L1) North MOVe
− − −− − −
− 1 −

SMOV (L1) South MOVe − 1 −− − −− − −

WMOV (L1) West MOVe
− − −
− − 1
− − −

EMOV (L1) East MOVe
− − −
1 − −
− − −

EXP (L1) EXPansion
0 0 0
0 0 0
0 0 0

c

VEXP (L1) Vertical
− 0 −− 0 −
− 0 −

c

EXPansion

HEXP (L1) Horizontal
− − −
0 0 0− − −

c

EXPansion

NEEXP(L1) NorthEast
− − −
0 0 −
0 0 −

c

EXPansion

ERS(L1) ERoSion
1 1 1
1 1 1
1 1 1

VERS(L1) Vertical
− 1 −− 1 −
− 1 −ERoSion

HERS(L1) Horizontal
− − −
1 1 1
− − −ERoSion

NEERS(L1) NorthEast
− 1 1
− 1 1
− − −ERoSion

BOR (L1) BORder 8
− − −
− 1 0− − −

LS2 (L1) LesS than 2

(
4

1 1 −
1 1 −
1 1 −

, 4
1 1 −
1 1 −
− − 0

,
− − −
− 0 −
− − −

)c

Table 2. List of PAPRICA logic operators∗.
Name Description Name Description

(Omitted) No operation ∼ NOT

& AND & ∼ ANDNOT

| OR |∼ ORNOT

∧ EXOR + PLUS (Arithm. Plus)

elementary statements taken from theinstruction
set. As shown in Fig. 3, operations on data struc-
tures larger than PA size are “virtualized” by splitting
an imageI in a set of adjacentwindowsIk and by

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

8 Broggi et al.

Figure 2. Examples of graphical operators.

Figure 3. Vitualization of larger images on the PAPRICA array.

sequentially applying the same Update BlockU to all
the windowsIk.

The result is independent of the PA size provided that
none of the elementary morphological instructions of
the Update Block modifies the input imageI. If the
algorithm requires the input data be modified, then the
program must be split into consecutive Update Blocks,
storing intermediate results in temporary registers.

In the PAPRICA architecture the windowing mech-
anism is directly implemented at the hardware level by
loading data from memory into the PA, executing an
Update Block and storing back the results in the mem-
ory. The mapping between a logical pixelP and its
physical address in the computer memory (e.g., word
address and bit) is given by

O(P) = B+ Px · SX + Py · Nl · SY, (2)

whereB is the base address of the image in memory,
Nl is the number of lines, andSX andSY are two other
programmable parameters, calledskip factors. The
mapping may be separately programmed for the load
and store operations.

When a subwindow is loaded in the array and
a graphical operation is executed, input data from

neighbors PEs which are on the border of the array
are undefined and this causes the evaluation of incor-
rect results in the regions between adjacent windows.
The windowing mechanism compensates these errors
by overlapping each loaded window with the previous
one and by storing back into memory only the correct
results. A few mapping instructions allow to program
this mechanism. TheLIMIT instruction sets the base
address of the memory area (Limit Area) over which the
input image is defined. TheMARGINinstruction sets
theMargin parameter, that is the maximum size of the
error region produced by the sequence of instructions
in a given Update Block. TheVALIDITY statement
defines the base address of the memory area (Validity
Area) where the correct processed data are stored. In ad-
dition, theSKIP.READ andSKIP.WRITE statements
allow to program the load and store image mapping.

2.3. Flow Control Statements

PAPRICA flow control statementsare listed in Table 3.
During processing, threeglobal flagsare computed for
each Update Block, which are set according to the result
of the last operator of that block. TheSET, RESETand
NOCHANGE flagsare respectively setiff the result of
the last operation of the block forall the pixels of the
image is respectively one, zero or has not changed with
respect to the value of the destination register before
the operator has been computed. A common use of
such flags is to detect the end of an algorithm.

A PAPRICA Programis the cascade of one or more
Update BlocksUi , somecontrol instructionsand op-
tionally one or more Mappings Statements, which con-
cur to perform a desired function.

2.4. Mapping Pyramidal Architectures: An Example

Pyramidal architectures have shown several advantages
in the field of image processing [16–18]. One major

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 9

Table 3. List of PAPRICA flow control instructions.

