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15.1 Introduction and Requirements

This chapter presents the modeling effort that sustains the workrelated to
the IP-SPEEDS heterogeneous rich component (HRC) metamodel, its associ-
ated multiple viewpoint contract formalism, and the underlying mathemat-
ical model of machines supporting such contracts. We put the emphasis on
combining different viewpoints and providing a simple and elegant notion
of parallel composition.
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The motivations behind this work are the drastic organizational changes
that several industrial sectors involving complex embedded systems have
experienced—aerospace and automotive being typical examples. Initially
organized around large, vertically integrated companies supporting most of
the design in house, these sectors were restructured in the 1980s because of
the emergence of sizeable competitive suppliers. Original equipment man-
ufacturers (OEM) performed system design and integration by importing
entire subsystems from suppliers. This, however, shifted a significant por-
tion of the value to the suppliers, and eventually contributed to late errors
that caused delays and excessive additional cost during the system inte-
gration phase. In the past decade, these industrial sectors went through a
profound reorganization in an attempt by OEMs to recover value from the
supply chain, by focusing on those parts of the design at the core of their
competitive advantage. The rest of the system was instead centered around
standard platforms that could be developed and shared by otherwise com-
petitors. Examples of this trend are AUTOSAR in the automotive indus-
try [10] and integrated modular avionics (IMA) in aerospace [7]. This new
organization requires extensive virtual prototyping and design space explo-
ration, where component or subsystem specification and integration occur at
different phases of the design, including at the early ones [19].

Component-based development has emerged as the technology of choice
to address the challenges that result from this paradigm shift. Our objective is
to develop a component-based model that is tailored to the specific require-
ment of system development with a highly distributed OEM/supplier chain.
This raises the novel issue of dividing and distributing responsibilities
between the different actors of the OEM/supplier chain. The OEM wants
to define and know precisely what a given supplier is responsible for. Since
components or subsystems interact, this implies that the responsibility for
each entity in the area of interaction must be precisely assigned to a given
supplier, and must remain unaffected by others. Thus, each supplier is
assigned a design task in the form of a goal, which we call “guarantee or
promise” that involves only entities for which the supplier is responsible.
Other entities entering the subsystem for design are not under the respon-
sibility of this supplier. Nonetheless, they may be subject to constraints
assigned to the other suppliers, that can therefore be offered to this sup-
plier as “assumptions.” Assumptions are under the responsibility of other
actors of the OEM/supplier chain but can be used by this supplier to sim-
plify the task of achieving its own promises. This mechanism of assump-
tions and promises is structured into “contracts” [9], which form the essence
of distributed system development involving complex OEM/supplier
chains.

In addition to contracts, supporting an effective concurrent system devel-
opment requires the correct modeling of both interfaces and open systems,
as well as the ability to talk about partial designs and the use of abstraction
mechanisms. This is especially true in the context of safety critical embedded
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systems. In this case, the need for high-quality, zero-defect software calls
for techniques in which component specification and integration are sup-
ported by clean mathematics that encompass both static and “dynamic”
semantics—this means that the behavior of components and their compo-
sition, and not just their port and type interface, must be mathematically
defined. Furthermore, system design includes various aspects—functional,
timeliness, safety and fault tolerance, etc.—involving different teams with
different skills using heterogeneous techniques and tools. We call each of
these different aspects a “viewpoint” of the component or of the system. Our
technology of contracts is based on a mathematical foundation consisting of
a model of system that is rich enough to support the different viewpoints of
system design, and at the same time clean and simple enough to allow for the
development of mathematically sound techniques. We build on these foun-
dations to construct a more descriptive state-based model, called the HRC
model, that describes the relationships between the parts of a component in
an executable fashion. It is the objective of this chapter to present this higher
level model. Nonetheless, we also provide a quick overview of the contract
model it is intended to support—readers interested in details regarding this
contract framework are referred to [5,6].

Our notion of contract builds on similar formalisms developed in related
fields. For example, a contract-based specification was applied by Meyer in
the context of the programming language Eiffel [17]. In his work, Meyer uses
“preconditions” and “postconditions” as state predicates for the methods
of a class, and “invariants” for the class itself. Similar ideas were already
present in seminal work by Dijkstra [12] and Lamport [16] on “weakest
preconditions” and “predicate transformers” for sequential and concur-
rent programs, and in more recent work by Back and von Wright, who
introduce contracts [4] in the “refinement calculus” [3]. In this formalism,
processes are described with guarded commands operating on shared vari-
ables. This formalism is best suited to reason about discrete, untimed process
behavior.

More recently, De Alfaro and Henzinger have proposed interface auto-
mata as a way of expressing constraints on the environment in the case
of synchronous models [11]. The authors have also extended the approach
to other kinds of behaviors, including resources and asynchronous behav-
iors [8,15]. Our contribution here consists in developing a particular
formalism for hybrid continuous-time and discrete state machines where
composition is naturally expressed as intersection. We show how to trans-
late our model to the more traditional hybrid automata model [14]. In addi-
tion, we identify specialized categories of automata for the cases that do not
need the full generality of the model, and introduce probabilities as a way of
representing failures.

The chapter is structured as follows. We will first review the concepts of
component and contract from a semantic point of view in Section 15.2. We
then describe the extended state machine (ESM) model in Section 15.3 and
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compare it to a more traditional hybrid model in Section 15.4. The syntax
and the expressive power used for expressions in the transitions of the state-
based model is reviewed in Section 15.5, followed, in Section 15.6, by the
specialization of the model into different categories to support alternative
viewpoints. Several examples complement the formalism throughout the
chapter.

15.2 Components and Contracts

Our model is based on the concept of “component.” A component is a hier-
archical entity that represents a unit of design. Components are connected
together to form a system by sharing and agreeing on the values of certain
ports and variables. A component may include both “implementations” and
“contracts.” An implementation M is an instantiation of a component and
consists of a set P of ports and variables (in the following, for simplicity, we
will refer only to ports) and of a set of behaviors, or runs, also denoted by
M, which assign a history of “values” to ports. Because implementations and
contracts may refer to different viewpoints, as we shall see, we refer to the
components in our model as HRC.

We build the notion of a contract for a component as a pair of assertions,
which express its assumptions and promises. An assertion E is a property
that may or may not be satisfied by a behavior. Thus, assertions can again
be modeled as a set of behaviors over ports, precisely as the set of behaviors
that satisfy it. An implementation M satisfies an assertion E whenever they
are defined over the same set of ports and all the behaviors of M satisfy the
assertion, that is, when M ⊆ E.

