
Multiple Viewpoint Contract-Based Specification and
Design�

Albert Benveniste1, Benoı̂t Caillaud1, Alberto Ferrari2, Leonardo Mangeruca2,
Roberto Passerone2,3, and Christos Sofronis2

1 IRISA / INRIA, Rennes, France
{albert.benveniste,benoit.caillaud}@irisa.fr

2 PARADES GEIE, Rome, Italy
{alberto.ferrari,leonardo,rpasserone,
christos.sofronis}@parades.rm.cnr.it

3 University of Trento, Trento, Italy
roberto.passerone@unitn.it

Abstract. We present the mathematical foundations and the design methodology
of the contract-based model developed in the framework of the SPEEDS project.
SPEEDS aims at developing methods and tools to support “speculative design”,
a design methodology in which distributed designers develop different aspects of
the overall system, in a concurrent but controlled way. Our generic mathemat-
ical model of contract supports this style of development. This is achieved by
focusing on behaviors, by supporting the notion of “rich component” where di-
verse (functional and non-functional) aspects of the system can be considered and
combined, by representing rich components via their set of associated contracts,
and by formalizing the whole process of component composition.

1 Introduction

Several industrial sectors involving complex embedded systems design have recently
experienced drastic moves in their organization—aerospace and automotive being typ-
ical examples. Initially organized around large, vertically integrated companies sup-
porting most of the design in house, these sectors were restructured in the 80’s due to
the emergence of sizeable competitive suppliers. OEMs performed system design and
integration by importing entire subsystems from suppliers. This, however, shifted a sig-
nificant portion of the value to the suppliers, and eventually contributed to late errors
that caused delays and excessive additional cost during the system integration phase.

In the last decade, these industrial sectors went through a profound reorganization
in an attempt by OEMs to recover value from the supply chain, by focusing on those
parts of the design at the core of their competitive advantage. The rest of the system
was instead centered around standard platforms that could be developed and shared by
otherwise competitors. Examples of this trend are AUTOSAR in the automotive indus-
try [1], and Integrated Modular Avionics (IMA) in aerospace [2]. This new organization

� This research has been developed in the framework of the European IP-SPEEDS project num-
ber 033471.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 200–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multiple Viewpoint Contract-Based Specification and Design 201

requires extensive virtual prototyping and design space exploration, where component
or subsystem specification and integration occur at different phases of the design, in-
cluding at the early ones [3].

Component based development has emerged as the technology of choice to address
the challenges that result from this paradigm shift. In the particular context of (safety
critical) embedded systems with complex OEM/supplier chains, the following distin-
guishing features must be addressed. First, the need for high quality, zero defect, soft-
ware systems calls for techniques in which component specification and integration is
supported by clean mathematics that encompass both static and dynamic semantics—
this means that the behavior of components and their composition, and not just their port
and type interface, must be mathematically defined. Second, system design includes
various aspects—functional, timeliness, safety and fault tolerance, etc.—involving dif-
ferent teams with different skills using heterogeneous techniques and tools. Third, since
the structure of the supply chain is highly distributed, a precise separation of respon-
sibilities between its different actors must be ensured. This is addressed by relying on
contracts. Following [4] a contract is a component model that sets forth the assumptions
under which the component may be used by its environment, and the corresponding
promises that are guaranteed under such correct use.

The semantic foundations that we present in this paper are designed to support this
methodology by addressing the above three issues. At its basis, the model is a language-
based abstraction where composition is by intersection. This basic model can then be
instantiated to cover functional, timeliness, safety, and dependability requirements per-
formed across all system design levels. No particular model of computation and com-
munication is enforced, and continuous time dynamics such as those needed in physical
system modeling is supported as well. In particular, executable models such as state
transition systems and hybrid automata can be used for the description of the behaviors.
On top of the basic model, we build the notion of a contract, which is central to our
methodology, by distinguishing between assumptions and promises. This paper focuses
on developing a generic compositional theory of contracts, providing relations of con-
tract satisfaction and refinement called dominance, and the derivation of operators for
the correct construction of complete systems.