Statement Meaning

UPDATE Separates two Update Blocks. All the other mapping and flow control
instructions are alsoimplicit updateswhich separate Update Blocks.

FOR〈iter〉
instructions Repeatsinstructions〈iter〉 times.

ENDFOR

REPEAT
instructions Repeatsinstructionsuntil 〈 flag〉 is [NOT] set.

UNTIL [NOT] 〈 flag〉
CALL 〈address〉 Calls a subroutine at〈address〉.
RET Returns from subroutine.

JUMP〈address〉 Jumps Program Counter to〈address〉.

drawback of such architectures is that they are not eas-
ily scaled beyond a certain size. This is because in-
terconnections among processors have an intrinsic 3D
structure (see Fig. 4(a)) which causes problems when
mapped onto a 2D silicon surface.

PAPRICA solves the problem of interconnections
because its hardware allows dynamic mapping of limit
and validity areas (see Section 2.2). Using skip factors

Figure 4. Mapping of a pyramidal architecture on PAPRICA.

different from one, it is possible to map several pyra-
midal architectures such as the “4 children per parent”
topology shown in Fig. 4(a). Figure 4(b) shows how
this architecture can be mapped on the PAPRICA Im-
age Memory.

Figure 4(c) lists the PAPRICA code necessary to
emulate such a pyramidal structure. At the beginning,
the program elaborates the lowest level of the pyramid,

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

10 Broggi et al.

e.g., performing initial filtering of input data. This is
done by havingLimit and Validity Areas coincident
with input data. Then,Validity Areabase address and
Skipparameters are changed respectively to point to
areaB and to obtain the amount of decimation neces-
sary (e.g., 2× 2), so that the output data of the lowest
level are used as input for the computations required
by the second-last one.

This process is iterated, each time executing differ-
ent LIMIT , VALIDITY andSKIP instructions, up to
the root level. It has to be noted that processing on dif-
ferent levels can be completely different in nature, and
that merely changing the above-mentioned parameters
it is possible to change the type of logic connections
mapped by the system. In any case, the overhead in-
troduced to emulate pyramidal structures is very small

Figure 5. Block diagram of the PAPRICA system.

Figure 6. Photograph of the complete PAPRICA board.

because the host processor does not have to reorganize
or move data in memory to process the different levels.

3. System Implementation

As already mentioned the PAPRICA system has been
designed as a specialized coprocessor for a general
purpose host workstation and, as a whole, it is com-
posed of the following main functional parts: the Image
(IM) and Program (PM) Memories, the Processor Ar-
ray (PA), the Control Unit (CU), the Camera Interface
(CI) and the Image Remapper (IR). The logical rela-
tions between these units are shown in Fig. 5. Figure 6
shows the photograph of the complete system.

Using the system bus the host transfers coprocessor
code and data into the Program and Image Memories

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 11

(up to 8 MB of fast static RAM). Grey scale image
data can also be acquired directly from a video camera
connected to the PAPRICA board under the host super-
vision. The CU fetches instructions from the Program
Memory, directly executes control flow and mapping
statements and broadcasts the elementary instructions
to the PA. A second task of the CU is the management of
the data transfers between IM and PA in order to imple-
ment the windowing mechanism. The contents of the
IM can also be reorganized using the Image Remapper:
this unit can create a new image from an existing one re-
organizing the pixels of the source image according to
the contents of a look-up table stored in another portion
of the IM. In the current implementation, the PAPRICA
system is composed of a single 6U× 340 mm VME
board; the video camera interface is provided through
a small piggy-back board hosting an 8-bit video ADC
and a controller.

3.1. The Processor Array

The PA is presently a 16× 16 square matrix of 1-bit
PEs with full 8-neighbors connectivity. The PA as a
whole may operate in two different modes:

• Memory Mode. It behaves like a standard RAM
device composed of the collection of the individ-
ual PE registers for a total of 16 Kbits organized as
1K× 16-bit words.
• Processor Mode. All PEs execute the samearray

instruction fetched by the CU.