A contract is an assertion on the behaviors of a component (the promise)
subject to certain assumptions. We therefore represent a contract C as a pair
(A, G), where A corresponds to the assumption, and G to the promise. An
implementation of a component satisfies a contract whenever it satisfies its
promise, subject to the assumption. Formally, M ∩ A ⊆ G, where M and C
have the same ports. We write M |= C when M satisfies a contract C. There
exists a unique maximal (by behavior containment) implementation satisfy-
ing a contract C, namely, MC = G ∪ ¬A. One can interpret MC as the implica-
tion A ⇒ G. Clearly, M |= (A, G) if and only if M |= (A, MC), if and only if
M ⊆ MC. Because of this property, we can restrict our attention to contracts
of the form C = (A, MC), which we say are in “canonical form,” without los-
ing expressiveness. The operation of computing the canonical form, that is,
replacing G with G ∪ ¬A, is well defined, since the maximal implementa-
tion is unique and idempotent. Working with canonical forms simplifies the
definition of our operators and relations, and provides a unique representa-
tion for equivalent contracts.
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The combination of contracts associated to different components can
be obtained through the operation of parallel composition. If C1 = (A1, G1)

and C2 = (A2, G2) are contracts (possibly over different sets of ports), the
composite must satisfy the guarantees of both, implying an operation of
intersection. The situation is more subtle for assumptions. Suppose first that
the two contracts have disjoint sets of ports. Intuitively, the assumptions of
the composite should be simply the conjunction of the assumptions of each
contract, since the environment should satisfy all the assumptions. In gen-
eral, however, part of the assumptions A1 will be already satisfied by com-
posing C1 with C2, acting as a partial environment for C1. Therefore, G2 can
contribute to relaxing the assumptions A1. And vice versa. The assumption
and the promise of the composite contract C = (A, G) can therefore be com-
puted as follows:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (15.1)

G = G1 ∩ G2, (15.2)

which is consistent with similar definitions in other contexts [11,13,18]. C1
and C2 may have different ports. In that case, we must extend the behav-
iors to a common set of ports before applying Equations 15.1 and 15.2. This
can be achieved by an operation of inverse projection. Projection, or elimina-
tion, in contracts requires handling assumptions and promises differently, in
order to preserve their semantics. For a contract C = (A, G) and a port p, the
“elimination of p in C” is given by

[C]p = (∀p A, ∃p G) (15.3)

where A and G are seen as predicates. Elimination trivially extends to finite
sets of ports, denoted by [C]P, where P is the considered set of ports. For
inverse elimination in parallel composition, the set of ports P to be consid-
ered is the union of the ports P1 and P2 of the individual contracts.

Parallel composition can be used to construct complex contracts out of
simpler ones, and to combine contracts of different components. Despite hav-
ing to be satisfied simultaneously, however, multiple viewpoints “associated
to the same component” do not generally compose by parallel composition.
We would like, instead, to compute the conjunction � of the contracts, so
that if M |= Cf � Ct, then M |= Cf and M |= Ct. This can best be achieved by
first defining a partial order on contracts, which formalizes a notion of sub-
stitutability, or refinement. We say that C = (A, G) “dominates” C′ = (A′, G′),
written C 
 C′, if and only if A ⊇ A′ and G ⊆ G′, and the contracts have
the same ports. Dominance amounts to relaxing assumptions and reinforc-
ing promises, therefore strengthening the contract. Clearly, if M |= C and
C 
 C′, then M |= C′.

Given the ordering of contracts, we can compute greatest lower bounds
and least upper bounds, which correspond to taking the conjunction
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and disjunction of contracts, respectively. For contracts C1 = (A1, G1) and
C2 = (A2, G2) (in canonical form), we have

C1 � C2 = (A1 ∪ A2, G1 ∩ G2), (15.4)

C1 � C2 = (A1 ∩ A2, G1 ∪ G2). (15.5)

The resulting contracts are in canonical form. Conjunction of contracts
amounts to taking the union of the assumptions, as required, and can there-
fore be used to compute the overall contract for a component starting from
the contracts related to multiple viewpoints. The following example illus-
trates the need for two different composition operators.

Example 15.1 (Viewpoint Synchronization) We discuss here an example of
viewpoint synchronization. Assume two contracts Ci, i = 1, 2 modeling two differ-
ent viewpoints attached to a same rich component C. For example, let C1 = (A1, G1)

be a viewpoint in the functional category and C2 = (A2, G2) be a viewpoint of the
timed category.

Assumption A1 specifies allowed data pattern for the environment,
whereas A2 sets timing requirements for it. Since contracts are in canonical
forms, the promise G1 itself says that, if the environment offers the due data
pattern, then a certain behavioral property can be guaranteed. Similarly, G2
says that, if the environment meets the timing requirements, then outputs
will be scheduled as wanted and deadlines will be met. Thus, both Gi, i = 1, 2
are implications.

The greatest lower bound C1 � C2 can accept environments that satisfy
either the functional assumptions, or the timing assumptions, or both. The
promiseof C1 � C2 is the conjunction of the two implications: If the envi-
ronment offers the due data pattern, then a certain behavioral property can
be guaranteed, and, if the environment meets the timing requirements, then
outputs will be scheduled as wanted and deadlines will be met. When both
the environment offers the due data pattern and the environment meets
the timing requirements, remark that both a certain behavioral property
can be guaranteed and outputs will be scheduled as wanted and deadlines
will be met.

To have a closer look at the problem, assume first that the two viewpoints
are orthogonal or unrelated, meaning that the first viewpoint, which belongs
to the functional category, does not depend on dates, while the second view-
point does not depend on the functional behavior (e.g., we have a dataflow
network of computations that is fixed regardless of any value at any port).
Let these two respective viewpoints state as follows:

• If the environment alternates the values T, F, T, . . . on port b, then the
value carried by port x of component C never exceeds 5.

• If the environment provides at least one data per second on port b, then
component C can issue at least one data every 2 s on port x.
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FIGURE 15.1
Truth tables for the synchronization of categories.

These two viewpoints relate to the same rich component. Still, having the two
contracts (Ai, Gi), i = funct, timed for C should mean that if the environment
satisfies the functional assumption, then C satisfies the functional guaran-
tees. Also, if the environment satisfies the timing assumption, then C satis-
fies the timing guarantees. Figure 15.1 illustrates the greatest lower bound of
the viewpoints belonging to two different categories, and compares it with
their parallel composition, introduced in Section 15.2. For this case, the right
definition for viewpoint synchronization is the greatest lower bound.

The four diagrams on the top are the truth tables of the functional cate-
gory Cf and its assumption Af and promise Gf , and similarly for the timed
category Ct. Note that these two contracts are in canonical form. In the mid-
dle, we show the same contracts lifted to the same set of variables b, db, x,
and dx, combining function and timing. On the bottom, the two tables on
the left are the truth tables of the greatest lower bound Cf � Ct. For com-
parison, we show on the right the truth tables of the parallel composition
C1 ‖ C2, revealing that the assumption is too restrictive and not the one
expected.

So far we discussed the case of noninteracting viewpoints. But in gen-
eral, viewpoints may interact as explained in the following variation of
the same example. Assume that the viewpoints (the first one belonging to
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FIGURE 15.2
Illustrating the synchronization of viewpoints.

the functional category, while the other one belongs to the timed category)
interact as follows:

• If the environment alternates the values T, F, T, . . . on port b, then the
value carried by port x of C never exceeds 5; if x outputs the value 0,
then an exception is raised and a handling task T is executed.

• If the environment provides at least one data per second on port b, then
C can issue at least one data every 2 s on port x; when executed, task T
takes 5 s for its execution.