Our key contribution is the handling of multiple viewpoints. We observe that combin-
ing contracts for different components and combining contracts for different viewpoints
attached to the same component requires different operators. Thus, in addition to tradi-
tional parallel composition, and to enable formal multi-viewpoint analysis, our model
includes boolean meet and join operators that compute conjunction and disjunction of
contracts. To be able to blend both types of operations in a flexible way, we introduce a
new operator that combines composition and conjunction to compute the least specific
contract that satisfies a set of specifications, while at the same time taking their inter-
action into account. The operators are complemented by a number of relations between
contracts and their implementations. Of particular interest are the notion of satisfaction
between an implementation and its contract, and relations of compatibility and consis-
tency between contracts. Specifications are also introduced to model requirements or
obligations that must be checked throughout the design process. Our second contribu-
tion consists in organizing these relations in a design and analysis methodology that

202 A. Benveniste et al.

spans a wide range of levels of abstraction, from the functional definition to its final
hardware implementation.

The rest of paper is organized as follows. We first review and discuss previous work
related to the concept of contract in the context of our contribution in Section 2. We then
introduce our model by first motivating our choices, and then by defining formally the
notions of component, contract, their implementations and specification in Section 3.
In addition, in the same section, we introduce and discuss a number of operators and
relations that support the incremental construction and verification of multi-viewpoint
systems. After that, we discuss the design methodology in Section 4. Finally, Section 5
presents an illustrative example of the use of the model.

2 Related Work

The notion of contract has been applied for the first time by Meyer in the context of
the programming language Eiffel [5]. In his work, Meyer uses preconditions and post-
conditions as state predicates for the methods of a class, and invariants for the class
itself. Preconditions correspond to the assumptions under which the method operates,
while postconditions express the promises at method termination, provided that the as-
sumptions are satisfied. Invariants must be true at all states of the class regardless of
any assumption. The notion of class inheritance, in this case, is used as a refinement,
or subtyping, relation. To guarantee safe substitutability, a subclass is only allowed to
weaken assumptions and to strengthen promises and invariants.

Similar ideas were already present in seminal work by Dijkstra [6] and Lamport [7]
on weakest preconditions and predicate transformers for sequential and concurrent pro-
grams, and in more recent work by Back and von Wright, who introduce contracts [8]
in the refinement calculus [9]. In this formalism, processes are described with guarded
commands operating on shared variables. Contracts are composed of assertions (higher-
order state predicates) and state transformers. This formalism is best suited to reason
about discrete, untimed process behavior.

Dill presents an asynchronous model based on sets of sequences and parallel com-
position (trace structures) [10]. Behaviors (traces) can be either accepted as successes,
or rejected as failures. The failures, which are still possible behaviors of the system,
correspond to unacceptable inputs from the environment, and are therefore the comple-
ment of the assumptions. Safe substitutability is expressed as trace containment between
the successes and failures of the specification and the implementation. The conditions
obtained by Dill are equivalent to requiring that the implementation weaken the as-
sumptions of the specification while strengthening the promises. Wolf later extended
the same technique to a discrete synchronous model [11]. More recently, De Alfaro
and Henzinger have proposed Interface Automata which are similar to synchronous
trace structures, where failures are implicitly all the traces that are not accepted by
an automaton representing the component [12]. Composition is defined on automata,
rather than on traces, and requires a procedure to restrict the state space that is equiva-
lent to the process called autofailure manifestation of Dill and Wolf. The authors have
also extended the approach to other kinds of behaviors, including resources and asyn-
chronous behaviors [13,14]. A more general approach along the lines proposed by Dill

Multiple Viewpoint Contract-Based Specification and Design 203

and Wolf is the work by Negulescu with Process Spaces [15], and by Passerone with
Agent Algebra [16], both of which extend the algebraic approach to generic behaviors
introduced by Burch [17]. In both cases, the exact form of the behavior is abstracted,
and only the properties of composition are used to derive general results that apply to
both asynchronous and synchronous models. An interesting aspect of Process Spaces
is the identification of several derived algebraic operators. In contrast, Agent Algebra
defines the exact relation between concepts such as parallel composition, refinement
and compatibility in the model.