The main PE components are the 64-bitRegister
File and theExecution Unit. The Register File has one
read/write and one read-only 1-bit ports allowing the
fetch of two operand at the same time in Program Mode
and one 16-bit read/write port for accesses in Memory
Mode. The Execution Unit is composed of two separate
blocks, named GOP and LOP, one for the evaluation
of graphic operators and another for logic operators,
both implemented as two-level combinatorial logic by
the use of semistatic PLAs. A common multiplexed
Memory/Instruction Busis used to broadcast the in-
struction to all PEs and to transfer data to/from the
external memory.

A VLSI implementation of the PA is a natural choice
and the number of the PE integrated on a single chip
strongly depends on the available technology, there-
fore this number has been chosen as a compromise
among feasible die area, cost and yield functions,

Figure 7. Microphotograph of the 4× 4 PE chip.

design complexity and power supply requirements. Al-
though with the technology available (1.5µm CMOS)
when the design was started an array of 8×8 PEs would
have fit into a 1 cm2 chip, it has been preferred, as a
conservative choice to obtain a higher yield and reduce
design complexity, to integrate into a single chip only
an array of 4× 4 PEs.

The chip has been designed using a full-custom
methodology and fabricated with a 1.5µm CMOS
technology, with a total complexity of approximately
35,000 transistors on an area of 45 mm2 and an av-
erage power consumption is approximately 0.3 W. A
microphotograph of the chip is shown in Fig. 7.

3.2. The Control Unit

The three main tasks of the Control Unit are:

• the implementation of thewindowingmechanism de-
scribed in Section 2.2;
• the instruction fetch, execution of the program con-

trol flow statements and transfer to the PA of the
morphological and logical statements;
• the handling of the accesses to image memory from

VME host, PA, and camera interface.

Being rather independent both from the functional and
the temporal point of view, they have been assigned to
three different blocks:

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

12 Broggi et al.

• Window Unit (WU). This unit sequentially gener-
ates the image memory physical addresses corre-
sponding to a given subwindow and the PE register
addresses to/from which data are to be transferred ac-
cording to the programmed mapping. At the end of
the transfer of each subwindow the control is passed
to the Instruction Unit for the execution of the the
instructions which comprise theUpdate Block. The
complexity of the WU in terms of elementary gates
is comparable to that of the PA chip. It has been im-
plemented as a standard cell circuit using the same
technology as the PEs giving a 30 mm2 chip with
110 I/O pins and a complexity of approximately 6000
gates.
• Instruction Unit (IU). This unit is a rather conven-

tional sequencer and its main components are: a 32-
bit Instruction Register, a 24-bitProgram Counter,
an 8-bitStack Pointer, a 32-bit wideStackplus the
hardware necessary to directly execute flow-control
instructions (FOR, REPEAT, CALL). It has been im-
plemented using a single EP81188 Altera 244 pin
FPGA. This choice was preferred to the use of a stan-
dard microcontroller because of the system speed
requirements: only a high-performance DSP could
have enough processing power to run the IU tasks at
equivalent speed but the resulting board complexity
would be considerably higher than that of the dedi-
cated HW solution.
• Memory Controller. This unit implements all the

functionality necessary to control memory accesses
from the various sources (VME host, WU, CU, CI);
this unit has also been implemented using a FPGA
device.

3.3. The Camera Interface

The video camera interface provides a way to acquire
images with the lowest possible delay. It is a 256 grey
levels frame grabber interacting directly with the IM,
programmed from the host through dedicated control
and status registers. The frame grabber can be pro-
grammed to acquire a full-frame (2-fields) 512× 512
pixels image in 40 ms or a faster single-field 512×256
pixels image in 20 ms. The acquisition can be from
a single camera or from an externally synchronized
stereo camera pair. The advantage of using this built-
in frame grabber is the improvement of real-time al-
gorithms execution speed because the image is made
immediately available to the PA so that no memory
transfers have to be done on the VME bus.

3.4. The Image Remapper

The Image Remapper (IR) reorganizes the contents of
an image by relocating each pixel in accordance to the
contents of a mapping look-up table, previously stored
by the host in the IM. The remapping speed is of about
200 ns per pixel. The IR implements a global commu-
nications network, which is seldom available in mesh
connected SIMD architectures. It sequentially reads all
the pixels of the images and writes each of them to an
address derived from the mapping look-up tabel. It has
been implemented as part of the same FPGA used for
the IU.