For this case, the activation port αT of task T is an output port of the func-
tional view, and an input port of the timed view. This activation port is
boolean; it is output every time the component is activated and is true when
an exception is raised. Then, the timed viewpoint will involve αT and dαT as
inputs, and will output the date dT of completion of the task T according to
the following formula: dT = (dαT + 5) when (αT = T). Note that dαT has no
meaning when αT = F.

Here we had an example of connecting an output of a functional view-
point to an input of a timed viewpoint. Note that the converse can also occur.
Figure 15.2 illustrates the possible interaction architectures for a synchroniza-
tion viewpoint.

Discussion. So far we have defined contracts and implementations in
terms of abstract assertions, that is, sets of runs. In Sections 15.3 and 15.4,
we describe in more precise terms the mathematical nature of these abstract
assertions.

To provide intuition for our design choices, we start by comparing two
alternative views of system runs, as illustrated in Figure 15.3. In the classical
approach, shown in Figure 15.3a, transitions take no time; time and contin-
uous dynamics progress within states; they are specified by state invariants
and guarded. The alternative approach is dual: states are snapshot valua-
tions of variables and take no time; time and continuous dynamics progress
within “thick” transitions that are guarded.

The two approaches have advantages and disadvantages. The classical
approach is preferred for abstractions based on regions, which are valid for
certain classes of models. The alternative approach makes it much easier to
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FIGURE 15.3
Runs. (a) Classical approach. (b) Alternative approach. State invariants on
the left, or thick transitions on the right, involve the progress of time and
continuous dynamics such as differential equations.

deal with composition and is able to capture open systems, as we shall see.
Clearly, the two approaches are dual and can be exchanged without harm.

We shall develop the two approaches and relate them throughout this
chapter.

15.3 Extended State Machines

ESMs follow the second approach illustrated in Figure 15.3. They are our pre-
ferred model, because of the simplicity of its associated parallel composition.

15.3.1 Variables and Ports, Events and Interactions,
Continuous Dynamics

Interaction between viewpoints and components is achieved by synchroniz-
ing events and variables involved in both discrete and continuous dynamics.
Synchronization events take place on ports. Dynamic creation or deletion of
ports or variables is not supported by the model.

Values are taken in a unique domain D that encompasses all usual data
types (booleans, enumerated types, integers, real numbers, etc.). We shall
distinguish a subdomain Dc ⊂ D in which variables involved in continuous
evolutions take their values; Dc collects all needed Euclidean spaces to deal
with differential equations or inclusions. Other type consistency issues are
dealt within the static semantics definition of HRC and are disregarded in
the sequel.

We are given a finite set V of “variables”; the set of variables is parti-
tioned into two subsets V =Vd � Vc: the variables belonging to Vd are used
exclusively in the discrete evolutions, and those belonging to Vc can be
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used in both continuous and discrete evolutions. “States” correspond to the
assignment of a value to each variable: s : V → D.

A finite set of ports P is then considered. “Events” correspond to the
assignment of a value to a port; therefore an event is a pair (p, d) ∈ P × D.
“Interactions,” also called “labels” in the sequel, are sets of events. The only
restriction is that a given port may yield at most one event in an interaction.
Hence interactions are partial mappings λ : P ⇀ D. The set of all interactions
is denoted by Λ (= P ⇀ D). The empty interaction εP over ports P is the
unique mapping εP : P ⇀ D that is undefined for any p ∈ P .

Regarding continuous dynamics, we restrict ourselves to the case where a
unique global physical time is available, denoted generically by the symbols
t or τ and called the “universal time.” Other time bases can be used, but
need to be related to this universal time as part of the assertion specification.
Investigating the consequences of relaxing this restriction is part of our future
work.

Similarly, for Vc ⊆ Vc, the “domain of continuous evolutions on Vc,”
denoted by C(Vc), is the set of all functions

C(Vc) =def { ϕ | ϕ : R+ ⇀ Vc → Dc } (15.6)

such that (we write ϕ(t, v) instead of ϕ(t)(v)):

1. dom(ϕ) = [0, t| for some t > 0, where symbol | denotes either ] or ); call
t the “duration” of ϕ and denote it generically by tϕ.

2. For every v ∈ Vc, τ → ϕ(τ, v) is smooth enough (typically at least
differentiable on (0, t)) and possesses a left limit Exit (ϕ) ∈ DVc

defined by

Exit (ϕ, v) =def lim
τ↗t

ϕ(τ, v) (15.7)

Each ϕ ∈ C(Vc) can be decomposed, for all t ∈ (0, tϕ), as the concatenation

ϕ = ϕ1 · ϕ2, where
ϕ1(τ) = ϕ(τ) for 0 ≤ τ < t, dom(ϕ1) = [0, t)

ϕ2(τ) = ϕ(t + τ) for 0 ≤ τ < tϕ − t, dom(ϕ2) = [0, tϕ − t) (15.8)

We denote these two evolutions by ϕ<t and ϕ≥t, respectively. We thus have
the decomposition

ϕ = ϕ<t · ϕ≥t (15.9)

15.3.2 ESM Definition

Having defined variables, ports, labels and interactions, it is possible to intro-
duce ESMs as a syntactic means of defining assertions in HRC components.
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Definition 15.1 (ESM) An ESM is a tuple with the following components:

E = (V, P, ρ, δ, I, F) , where
P ⊆ P , V = Vd � Vc, Vd ⊆ Vd, Vc ⊆ Vc

S =def DV is the set of states, projecting to

Sd =def DVd the set of discrete states, and

Sc =def DVc the set of continuous states,
ρ ⊆ S × Λ × S, where Λ =def (P ⇀ D), is the discrete transition relation,
δ ⊆ S × C(Vc) × S is the continuous transition relation,
I ⊆ S is the set of initial states,
F ⊆ S is the set of final states,

where we require that δ does not modify discrete states:

∀(s, ϕ, s′) ∈ δ, ∀v ∈ Vd ⇒ s′(v) = s(v). (15.10)

For convenience, we shall denote the disjoint union of sets of ports and
variables by W =def P � V.

Runs. The runs recognized by an ESM are arbitrary finite interleavings of
discrete and continuous evolutions, separated by snapshot states:

σ =def s0, w1, s1, w2, s2, . . . , sk−1, wk, sk, . . . (15.11)

where

∀k > 0 :

⎧⎨
⎩

s0 ∈ I
either wk = (sk−1, λk, sk) ∈ ρ

or wk = (sk−1, ϕk, sk) ∈ δ

Infinite runs are captured by considering their finite approximations.
“Accepted runs” are finite runs ending in F. To capture nonterminating com-
putations, just take F = S. In run σ, time progresses as follows: Discrete tran-
sitions take no time and continuous evolutions are concatenated. Formally

• State sk is reached at time
∑k

i = 1 twi , where tw denotes the duration of
w; by convention, tw is equal to tϕ (the duration of ϕ) if w = (s, ϕ, s′),
and is equal to zero if w = (s, λ, s′).

• At time t, the number of transitions completed is max{k | ∑k
i=1 twi ≤ t}.

Projection. For W = P ⊕ V a set of ports and variables, ρ a discrete transi-
tion relation defined over W, δ a continuous transition relation defined over
W, and W′ ⊆ W, let projW,W′ (ρ) and projW,W′ (δ), respectively denote the
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projections of ρ and δ over W′, obtained by existential elimination of ports or
variables not belonging to W′. The results are discrete and continuous tran-
sition relations defined over W′, respectively. Corresponding inverse projec-
tions are denoted by proj−1

W,W′ (. . . ).