Our notion of contract supports speculative design in which distributed teams de-
velop partial designs concurrently and synchronize by relying on the notions of rich
component [4] and associated contracts. We define assumptions and promises in terms
of behaviors, and use parallel composition as the main operator for decomposing a de-
sign. This choice is justified by the reactive nature of embedded software, and by the
increasing use of component models that support not only structured concurrency, ca-
pable of handling timed and other non-functional properties, but also heterogeneous
synchronization and communication mechanisms. Contracts in [8] are of a very dif-
ferent nature, since there is no clear indication of the role (assumption or promise) a
state predicate or a state transformer may play. We developed our theory on the basis
of assertions, i.e., languages of traces or runs (not to be confused with assertions in [8],
which are state predicates).

Our contracts are intended to be abstract models of a component, rather than imple-
mentations, which, in our context, may equivalently be done in hardware or software.
Similarly to Process Spaces and Agent Algebra, we develop our theory on the basis of
languages of generic “runs”. However, to attain the generality of a metamodel, and to
cover non-functional aspects of the design, we also develop a concrete model enriched
with real-time information that achieves the expressive power of hybrid systems. Be-
haviors are decomposed into assumptions and promises, as in Process Spaces, a repre-
sentation that is more intuitive than, albeit equivalent to, the one based on the successes
and failures of asynchronous trace structures. Unlike Process Spaces, however, we ex-
plicitly consider inputs and outputs, which we generalize to the concept of controlled
and uncontrolled signals. This distinction is essential in our framework to determine the
exact role and responsibilities of users and suppliers of components. This is concretized
in our framework by a notion of compatibility which depends critically on the particular
partition of the signals into inputs and outputs. We also extend the use of receptiveness
of asynchronous trace structures, which is absent in Process Spaces, to define formally
the condition of compatibility of components for open systems.

Our refinement relation between contracts, which we call dominance to distinguish it
from refinement between implementations of the contracts, follows the usual scheme of
weakening the assumption and strengthening the guarantees. The order induces boolean
operators of conjunction and disjunction, which resembles those of asynchronous trace
structures and Process Spaces. To address mutliple viewpoints for multiple components,
we define a new fusion operator that combines the operation of composition and con-
junction for a set of contracts. This operator is introduced to make it easier for the user to
express the interaction between contracts related to different viewpoints of a component.

204 A. Benveniste et al.

The model that we present in this paper is based on execution traces, and is there-
fore inherently limited to representing linear time properties. The branching structure
of a process whose semantics is expressed in our model is thus abstracted, and the
exact state in which non-deterministic choices are taken is lost. Despite this, the equiv-
alence relation that is induced by our notion of dominance between contracts is more
distinguishing than the traditional trace containment used when executions are not rep-
resented as pairs (assumptions, promises). This was already observed by Dill, with the
classic example of the vending machine [10], see also Brookes et al. on refusal sets [18].
There, every accepted sequence of actions is complemented by the set of possible re-
fusals, i.e., by the set of actions that may not be accepted after executing that particular
sequence. Equivalence is then defined as equality of sequences with their refusal sets.
Under these definitions, it is shown that the resulting equivalence is stronger than trace
equivalence (equality of trace sets), but weaker than observation equivalence [19,20].
A precise characterization of the relationships with our model, in particular with regard
to the notion of composition, is deferred to future work.

3 Model Overview

In the SPEEDS project, a major emphasis has been placed on the development of
a model that supports concurrent system development in the framework of complex
OEM-supplier chains. This implies the ability to support abstraction mechanisms and
to work with multiple viewpoints that are able to express both functional (discrete and
continuous evolutions) and non-functional aspects of a design. In particular, the model
should not force a specific model of computation and communication (MoCC).

The objective of this paper is to develop a theory and methodology of component
based development, for use in complex supply chains or OEM/supplier organizations.
Two broad families of approaches can be considered for this purpose:

– Building systems from library components. This is perhaps the most familiar case
of component based development. In this case, emphasis is on reuse and adaptation,
and the development process is largely in-house dominated. In this case, compo-
nents are exposed in a simplified form, called their interface, where some details
may be omitted. The interface of components is typically obtained by a mechanism
of abstraction. This ensures that, if interfaces match, then components can be safely
composed and deliver the expected service.