4. Performance Analysis

The processing speedSpr is a function of parameters
that depend on system technology and architecture
(i.e., number of Processing ElementsQ2, memory cy-
cle timeTM , and processor cycle timeTC), on the par-
ticular computational task (program lengthL and sum
G of the margin values of each Update Block), and on
the numbernupd of Update Blocks in which the appli-
cation is partitioned.

The processing speedSpr (in pixel/s) is defined as the
number of processed pixels over the total time needed
for processing and has been determined as [10].

Spr '
(
Q− 2G

nupd

)2
2Q2TMnupd+ LTC

. (3)

nupd is the only parameter that can be tuned with the
aim to maximizeSpr.

The diagram presented in Fig. 8 (Spr vs. nupd) ex-
hibits a peak in the processing speed for a given value of
nupd. In fact a smallnupd corresponds to a large number
of graphical operators applied on the same image sub-
window, thus sensibly reducing the validity area, and
requiring a large overlapping in the loading of succes-
sive subwindows into the PA. The low processing speed
is due to the fact that the same data flow more than once
from the IM to the PA and vice versa. However, a large
value ofnupd corresponds to partitioning the applica-
tion in a large number of update blocks, thus requiring
the virtualization to be performed with multiple suc-
cessive transfers of the image between the IM and the
PA. The optimal value ofnupd is then given by

[nupd]opt = 6
G

Q
. (4)

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 13

Figure 8. Processing speedSpr vs. nupd/G consideringQ= 16,
TM = TC = 350 ns, andL = 2000.

Thus, the maximum processing speed becomes

[Spr]max' 4Q2

100QGTM + 9LTC
, (5)

which, for L small compared toG, becomes

[Spr]max' Q

25GTM
, (6)

showing that in the general case, when a large number
of graphic operators is used, the speedup is proportional
to Q, that is the square root of the number of PEs. This
theoretical result is supported by experimental data as
shown in the next section.

4.1. A Case Study

As an example, a SIMD implementation [19] of a
binary thinning [20] algorithm is presented: it is com-
posed of 8 matches with 3× 3 patterns. This corre-
sponds to a program withG = 8. The PAPRICA imple-
mentation of this filter is made of about 50 instructions
(L ' 50).

As shown in the previous sections, a specific appli-
cation must be split in a number of different Update
Blocks depending on the PA dimension, according to
Eq. (4). In order to achieve the best performances, each
Update Block must have a margin value as close as pos-
sible to the optimal value ofQ6 .

Table 4 shows the optimal margin value correspond-
ing to different PA sizes, together with the best parti-
tioning of one thinning iteration (expressed as the list

Table 4. Performances of one thinning iteration (G = 8) on archi-
tectures with different PA sizes.

T1 iter (ms)

Q2
Optimal
margin

Margin
values Theoretical Simulated Measured

42 1 1,1,1,1,1,1,1,1 1744 1220 —

82 1 1,1,1,1,1,1,1,1 683 540.5 —

162 3 3,3,2 326 227.8 232± 2%

322 5 4,4 165 124.2 —

642 10 8 82 56.43 —

1282 21 8 60 49.35 —

2562 42 8 52 43.12 —

of the margin values of each Update Block). More-
over, for the processing of a 256× 256 binary image,
Table 4 compares also the value of the execution time
evaluated theoretically from Eq. (3), the value deter-
mined through the use of a software simulator, and
finally the value measured on the real hardware system
(only for Q= 16).

Note that fromQ = 4 ÷ 64, Update Blocks in
which the application has been partitioned has a mar-
gin value comparable to the optimal one. In these cases
the computational time is proportional to1Q , according
to Eq. (6). ForQ > 64 it is not possible to obtain the
optimal partitioning since the optimal margin is larger
thanG. Optimal partitioning can be achieved for suf-
ficiently high values ofG: for example, an application
consisting of 10 iterations of a thinning filter (G = 80)
can be nearly optimally partitioned even in case of an
architecture composed of a 256× 256 PA.