Product. The composition of ESM is by intersection; interaction can occur
via both variables and ports:

E1 × E2 = (V, P, ρ, δ, I, F) , where
Vd = Vd,1 ∪ Vd,2 discrete variables can be shared
Vc = Vc,1 ∪ Vc,2 continuous variables can be shared
P = P1 ∪ P2 ports can be shared

ρ =def proj−1
W,W1

(ρ1) ∩ proj−1
W,W2

(ρ2)

δ =def proj−1
W,W1

(δ1) ∩ proj−1
W,W2

(δ2)

I =def proj−1
W,W1

(I1) ∩ proj−1
W,W2

(I2)

F =def proj−1
W,W1

(F1) ∩ proj−1
W,W2

(F2)

where we recall that W = P � V. ESMs synchronize on discrete transitions
thanks to shared ports and variables. Continuous evolutions synchronize
only via shared variables. If W = W1 = W2, then ρ = ρ1 ∩ ρ2 and δ = δ1 ∩ δ2,
whence the name of “composition by intersection.” When specialized to con-
tinuous dynamics made of differential equations, this boils down to systems
of differential equations like in undergraduate mathematics.

Our interpretation of runs with snapshot states and thick transitions (see
Figure 15.3) is instrumental in allowing for the above simple and elegant
definition of parallel composition “by intersection.” With thick states and
zero-time transitions, it is more difficult to define composition, because syn-
chronization takes place both on states and transitions.

Union or disjunction. The union of two sets of runs can be obtained from
two ESMs by taking the union of their variables, and by adding a distin-
guished variable # ∈ Vc that indicates the particular state space in which we
are operating (# = 0 for the first ESM, # = 1 for the second). Then, we simply
take the union of the transition relations after inverse projection. Formally,
for i indexing the set of components involved in the considered union, let

ρ

∣∣∣V
#=i =def {(s, λ, s′) ∈ S × Λ × S | s(#) = i and s′(#) = i}

δ

∣∣∣V
#=i =def {(s, ϕ, s′) ∈ S × C(Vc) × S | s(#) = i and s′(#) = i}
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be the transition relation that is true everywhere variable # is evaluated to i.
Then

E1 ∪ E2 = (V, P, ρ, δ, I, F)

Vd = Vd,1 ∪ Vd,2 � {#}
Vc = Vc,1 ∪ Vc,2 � {#}
P = P1 ∪ P2

ρ =def

(
proj−1

W,W1
(ρ1) ∩ ρ|V#=1

)
∪

(
proj−1

W,W2
(ρ2) ∩ ρ|V#=2

)

δ =def

(
proj−1

W,W1
(δ1) ∩ ρ|V#=1

)
∪

(
proj−1

W,W2
(δ2) ∩ ρ|V#=2

)

I =def
{
s ∈ S | s|W1 ∈ I1 ∧ s(#) = 1

} ∪ {
s ∈ S | s|W2 ∈ I2 ∧ s(#) = 2

}

F =def
{
s ∈ S | s|W1 ∈ F1 ∧ s(#) = 1

} ∪ {
s ∈ S | s|W2 ∈ F2 ∧ s(#) = 2

}

Inputs and outputs. Whenever needed we can distinguish inputs and
outputs, which we also call “uncontrolled” and “controlled” ports. In this
paragraph, we define the corresponding algebra. Ports and variables are par-
titioned into inputs and outputs:

P = PI � PO

V = VI � VO

Regarding products, the set of ports of a product is again the union of the
set of ports of each component. However, outputs cannot be shared.∗ That
is, the product of two ESMs E1 and E2 is defined if and only if

PO
1 ∩ PO

2 = ∅
VO

1 ∩ VO
2 = ∅ (15.12)

In that case

PI = (PI
1 ∪ PI

2) − (PO
1 ∪ PO

2 )

PO = PO
1 ∪ PO

2 (15.13)

with the corresponding rules for variables.

Receptiveness. For E an ESM, and P′ ⊆ P, V′ ⊆ V a subset of its ports and
variables, E is said to be (P′, V′)-receptive if and only if for all runs σ′ restricted
to ports and variables belonging to (P′, V′), there exists a run in σ of E such
that σ′ and σ coincide over P′ � V′.

∗We could allow sharing of outputs, and declare a failure whenever two components set a
different value on an output port.
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R υ ≥ 1

i

(a) (b)

u
u υ =

u – Ri
R'

υ

υ

i

i = 0
when
υ < 1
i = υ/R'
when
υ ≥ 1

FIGURE 15.4
Nonreceptive composition of two receptive ESMs. (a) Electric circuit with
two components. (b) Modeling of the circuit with two receptive ESMs.

Receptiveness is a semantic concept. It is often implicitly meant that an
ESM should be receptive with respect to its inputs. However, the example
in Figure 15.4 shows that receptiveness is generally not preserved by com-
position, even when Condition 15.12 is satisfied and Rule 15.13 is used for
the composition. This example aims at modeling an electric circuit with two
components (Figure 15.4a), a resistor R and a voltage sensitive switch that is
opened when v < 1 and has resistance R′ when v ≥ 1. The ESM for resistor
R (Figure 15.4b) inputs voltage u and current i and outputs voltage v. The
switch ESM inputs voltage v and outputs current i. Each ESM is receptive:
v = u−Ri is the output of the first ESM for every value of u and i. The second
ESM outputs i = v/R′ when v ≥ 1 and i = 0 otherwise. The composition of
these two ESMs has u as only input and v and i as outputs. The system of
equations admits a solution when u < 1, in which case v = u and i = 0, and
when u ≥ 1 + R/R′, in which case v = R′/(R + R′)u and i = u/(R + R′). How-
ever, it has no solution when u ∈ [1; 1 + R/R′). Clearly, the composition of
the two ESMs is not receptive.

Openness. The ability to handle open systems is an important feature of
ESMs. This can be achieved by requiring that the following conditions hold
for discrete and continuous transitions:

{(s, εP, s) | s ∈ S} ⊆ ρ (15.14)

(s, ϕ, s′) ∈ δ

t < tϕ

}
⇒

{
(s, ϕ<t, Exit (ϕ<t)) ∈ δ

(Exit (ϕ<t) , ϕ≥t, s′) ∈ δ
(15.15)

where, by abuse of notation, we extend Exit (ϕ<t) to the set of discrete vari-
ables by copying the value they had in state S.

Condition 15.14 on discrete evolutions is the usual stuttering invariance
condition for discrete transition systems. It requires that it is always possible,
for an ESM, to perform a discrete stuttering transition that emits no event and
leaves states unchanged. This leaves room for other components to perform
discrete transitions.
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Condition 15.15 on continuous evolutions expresses that it is always pos-
sible to interrupt a continuous evolution and resume it immediately. The
reason for doing this is to allow other components to perform a discrete tran-
sition (which takes no time) in the middle of a continuous evolution of the
considered component.