– Distributed systems developmentwith highly distributed OEM/supplier chains. This
second situation raises the additional and new issue of splitting and distributing re-
sponsibilities between the different actors of the OEM/supplier chain, possibly in-
volving different viewpoints. The OEM wants to define and know precisely what
a given supplier is responsible for. Since components or sub-systems interact, this
implies that each entity in the area of interaction must be precisely assigned for
responsibility to a given supplier, and must remain out of control for others.

Thus each supplier is given a design task in the following form: A goal, also called
guarantee or promise, is assigned to the supplier. This goal involves only entities the
supplier is responsible for. Other entities, which are not under the responsibility of this

Multiple Viewpoint Contract-Based Specification and Design 205

supplier, may still be subject to constraints that are thus offered to this supplier as as-
sumptions. Assumptions are under the responsibility of other actors of the OEM/supplier
chain, and can be used by this supplier for achieving its own promises. This mechanism
of assumptions and promises is structured into contracts, which form the essence of
distributed systems development involving complex OEM/supplier chains.

3.1 Components and Contracts

Our model is based on the concept of component. A component is a hierarchical entity
that represents a unit of design. Components are connected together to form a system
by sharing and agreeing on the values of certain ports and variables. A component may
include both implementations and contracts. An implementation M is an instantiation
of a component and consists of a set P of ports and variables (in the following, for sim-
plicity, we will refer only to ports) and of a set of behaviors, or runs, also denoted by M ,
which assign a history of “values” to ports. This model essentially follows the Tagged-
Signal model introduced by Lee and Sangiovanni [21], which is shown appropriate for
expressing behaviors of a wide variety of models of computation. However, unlike the
Tagged-Signal model, we do not need a predetermined form of behavior for our basic
definitions, which will remain abstract. Instead, the way sets of behaviors are repre-
sented in specific instances will define their structure. For example, an automata based
model will represent behaviors as sequences of values or events. Conversely, behaviors
in a hybrid model will consist of alternations of continuous flows and discrete jumps.
Our basic definitions will not vary, and only the way operators are implemented is af-
fected. This way, our definitions are independent of the particular model chosen for the
design. Thus, because implementations and contracts may refer to different viewpoints,
we refer to the components in our model as heterogeneous rich components (HRC).

We build the notion of a contract for a component as a pair of assertions, which ex-
press its assumptions and promises. An assertion E is a property that may or may not
be satisfied by a behavior. Thus, assertions can again be modeled as a set of behaviors
over ports, precisely as the set of behaviors that satisfy it. Note that this is unlike pre-
conditions and postconditions in program analysis, which constrain the state space of a
program at a particular point. Instead, assertions in our context are properties of entire
behaviors, and therefore talk about the dynamics of a component. An implementation
M satisfies an assertion E whenever they are defined over the same set of ports and all
the behaviors of M satisfy the assertion, i.e., when M ⊆ E.

A contract is an assertion on the behaviors of a component (the promise) subject
to certain assumptions. We therefore represent a contract C as a pair (A, G), where A
corresponds to the assumption, and G to the promise. An implementation of a com-
ponent satisfies a contract whenever it satisfies its promise, subject to the assumption.
Formally, M ∩ A ⊆ G, where M and C have the same ports. We write M |= C when
M satisfies a contract C. Satisfaction can be checked using the following equivalent
formulas, where ¬A denotes the set of all runs that are not runs of A:

M |= C ⇐⇒ M ⊆ G ∪ ¬A ⇐⇒ M ∩ (A ∩ ¬G) = ∅
There exists a unique maximal (by behavior containment) implementation satisfying a
contract C, namely MC = G ∪ ¬A. One can interpret MC as the implication A ⇒ G.

206 A. Benveniste et al.

Clearly, M |= (A, G) if and only if M |= (A, MC), if and only if M ⊆ MC . Because
of this property, we can restrict our attention to contracts of the form C = (A, MC),
which we say are in canonical form, without losing expressiveness. The operation of
computing the canonical form, i.e., replacing G with G ∪ ¬A, is well defined, since
the maximal implementation is unique, and it is idempotent. Working with canonical
forms simplifies the definition of our operators and relations, and provides a unique
representation for equivalent contracts.