The values presented in Table 4 refer to a non-
optimized version of the thinning filter. In [21] an op-
timization technique has been presented: it is based
on the consideration that the data bus, which links the
PM and the PA, has a 16 bit parallelism, while the data
flowing through it are binary, producing a data bus effi-
ciency of about 6% only. The improvement of the data
bus efficiency is the goal of such a technique, and it is
achieved by a data packing procedure. The data pack-
ing process reads from the image memory aN×N×1
image and writes aN4 × N

4 × 16 image. Besides in-
crementing the bus efficiency to 100%, it decreases the
image linear dimensions fromN to N

4 , and it increases
the pixels neighborhood accessed by an individual read
instruction.

This data packing technique allows to achieve a
speed-up which is proportional to the number of itera-
tions of the thinning filter. The performances (measured

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

14 Broggi et al.

Table 5. Performance of a thinning filter working on a
256× 256 plain and a 64×64 packed version of the same
image.

Execution time (ms)
No. of
iterations Normal Optimized Improvement (%)

1 228 85 170

2 475 98 380

4 712 111 540

8 950 124 660

on the real hardware system) obtained through the use
of this optimizing technique are presented in Table 5.

4.2. The Abingdon Cross Benchmark

The main target of the Abingdon Cross benchmark [22]
is to compare the performance of computer architec-
tures devoted to image processing. This benchmark
has been defined to be implemented on any computer
architecture, regardless of its computational paradigm.
The benchmark target is the determination of the com-
putational time required by the filtering of 128× 128
pixels, 8 bit/pixel, test image shown in Fig. 9(a).

There are no constraints at all on the implemen-
tation of the Abingdon Cross benchmark: the best

Figure 9. The Abingdon Cross benchmark on a 128×128 image: (a) input image; (b) thresholded image; (c) after one morphological opening
with the elementary anisotropic structuring element (3× 3); (d) after one morphological closing with a 7× 7 anisotropic structuring element;
(e) after four morphological erosions with the elementary anisotropic structuring element (3× 3); (f) after three thinning iterations.

performances are achieved when the algorithm matches
the computer architecture. Moreover, the design of the
algorithm can take advantage of the knowledge of
the key parameters used in the generation of the test
image.

The quality factor QF (the computer architecture per-
formance index) is defined as the ratio between the test
image size (N) and time required to filter it (T).

For commercial systems the price-performance fac-
tor is also defined. Since PAPRICA system is a non-
commercial prototype, only the quality factor will be
derived.

4.2.1. Benchmarking PAPRICA System.Since
PAPRICA system is composed of single bit PEs, the
processing of binary images is preferred with respect
to the handling of data structures with higher word par-
allelism. Moreover, due to the specific instruction set
implemented on PAPRICA, high performance levels
are obtained when the algorithm is based on morpho-
logical operations. Thus the first step of the filtering is
(a) a thresholding operation, which produces a binary
image. Then (b) a number of morphological operations
are performed. Finally (c) a thinning filter [20] is ap-
plied on the resulting image. In the implementation
of points (b) and (c) the data-packing optimizing tech-
nique mentioned in Section 4.1 has been used.

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 15

Table 6. The quality factor for
some non-commercial machines.

Machine Quality factor

CLIP4 (96× 96) 7.3× 103

Cyto III 1.0× 102

DIP 4.7× 10

PHP 7.1

POP II 2.9

VAP 1.8× 10

WARP 5.0× 102

PAPRICA 9.8× 102

The hardware prototype runs the Abingdon Cross
Benchmark on a 128×128 pixel image in about 130 ms.
The quality factor is QF= 9.8× 102. Table 6 reports
the results shown in [22] for the non-commercial ma-
chines only, together with the result for the PAPRICA
system, while the complete sequence of intermediate
results of the Abingdon Cross Benchmark is depicted
in Fig. 9.

Figure 10. (a) Original image; (b) remapped image; (c) binarized image; (d) result superimposed onto the original image.

4.3. A Sample Application

The PAPRICA system has been extensively used
and tested for different applications, ranging from
vision-based automotive applications [12, 13, 23, 24]
to the analysis of images of integrated circuits ac-
quired from a SEM [14], from the lossy compres-
sion of images [25] to the emulation of cellular neural
networks.