Observe that conditions for openness imply that any finite run can be
extended to an infinite one; whence our definition for accepted runs.

Locations or macrostates. Certain aggregations of states are useful for use
in actual syntax. For example, hybrid systems “locations” contain the con-
tinuous evolutions. Also, macro-states are considered when gluing states
together. Locations or macro-states are obtained in our framework by

1. Selecting a subset V′
d ⊂ Vd of discrete variables

2. Grouping together all states s having the same valuation for all w ∈ V′
d.

For example, one could have one particular discrete variable w ∈ Vd, of enu-
merated type, that indexes the locations; in this case we would take V′

d = {w}.
Note that the description of the dynamics still requires the discrete and con-
tinuous transitions as above. This is further elaborated on in Section 15.4.

15.4 HRC State Machines

In this section, we introduce the model that corresponds to the first (classical)
approach illustrated in Figure 15.3. Its interest is that it more closely fits the
type of model in use when considering timed automata [1] or their general-
ization hybrid automata [14]. We call this model “HRC state machines.” Then
we show how to translate between HRC state machines and ESMs, thus pro-
viding a way to switch to the best framework depending on the considered
activity (analysis or composition). To simplify our presentation, we consider
only flat HRC state machines that do not include hierarchical or-states such
as in statecharts. Extension to hierarchical or-states raises no difficulty.

Inspired by the definition of hybrid automata in Henzinger [14], we
define:

Definition 15.2 (HRC State Machine) A HRC state machine is a tuple

H = (V, P; G, init, inv, flow, final; trans) (15.16)

where

• V = Vd � Vc is a finite set of variables decomposed into discrete and
continuous variables; set S = DV, where D is the domain of values.

• P is a finite set of ports.
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• G is a finite directed multigraph G = (L, E), where L is a finite set of
locations and E is a finite set of switches.

• Four vertex labeling functions init, inv, flow, and final, that assign
to each location �∈ L four predicates; init(�), inv(�), and final(�) are
expressions of boolean type over V, and flow(�) ⊆ C(Vc), see (15.6).

• An edge labeling function trans that assigns to each switch e ∈ E a rela-
tion trans(e) ⊆ S × Λ × S, where Λ =def (P ⇀ D).

HRC State Machine H can be re-expressed as the following equivalent ESM
(in that they possess identical sets of runs):

EH = (
V � {loc}, P, ρ, δ, I, F

)
,

where

• V is as in Equation 15.16 and loc is an additional “location variable”
taking values in the finite set L; a value for loc is therefore a location �;
the corresponding set of states is the set of all possible configurations
of the tuple (V, loc); such states are generically written as pairs (s, �).

• P is as in Equation 15.16.
• The discrete transition relation ρ is defined as follows:

(
(s, �), λ, (s′, �′)

) ∈ ρ

if and only if there exists a switch e with source � and target �′ such
that (s, λ, s′) ∈ trans(e).

• The continuous transition relation δ is defined as follows:
(
(s, �), ϕ, (s′, �′)

) ∈ δ

if and only if �′ = � and continuous evolution ϕ satisfies both predi-
cates inv(�) and flow(�).

• (s0, �0) ∈ I if and only if inv(�0)(s0) = T and init(�0)(s0) = T.
• (sf , �f ) ∈ F if and only if inv(�f )(sf ) = T and final(�f )(sf ) = T.

Conversely, let E = (V, P, ρ, δ, I, F) be an ESM in which a subset loc ⊂ Vd of
discrete variables has been distinguished. Then, E can be represented as the
following HRC state machine:

HE = (W, P; G, init, inv, flow, final; trans) (15.17)

where W =def V − loc and

• G = (L, E), where L = Dloc and e = (�, �′) ∈ E if and only if there exists
an event λ ∈ Λ of E, such that (�, λ, �′) ∈ projV,loc (ρ).

• For e = (�, �′) ∈ E, (s, λ, s′) ∈ trans(e) if and only if ((s, �), λ, (s′, �′)) ∈ ρ.
• For � ∈ L, inv(�) is satisfied by state s if and only if ((s, �), λ, (s′, �′)) ∈ ρ,

for some event λ, some switch e = (�, �′) ∈ E, and some state s′ ∈ DW .
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• Since, by Equation 15.10, continuous transition relation δ does not
modify discrete states, it does not modify locations. Therefore, if
(s, ϕ, s′) ∈ δ, then s(loc) = s′(loc), we denote it by �; then flow(�) is
the set of ϕ ∈ C(Vc) such that there exists a pair of states (s, s′) with
� = s(loc) = s′(loc) and (s, ϕ, s′) ∈ δ.

• init(�) is satisfied by state s ∈ DW if and only if the pair (�, s) belongs
to I.

• final(�) is satisfied by state s ∈ DW if and only if the pair (�, s) belongs
to F.

The following are natural questions: how does HEH relate to H? and how
does EHE relate to E? These are not strictly identical but “almost” so. More
precisely

• HEH is identical to H.
• EHE identifies with E in which the subset loc ⊆ Vd of discrete variables

has been replaced by a single variable whose domain is the product of
the domains of variables belonging to loc.

Having the translation of HRC state machines into ESMs allows them to
inherit from the various operators associated with ESMs. In particular

H1 × H2 = HEH1×EH2

where, in defining HEH1×EH2
, we take loc = loc1 � loc2. This is an indirect

definition for the product—it can also be used to define other operators on
HRC state machines. It involves the (somehow complex) process of translat-
ing HRC state machines to ESMs and vice versa. But one should remember
that defining the product directly on HRC State Machines is complicated as
well. Our technique has the advantage of highlighting the very nature of
product, namely, by intersection.

15.5 Mathematical Syntax for the Labeling Functions
of HRC State Machines

In this section, we refine the definition of the labeling functions occurring in
Definition 15.2 of HRC state machines. Location or vertex labeling functions
init, inv, final, and flow are specified by using expressions. Switch or edge
labeling function trans will be specified via a pair (guard, action), where the
guard is composed of a predicate over locations and variables and a set of
triggering events on ports; the action consists in assigning the next state fol-
lowing the transition. Guards and actions will also be specified by means of
expressions.
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15.5.1 Expressions and Differential Expressions

We consider two distinct copies V and V ′ of the set of all variables, where
each V′ ∈ V ′ is the primed version of V ∈ V .

Expressions. We assume a family Expr of “expressions” over unprimed
variables, primed variables, and ports. Thus all (partial) functions we intro-
duce below are expressed in terms of Expr. Expressions are generically
denoted by the symbol E. Whenever needed, we shall define subfamilies
Expr′ ⊂ Expr. This mechanism will be useful when we need to make the
mathematical syntax of special families of expressions precise.

Expressions over ports. In particular, we shall distinguish Exprpure, the
family of “expressions over ports of type” pure (carrying no value) which
involve the special operator “present” and the three combinators ∨, ∧, �:

“present′′(p) is true iff p occurs
p1 ∨ p2 occurs iff p1 occurs or p2 occurs
p1 ∧ p2 occurs iff p1 occurs and p2 occurs
p1 � p2 occurs iff p1 occurs but p2 does not occur (15.18)

where the expression “p occurs” means that p is given a value in the consid-
ered transition (see the last bullet in Definition 15.2).

Differential expressions. Let

Expr|Vc
⊂ Expr

be the subfamily of expressions involving only variables belonging to Vc. Let
Exprcont be the set of “differential expressions,” recursively defined as

Exprcont ⊇ Expr|Vc

∀E ∈ Exprcont ⇒ d
dt

(E) ∈ Exprcont (15.19)

where d
dt (E) denotes the time derivative dE

dt of the continuous evolution of the
valuation of E. Thus, expressions such as E ∈ C, where E ∈ Exprcont and C
is a subset of Dc, specify “differential inclusions” [2]. Continuous evolutions
defined in Equation 15.6 are specified with the following syntax:

E ∈ C where E ∈ Exprcont and C ⊆ Dc

For E ∈ Exprcont, let Exit (E) be the left limit of the valuation of E at the maxi-
mal instant t of its domain, as shown in (Equation 15.7).

15.5.2 Invariants

An “invariant” is the association to a location of a pair (inv, flow) (see Defi-
nition 15.2). Invariants are generically denoted by symbol ι (the greek letter
“iota”). Invariant inv is expressed by means ot expressions, whereas invari-
ant “flow” uses differential expressions.
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15.5.3 Mathematical Syntax for Transition Relation trans

Referring to the last bullet of Definition 15.2, the switch labeling function
trans is specified as a pair (γ, α) of a guard γ and an action α so that

(s, λ, s′) ∈ trans

iff
(s, λ) |= γ (the guard) ∧ s′ ∈ α(s, λ) (the action)

The pair (γ, α) must be such that

dom(α) ⊇
{

(s, λ) ∈ S
∣∣∣ (s, λ) |= γ

}
,

where S, guards γ, and actions α, are defined next.

Guards. Guards consist of a predicate over (previous) states and a set of
triggering events on ports. We group the two by introducing the notion
of “extended states,” which consist of states augmented with valuations of
ports. Formally (see Definition 15.2):

S =def DV � Λ

A “guard” is a predicate over extended states:

γ : S → {F, T}
We say that an extended state (s, l) satisfies γ, written (s, l) |= γ, if
γ(s) = T. Guards can be defined as boolean-valued expressions involving
(unprimed) state variables and ports. Expressions over ports introduced in
Equation 15.18 are important for guards, in order to be able to refer to the
presence/absence of certain ports in a given transition.

Actions. An “action” is a partial nondeterministic function over extended
states:

α : S ⇀ ℘(S′)

where ℘ denotes power set. Actions assign values to primed variables, non-
deterministically. It is allowed for actions to be nondeterministic in order to
support partial designs.

Whereas guards generally need to use Exprpure over ports, this is not
needed for actions. Thus, the action language can be “classical,” in that it
does not need to involve Exprpure over ports, that is, the presence/absence of
selected ports in defining the considered action. Specifying this is the role of
the guard, whereas the action that follows can be restricted to refer only to
values carried by ports that are known to be present in the considered transi-
tion. Whenever needed, auxiliary ports of the form p = p1 ∨ p2 or p′ = p1 � p2
can be introduced for that purpose, when defining the guard.
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15.5.4 Products in Terms of Guards and Actions

We return now to our formalism of ESM, where products are naturally
defined. The above mathematical syntax for HRC state machines induces a
corresponding mathematical syntax for ESMs. Accordingly, the product of
two ESMs E = E1 × E2 is refined as follows:

invariants: ι = ι1 ∧ ι2

guards: γ = γ1 ∧ γ2

actions: α = proj−1
W,W1

(α1) ∩ proj−1
W,W2

(α2) (15.20)

This formula has several interesting special cases:

• If γi, i = 1, 2 involves only ports of type “pure,” then γ1 ∧ γ2 in Equa-
tion 15.20 expresses that the two ESMs must synchronize on their
shared ports.

• If ιi, i = 1, 2 involves only flows, then ι1 ∧ ι2 in Equation 15.20 denotes
the system consisting of the continuous evolutions for the two ESMs.

• If γi, i = 1, 2 involves only ports x, y, z, where y is shared, and has the
form

γ1 : y = f (x)

γ2 : z = g(y)

then γ1 ∧ γ2 in Equation 15.20 denotes the conjunction of y = f (x) and
z = g(y). This case captures the composition mechanism of dataflow
formalisms; thus the composition mechanism of dataflow formalisms
is supported by guards, not by actions. Note that the dependency of z
on x through y is immediate, that is, involves no logical delay.

• If γi, i = 1, 2 has the form

γ1 : y = f (x)

γ2 : z = g(vy)

where y is a port and vy is a state variable storing the value of y at
previous transition

α2 : v′
y : = y

then γ1 ∧ γ2 introduces a “logical delay” in the composition of the two
systems.

Thus, we see here a simple syntactic condition to ensure the existence of a
logical delay from input ports to output ports while composing two ESMs.



Nicolescu/Model-Based Design for Embedded Systems 67842_C015 Finals Page 507 2009-10-2

Multi-Viewpoint State Machines 507

15.6 Categories as Specialization of HRC State Machines

We now specialize our model of HRC state machine into several categories
of assertions, or “viewpoints,” generically denoted by the symbol Γ . This is
achieved by

1. Restricting the subset of ports and variables that characterize a category;
formally, we define subsets PΓ ⊆ P and VΓ ⊆ V .

2. Specializing how the two transition relations ρ and δ restrict to these
ports and variables.

We do not need to define the synchronization of different assertions/view-
points, as this is just a particular case of product of HRC state machine. In
fact, our HRC state machine model has built-in cross-category heterogene-
ity. In the next sections, we define basic categories considered within HRC.

Semantic atoms. For categories other than “discrete,” we also provide
the “semantic atoms,” that is, the minimal set of building blocks that are
sufficient for building any model belonging to the considered viewpoint.
Semantic atoms must be combined with a suitable model that belongs to the
discrete viewpoint. They will be defined in terms of the mathematical syntax
of Section 15.5. (The paragraphs on atoms can be skipped for a first reading.)

15.6.1 Discrete Functional Category

In a pure discrete HRC state machines the continuous dynamics is trivial.
Allowed ports and variables for this category are

PΓ = P
VΓ = Vd

flow = Triv

Since Vd = ∅, continuous evolutions ϕ : R+ ⇀ ∅ → ∅ are all trivial: They just
let time progress until their duration tϕ has elapsed and perform nothing
else. We call Triv the set of all trivial continuous evolutions—note that these
are entirely parameterized by their duration. Composing with Triv has no
effect for continuous evolutions.

15.6.2 Timed Category

In a timed viewpoint, only clocks are considered in combination with enu-
merated state variables for the discrete part:
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PΓ = P
VΓ = V

Sd : finite set

∀� ∈ L, ϕ |= flow(�) ⇒ dϕ

dt
≡ 1 (corresponds to the clocks)

Semantic atoms. Atoms for timed systems are simply “timers” with their
activation guard. Thus timers are HRC state machines having two variables:
the clock c (a continuous variable) and a trigger bc, a discrete variable of
boolean type. In addition, a continuous guard γc is provided as a constraint
of the form c ∈ C, where C is some subset of the positive real line (typically,
c ≤ cmax, for some threshold cmax). Clock c is active whenever γc ∧ [bc = T].