Within the Eureka PROMETHEUS project a few
applications have been developed, aimed to the iden-
tification of the road markings, to the computation of
the optical flow field and the time-to-impact. In the
road detection algorithm each frame is reorganized,
removing the perspective effect in order to generate
a new image with a uniform information distribution
among its pixels. This step simplifies the detection of
road markings which is performed by a morphological
algorithm. A single frame is loaded in about 20 ms
and processed in less than 100 ms, thus allowing the
processing of about 8 frames/s. Figure 10 presents the
original and processed images.

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

16 Broggi et al.

5. Conclusions

A massively parallel architecture supporting an image
processing paradigm based on mathematical morphol-
ogy has been described starting from the underlying
computational model up to the physical implementa-
tion.

The performance limitations of the machine are in
part related to the architecture and in part derive from
implementation issues. As shown inSection 4 if the
size of the array is far smaller than the size of the
images processed, then the speed-up is proportional
only to the square root of the number of processing
elements. The choice of well-assessed technology has
limited the number of processing elements per chip and
conservative engineering solutions such as the use of
programmable arrays, and some timing bottlenecks in
the chip design have led to an implementation which
is slower by a factor of 4 than what would have been
achievable with the same architectural solution and an
optimal design. The effectiveness of the system could
be improved both by a redesign of the chip set with
minor modifications and by exploiting the possibilities
offered by modern interconnection technologies such
as Multi Chip Modules (MCM). A feasibility study [26]
has shown that using a 1µm technology it is possible to
integrate in a single die an array of 8× 8 PEs with a cy-
cle time of 100 ns in Program and Memory modes and
that with MCM techniques a complete array of 8× 8
chips (4096 PEs) would fit in a single package with a
size of 8× 8 cm. For most of the developed algorithms
[12, 13, 23, 25] the speed-up over the current imple-
mentation would be more than two orders of magni-
tude.

The implementation of the PAPRICA prototype re-
quired to face all the issues related to the design of
systems for real-time processing and has proved ex-
tremely useful under many aspects. The system, now
installed in two academic institutes and on board of
an experimental vehicle, is a workbench for the use of
cellular and morphological algorithms and for the anal-
ysis of the potentials and the limitations of 2D SIMD
arrays. The experience gained in the project is at the
base of the design of a new morphological coprocessor
[27] which is now nearly completed.

We strongly believe that the effort of developing an
architecture down to the hardware implementation and
to use it in real applications allows to discover im-
plementation critical points such as cost, power, size,
memory and I/O timing. In fact, considering the per-
formance at the system level, the influence of imple-

mentation constraints may significantly degrade the
performance figures which can be derived by a the-
oretical evaluation of a given architecture.

Acknowledgments

This work was partially supported by CNR (Ital-
ian National Research Council) under the frame of
Progetto Finalizzato Trasporti.

References

1. S. Unger, “A computer oriented toward spatial problems,”Pro-
ceedings IRE, Vol. 46, pp. 1744–1750, 1958.

2. T. Fountain,Processor Arrays: Architectures and applications,
Academic-Press, London, 1987.

3. I.N. Robinson and W.R. Moore, “A parallel processor array ar-
chitecture and its implementation in silicon,”Proceedings of
IEEE Custom Integrated Circuits Conference, Rochester, New
York, pp. 41–45, 1982.

4. Geometric Arithmetic Parallel Processor, NCR Corporation,
Dayton, Ohio, 1984.

5. Connection Machine CM-200 Series—Technical Summary,
Thinking Machines Corporation, Cambridge, MA, 1991.

6. T. Sudo, T. Nakashima, M. Aoki, and T. Kondo, “An LSI adaptive
array processor,”Proceedings IEEE International Solid-State
Circuits Conference, pp. 122, 123, 307, 1982.

7. T. Fountain and K. Matthews, “The CLIP 7A image processor,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 10, No. 3, pp. 310–319, May 1988.

8. MP-1 Family Data-Parallel Computers, MasPar Computer Cor-
poration, Sunnyvale, California, 1990.

9. G. Conte, F. Gregoretti, L. Reyneri, and C. Sanso´e, “PAPRICA:
A parallel architecture for VLSI CAD,” inCAD accelerators,
A.P. Ambler, P. Agrawal, and W.R. Moore (Eds.), North Holland,
Amsterdam, pp. 177–189, 1991.