A timed system will be obtained by composing clocks with a discrete
HRC state machine providing the bc’s as outputs, and taking the exit values
of the clocks as inputs. The use of this category in expressing contracts is
illustrated by the following example.

Example 15.2 (Timing Pattern, Figure 15.5) Consider the timing pattern in
Figure 15.5a. It aims at specifying a timed communication medium. Its intended
(informal) meaning is that, whenever the delay between the two events sb and tb
is less than τb, then it is guaranteed that the delay between the two events sa and
ta is less than τa. Figure 15.5b shows two assertions: A, and ¬G. The pair (A, G)

constitutes contract C. Ports of C are sa, sb, tb, ta, e. Among these ports, sa and tb
are uncontrollable. The two clocks ha and hb are local variables of the contract; they

[hb > τb]tb

[hb ≤ τb]tbsb/hb := 0

sa/ha := 0

sa/ha := 0

sa

ta

sb
sa

tbta

sa

a b
ta/e

A

G

≤τa ≤τb

sb    ta    tb

[ha ≤ τa](ta    e)

(a)

(b)

[ha > τa](ta   e)

sa    ta    tb sa   sb   ta
sa   sb     tb

FIGURE 15.5
Assumption/promise. (a) Represented informally as a timing pattern. (b)
Represented as the contract C = (A, G) (the black circle is an accepting state).
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satisfy the dynamics dh
dt = 1. Assertion A emits e whenever the desired pattern is

completed with the due timing constraint on the pair sb, tb. Assertion G ensures
that, whenever e is received, the timing constraint on the pair sa, ta is satisfied. This
contract is not in canonical form. To make it in canonical form, simply replace ¬G
by the product A × ¬G.

15.6.3 Hybrid Category

The hybrid category simply corresponds to the general case of HRC state
machines.

Semantic atoms. Atoms for hybrid systems are “differential inclusions”
with their guard. Differential inclusions are HRC State Machines having two
sets of variables: a set X = {X1, . . . , Xn} of continuous variables and the trig-
ger bX, a discrete variable of boolean type. In addition, a continuous guard
γX is provided as a constraint of the form expc(X1, . . . , Xn) ∈ C, where expc
is some differential expression with values in R

p and C is some subset of R
p.

The differential inclusion is active whenever γX ∧ bX holds.
A hybrid system is obtained by composing clocks with a discrete HRC

state machine providing the bX’s as outputs, and taking the exit values of the
differential inclusions as inputs. Figure 15.6 gives such a decomposition for a
variant of the electric circuit presented in Figure 15.4. The switch is modeled
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j i
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j = 0

R'

j = 0
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υ < 1
j = υ/R'
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υ ≥ 1

υ ≥ 1

υ
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dυ/dt =

i =

i =
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i
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b b–

u – υ – Rj

u – υ – Rj

(u – υ )/R

(u –υ)/R

FIGURE 15.6
Use of clocked hybrid atoms. Top-left: Electric circuit. Top-right: Modeling
of the circuit as a composition of ESMs. Bottom: Composite state machine
with clocks to control hybrid atoms.



Nicolescu/Model-Based Design for Embedded Systems 67842_C015 Finals Page 510 2009-10-2

510 Model-Based Design for Embedded Systems

with three hybrid atoms: one for each state of the switch (opened and closed)
and one for controlling the two former atoms. Consider the hybrid atom
j = v/R′. When clock b is true, variable j is controlled by this atom, otherwise
it is not constrained by this atom.

15.6.4 Safety or Probabilistic Category

Probabilistic ESMs specify what is considered random in a given ESM. Such
a framework is useful when dealing with reliability models in which reliabil-
ity properties interact with functional properties. For example, the risk for a
component to fail may become zero in certain operating modes. In this cate-
gory we provide means to specify such systems in a flexible yet simple way.
More precisely, we assume that randomness will apply only to a specified
subset p of ports. To be consistent with our approach, p must consist of ports
that make the considered ESM receptive. The idea is that the environment
will be the source of randomness for these ports. An element of the safety
category thus consists of the following:

• An HRC state machine H with set of ports P.
• A subset p ⊆ P of “probabilistic ports,” such that H is p-receptive. See

Section 15.3.2 for the definition of receptiveness.
• For each p ∈ p, an “activation port” ap ∈ P of pure type. Each event

received on port ap triggers the emission of an event on port p with a
value drawn at random from some distribution μp. The different ran-
dom trials are independent between different probabilistic ports.

Probabilistic ports are categorized into “time-related” and “value-related.”
If port p is time-related, then μp is a distribution on R+ or N+ and the value
emitted by p is interpreted as a timing delay (e.g., for use in modeling the
occurrence of failures). The probabilistic semantics is straightforward. Since
H is p-receptive

1. One can draw at random the entire random sequence for each proba-
bilistic port p (it need not be an independent sequence, it can be Markov,
or even general).

2. These random sequences are stored for feeding the probabilistic ports
of H.

3. Each probabilistic sequence of data is then offered to H when activation
port ap requests these.

Comments. Note that this is still compatible with nondeterminism. And
other ways of modeling failure generation can be considered. For some appli-
cations, failures can be state-dependent. If there are only finite dependen-
cies, then just provide one random source per different possible failure, and
select the right one in a state-dependent way. If correlation between failures
must be covered, this can be generally achieved by generating appropriate
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joint distributions by transforming joint distributions for independent ran-
dom variables. Of course, all these tricks have a cost, and it will be the role
of the use cases to check feasibility of this simple and pragmatic approach.

Semantic atoms. Semantic atoms for the safety category consist of an HRC
state machine Hp having one probabilistic port p, the associated activation
port ap, associated distribution μp, and no variable.

Composing probabilistic ESMs. For i = 1, 2, let Pi = (Hi, Pi, pi, (μi
p)p∈pi) be

two probabilistic ESMs. Their parallel composition P1 ‖ P2 is defined only if

p1 and p2 are two disjoint sets of uncontrolled ports in H1 ‖ H2. (15.21)

Then

P1 ‖ P2 = (H, P, p, (μp)p∈p) where

⎧⎪⎨
⎪⎩

H = H1 ‖ H2

p = p1 � p2

μp = μi
p, where i is such that p ∈ pi

Comments regarding Condition 15.21 and a technique of wrappers. The
reason for Condition 15.21 is to keep composition simple for probabilistic
systems. If this condition does not hold, then indirect coupling between the
probabilities may occur, due to constraints resulting from taking the product
H1 ‖ H2. Condition 15.21 allows us to capture failure models, as well as
random timing models for input signals.

The consequences of Condition 15.21 regarding compositionality are,
however, nontrivial, as the following example shows. Consider a situation
where we have a component having a port x which is either a source of fail-
ure, or is subject to failure propagation from another component. In the first
case, the model of this component should look like P = (H, P, p, μ), where
p = {x} and port x is uncontrolled. The second case, on the other hand, may
be obtained by composing P with another ESM in which x is an output and
therefore controlled. This is ruled out by our Condition 15.21, however. Thus,
it seems that this definition prevents us from capturing the above natural
situation.