10. A. Broggi, G. Conte, F. Gregoretti, C. Sanso`e, and L.M. Reyneri,
“The PAPRICA massively parallel processor,”Proceedings
MPCS—IEEE International Conference on Massively Paral-
lel Computing Systems, IEEE Computer Society—EuroMicro,
Ischia, Italy, pp. 16–30, May 1994.

11. J. Serra,Image Analysis and Mathematical Morphology, Aca-
demic Press, London, 1982.

12. M. Bertozzi and A. Broggi, “GOLD: A parallel real-time stereo
vision system for generic obstacle and lane detection,”IEEE
Transactions on Image Processing, 1997, Vol. 7, pp. 62–81,
1998.

13. A. Broggi and S. Bert`e, “Vision-based road detection in au-
tomotive systems: A real-time expectation-driven approach,”
Journal of Artificial Intelligence Research, Vol. 3, pp. 325–348,
Dec. 1995.

14. F. Gregoretti and C. Passerone, “Using a massively parallel ar-
chitecture for integrated circuits testing,”Proceedings 3rd Eu-
roMicro Workshop on Parallel and Distributed Processing, IEEE
Computer Society—EuroMicro, Sanremo, Italy, pp. 332–338,
Jan. 1995.

15. R.M. Haralick, S.R. Sternberg, and X. Zhuang, “Image analysis
using mathematical morphology,”IEEE Transaction on Pattern

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

Design and Implementation of the PAPRICA Parallel Architecture 17

Analysis and Machine Intelligence, Vol. 9, No. 4, pp. 532–550,
1987.

16. V. Cantoni and M. Ferretti,Pyramidal Architectures for Com-
puter Vision, Plenum Press, London, 1993.

17. A. Rosenfeld,Multiresolution Image Processing and Analysis,
Springer Verlag, Berlin, 1984.

18. S.L. Tanimoto, T.J. Ligocki, and R. Ling, “A prototype pyra-
mid machine for hierarchical cellular logic,”Parallel Computer
Vision, Academic Press, London, 1987.

19. C. Arcelli, L. Cordella, and S. Levialdi, “Parallel thinning of
binary pictures,”Electronics Letters, Vol. 11, pp. 148–149, July
1975.

20. A. Rosenfeld, “A characterization of parallel thinning algo-
rithms,” Information Control, Vol. 29, pp. 286–291, 1975.

21. A. Broggi, “Word Parallelism vs. Spatial Parallelism: A perfor-
mance optimization technique on the PAPRICA system,”Pro-
ceedings 3rd EuroMicro Workshop on Parallel and Distributed
Processing, IEEE Computer Society—EuroMicro, Sanremo,
Italy, pp. 236–243, Jan. 1995.

22. K. Preston, “The abingdon cross benchmark survey,”Computer,
pp. 9–18, July 1989.

23. G. Adorni, A. Broggi, G. Conte, and V. D’Andrea. “Real-time
image processing for automotive applications,” inReal-Time
Imaging: Theory, Techniques, and Applications, P.A. Laplante
and A.D. Stoyenko (Eds.), IEEE Press, pp. 161–194, 1996.

24. M. Bertozzi and A. Broggi, “Real-time lane and obstacle de-
tection on the GOLD system,” inProceedings IEEE Intelligent
Vehicles’96, I. Masaky (Ed.), Tokyo, Japan, IEEE Computer
Society, pp. 213–218, Sept. 1996.

25. A. Broggi, “A novel approach to lossy real-time image compres-
sion: Hierarchical data reorganization on a low-cost massively
parallel system,”Real-Time Imaging Journal, Vol. 1, No. 5,
pp. 339–354, Nov. 1995.

26. F. Gregoretti, L.M. Reyneri, C. Sanso`e, A. Broggi, and G. Conte,
“The PAPRICA SIMD array: Critical reviews and perspec-
tives,” in Proceedings ASAP’93—IEEE Computer Society In-
ternational Conference on Application Specific Array Proces-
sors, L. Dadda and B. Wah (Eds.), IEEE Computer Society—
EuroMicro, Venezia, Italy, pp. 309–320, Oct. 1993.

27. A. Broggi, G. Conte, G. Burzio, L. Lavagno, F. Gregoretti,
C. Sanso`e, and L.M. Reyneri, “PAPRICA-3: A real-time mor-
phological image processor,”Proceedings ICIP—First IEEE In-
ternational Conference on Image Processing, IEEE Computer
Society, Austin, TX, pp. 654–658, Nov. 1994.