However, a simple mechanism of wrappers solves the problem as
explained in the following text. Isolate the nonprobabilistic part H of our
probabilistic ESM P = (H, p, μ). Next, wrap H with the following small prob-
abilistic ESM Px, which has one controlled port x and three uncontrolled
ports: xsource, xherit, and an additional port c taking values in the set {source,
herit}. The only probabilistic port of Px is xsource, we equip it with the orig-
inal probability distribution μ. There is no assumption for ESM Px, and its
guarantee is the following assertion

E =def x = xsource if c = source else x = xherit if c = herit,

which specifies a selector. Wrapping our original ESM in this way prepares
it for the desired parallel composition in a valid way.
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x
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xherit

c

C =
(C, p, P)

Cx

x

x

C

FIGURE 15.7
Illustrating the wrapper mechanism.

This is illustrated in Figure 15.7. In Figure 15.7, thick triangles denote
probabilistic ports. The incorrect composition is shown at the top; it gives
rise to a mismatch between thick and thin triangles. The corrected ver-
sion, with its wrapper Px, is shown at the bottom. Probabilistic ESM Px has
one probabilistic port xsource with probability μ, and one uncontrolled port
xherit; uncontrolled boolean port c selects which input is propagated to the
wrapped ESM H. The design can be prepared for composition by this mech-
anism of wrapping. Wrapping must be performed manually, however.

15.6.5 Illustrating Multi-Viewpoint Composition

Our approach aims at supporting component-based development of hetero-
geneous embedded systems with multiple viewpoints, both functional and
nonfunctional. The following simple example illustrates this for the case of
functional, timed, and safety viewpoints. The overall system architecture is
shown on Figure 15.8. It consists of a simple controller that can let the under-
lying plant to “start,” “stop,” or “work” (signals r, s, and w). The controller
is subject to “failure” f of fail/stop type. The underlying plant has limited
capacity and thus the controller should not accumulate in excess w mes-
sages during a certain period. This is ensured by the supervisor. The super-
visor monitors the flow of w’s. When they get too frequent, an “overloaded”
message o is sent to the controller, which reduces the controller’s pace. When
appropriate, the human operator can decide to switch the controller back to

Supervisor Controller

f
r
s
w

o
c

FIGURE 15.8
The overall system architecture.
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its nominal mode, by sending the “cleaned” message c to the pair controller/
supervisor.

This system involves three viewpoints: functional, quality of service
(QoS) of timed nature, and safety. In designing the system, the designer
may follow three different methodologies. He she may consider each of the
two components with its three viewpoints, implement each of them and then
compose the result. Alternatively, he she may perform a first design by ignor-
ing the safety viewpoint. The safety aspect is then added in a second stage.
Finally, he she may consider all contracts for all components in a flat manner.
The semantics of our framework has been designed to yield consistent results
when following these three methods. For more details on this aspect, we refer
the interested reader to [5].

The different contracts. Figure 15.9 depicts the set of contracts associated to
the controller. For each contract, we show its assumption (top) and promise

Safety
viewpoint

QoS
viewpoint

Functional
viewpoint

Trivial assumption

f

f

f

Idle Working w
r

s

c

o [h ≥ τd]w/h := 0[h ≤ τn]w/h := 0

FIGURE 15.9
The three contracts Cfunct, CQoS, and Csafety specifying the three viewpoints
of the controller. The assumption is put on top of the promise and both are
separated by the implication symbol ⇓ .
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(bottom). The third contract has trivial, empty assumption. Assumptions are
specified as observers, meaning that the corresponding diagrams define the
negation of these assumptions. In these diagrams, the circles filled in black
denote accepting states.

The first contract Cfunct describes the functional aspect under the no fail-
ure assumption: The controller is activated by commands r (“run”) and s
(“stop”), and it can let the controlled system (not shown) work, by perform-
ing action w. This contract holds in absence of a failure, as shown by its
assumption.

Contract CQoS indicates that, under the no failure assumption, there exist
two modes: nominal and degraded. Event o (for “getting overloaded”) is not
controlled by this component; in turn, when in overloaded mode, the human
operator (not shown) can decide to perform “cleaning,” corresponding to
input event c to the system. This contract holds in absence of a failure, as
shown by its assumption. Contract CQoS relates to timing. When in nomi-
nal mode, the controller performs its task (whose termination is abstracted
with the action w) in at most τn milliseconds. When in degraded mode, the
controller performs its task in at least τd milliseconds, with τd > τn.

QoS supervisor

o w

wx w w w wo

Nominal Nominal

Time

Degraded

c

[x ≥ 0]w/x := x – ξ

c/x := 0

x = 1

[x < 0]w, o

Trivial assumption

ξ

FIGURE 15.10
Contract Cs of the supervisor and its behavior.
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Finally, contract Csafety specifies the safety aspect, which under no
assumption states that a fault can occur at any time.

Figure 15.10 depicts the QoS contract for the supervisor in charge of
avoiding system collapse by turning it to degraded mode. The assumption is
trivial since the supervisor is not subject to failure. The promise is specified
in terms of a hybrid automaton of the timed category. This hybrid automa-
ton uses a timer x bound to physical time, thus satisfying the differential
equation ẋ = 1 (x increases with constant speed 1). The behavior of this timer
is depicted on the second diagram. When action w occurs too frequently in
the long range, timer x starts decreasing and eventually reaches zero, which
causes the emission of message o and switches the mode to “overloaded,”
where latency is at least τd. At some point, the cleaning message c is input
by the operator, which resets the timer to 0 and brings the system back to its
nominal mode.

15.7 Conclusion

We have briefly presented a framework for multiple viewpoint contracts.
This framework is supported by the HRC metamodel, for which we have pre-
sented an underlying mathematical model of machine. We have emphasized
how to support the combination of different viewpoints and have provided
a simple and elegant notion of parallel composition.

In order to support partial designs, we have favored a constrained, non-
functional, style for our model. Also, we have considered that our systems
are open, that is, are subject to further combination with other, yet to be
defined, subsystems. Our mathematical model is stratified in that it is pro-
gressively refined by detailing more and more its mathematical objects—
from abstract transitions to combinations of guards and assignments.

One important feature of this model is that it has two equally important
(and equivalent) versions. In the first version, states are snapshots whereas
transitions are “thick”—transitions support continuous progress and invari-
ants. For this version, parallel composition is by intersection, which is par-
ticularly simple and elegant. In the second version, transitions are snapshots
whereas states are “thick”—states support continuous progress and invari-
ants. This second version conforms to region-based models of systems, which
are preferred by model checking tools. We have shown how the two ver-
sions can be intertranslated. Since the notions of state and transition are in
fact interchanged between the two versions, it was essential not to constrain
the way systems can interact. We have thus chosen to support both common
state variables and common ports as vehicles for interaction.

Finally, we have characterized “categories,” that is, subclasses of sys-
tems focusing on a particular aspect or viewpoint. One particular category
required specific attention in dealing with parallel composition, namely, the
probabilistic one.
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The resulting mathematical model is the basis for a precise behavioral
semantics for the HRC metamodel and provides a precise semantic for com-
ponent composition, an often neglected issue in the design of frameworks for
component-based design.
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