Alberto Broggi is Researcher at the Dipartimento di Ingegneria
dell’Informazione of the University of Parma since 1994. He received

both the Dr. Eng. (Master) degree in Electronic Engineering (1990)
and the Ph.D. degree in Information Technology (1994) from the
same University. His research interests include real-time computer
vision algorithms for the navigation of unmanned vehicles, and
the development of low-cost computer systems to be used on au-
tonomous robots. He is the author of more than 70 papers pub-
lished in referred journals, international conference proceedings and
books. He is the Editor of the Newsletter and member of the Exe-
cutive Committee of the IEEE Technical Committee on Complexity
in Computing, and member of the Editorial Board of Real-Time
Imaging Journal. He has guest edited a number of special-issues of
international journals on Machine Vision (IEEE Expert, Real-Time
Imaging, Image and Vision Computing, Engineering Applications of
Artificial Intelligence), and has been invited as a track leader, session
organizer and tutorial chairman in several IEEE-sponsored interna-
tional conferences, and served on the Program Committee of many
major conferences.
broggi@CE.UniPR.IT

http://WWW.CE.UniPR.IT/people/broggi

Gianni Conte is professor of Computer Science at the School of
Engineering of the University of Parma, where he teaches computer
architectures and parallel processing. Before joining the University
of Parma he has held the same position at the University of Salerno,
and the positions of research associate and associate professor at the
Politecnico of Torino where he received his Electronic Engineering
in 1970. He is author of over 100 technical papers in refereed journals
and conferences as well as of three books on parallel computer archi-
tectures and performance modeling. His research interests include
parallel and distributed processing, performance evaluation of dis-
tributed systems, Petri net modeling, and VLSI system architectures.
He is a member of IEEE.

Francesco Gregorettiwas born in Torino, Italy and received in 1975
the Dr. Eng. degree in Electronic Engineering from Politecnico di

P1: SADP1: SAD

Journal of VLSI Signal Processing KL582-01-Broggi May 25, 1998 12:24

18 Broggi et al.

Torino where he started his academic activity as assistant profes-
sor in 1978 and where now is associate professor of Microelectron-
ics. From 1976 to 1977 he was at the Laboratoire de Calculatrices
Digitales at the Swiss Federal Institute of Technology in Lausanne
(Switzerland) and from 1983 to 1984 visiting scientist at the Depart-
ment of Computer Science of Carnegie Mellon University, Pittsburgh
(USA). His main research interest are in digital electronics and in
particular in MOS VLSI circuits, in massively parallel multimicro-
processor systems for VLSI CAD tools, in low level image pro-
cessing architectures and in hardware/software codesign tools. Prof.
Gregoretti is a member of IEEE and has authored and coauthored
more than 90 papers and three books.

Claudio Sansoè is an assistant professor at the Politecnico di Torino,
Italy. He teaches applied electronics and carries out research on
the design of VLSI implementations of high-performance parallel
SIMD architectures and on hardware-software codesign of embedded
electronic systems. He holds a degree in electronic engineering from
the Politecnico di Torino and has published more than 40 papers.

Roberto Passeronewas born in Torino, Italy, in 1969. He attended
the Politecnico di Torino, Italy, from 1988 to 1994 and received the

Laurea in Ingegneria Elettronica. Since 1995 he has been with the
Department of Electronics, Politecnico di Torino, where he is cur-
rently a Ph.D. student. His research interests include digital VLSI
design, parallel computers and high performance computer architec-
tures.

Leonardo M. Reyneri is an associate professor at the Politecnico
di Torino, Italy. He teaches applied electronics and neural networks,
and carries out research on applications of neural networks to intelli-
gent control and pattern recognition. He is also involved in the design
of VLSI implementations of high-performance neural networks and
parallel SIMD architectures. His fields of personal research inter-
est include the design of low-power mixed analog/digital integrated
circuits for robotic, and the development of dedicated architectures
for neural networks and massively parallel systems. Reyneri holds a
Ph.D. in electronic engineering from the Politecnico di Torino. He
is a member of IEEE, and has published more than 70 papers and
holds five patents.