In order to more easily construct contracts, it is useful to have an algebra to express
more complex contracts from simpler ones. The combination of contracts associated to
different components can be obtained through the operation of parallel composition, de-
noted with the symbol ‖. If C1 = (A1, G1) and C2 = (A2, G2) are contracts (possibly
over different sets of ports), the composite C = C1 ‖ C2 must satisfy the guaran-
tees of both, implying an operation of intersection. The situation is more subtle for
assumptions. Suppose first that the two contracts have disjoint sets of ports. Intuitively,
the assumptions of the composite should be simply the conjunction of the assumptions
of each contract, since the environment should satisfy all the assumptions. In general,
however, part of the assumptions A1 will be already satisfied by composing C1 with
C2, acting as a partial environment for C1. Therefore, G2 can contribute to relaxing the
assumptions A1. And vice-versa. Formally, this translates to the following definition.

Definition 1 (Parallel Composition). Let C1 = (A1, G1) and C2 = (A2, G2) be con-
tracts. The parallel composition C = (A, G) = C1 ‖ C2 is given by

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (1)

G = G1 ∩ G2, (2)

This definition is consistent with similar definitions in other contexts [12,10,15]. C1 and
C2 may have different ports. In that case, we must extend the behaviors to a common
set of ports before applying (1) and (2). This can be achieved by an operation of inverse
projection. Projection, or elimination, in contracts requires handling assumptions and
promises differently, in order to preserve their semantics.

Definition 2 (Elimination). For a contract C = (A, G) and a port p, the elimination
of p in C is given by

[C]p = (∀p A, ∃p G) (3)

where A and G are seen as predicates.

Elimination trivially extends to finite sets of ports, denoted by [C]P , where P is the
considered set of ports. For inverse elimination in parallel composition, the set of ports
P to be considered is the union of the ports P1 and P2 of the individual contracts.

Parallel composition can be used to construct complex contracts out of simpler ones,
and to combine contracts of different components. Despite having to be satisfied si-
multaneously, however, multiple viewpoints associated to the same component do not
generally compose by parallel composition. Take, for instance, a functional viewpoint
Cf and an orthogonal timed viewpoint Ct for a component M . Contract Cf specifies
allowed data pattern for the environment, and sets forth the corresponding behavioral

Multiple Viewpoint Contract-Based Specification and Design 207

property that can be guaranteed. For instance, if the environment alternates the values
T,F,T, . . . on port a, then the value carried by port b never exceeds a given value x.
Similarly, Ct sets timing requirements and guarantees on meeting deadlines. For exam-
ple, if the environment provides at least one data per second on port a (1ds), then the
component can issue at least one data every two seconds (.5ds) on port b. Parallel com-
position fails to capture their combination, because the combined contract must accept
environments that satisfy either the functional assumptions, or the timing assumptions,
or both. In particular, parallel composition computes assumptions that are too restric-
tive. Figure 1 illustrates this. Figure 1(a) shows the two contracts (Cf on the left, and
Ct on the right) as truth tables. Figure 1(b) shows the corresponding inverse projection.
Figure 1(d) is the parallel composition computed according to our previous definition,
while Figure 1(c) shows the desired result. We would like, that is, to compute the con-
junction � of the contracts, so that if M |= Cf �Ct, then M |= Cf and M |= Ct. This
can best be achieved by first defining a partial order on contracts, which formalizes a
notion of substitutability, or refinement.

d)

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

>x

<x

TFT !TFT

>x

<x

<1ds>1ds

<.5ds

>.5ds

<1ds>1ds

<.5ds

>.5ds

Af Gf At Gt

Af lifted Gf lifted At lifted Gt lifted

a)

b)

c)

Fig. 1. Truth tables for the synchronization of categories. The four diagrams on the top are the
truth tables of the functional category Cf and its assumption Af and promise Gf , and similarly
for the timed category Ct. Note that these two contracts are in canonical form. In the middle,
we show the same contracts lifted to the same set of variables b, db, x, dx, combining function
and timing. On the bottom, the two tables on the left are the truth tables of the greatest lower
bound Cf �Ct. For comparison, we show on the right the truth tables of the parallel composition
C1 ‖ C2, revealing that the assumption is too restrictive and not the one expected.

208 A. Benveniste et al.

Definition 3 (Dominance). We say that C = (A, G) dominates C′ = (A′, G′), written
C � C′, if and only if

A ⊇ A′, and

G ⊆ G′,

and the contracts have the same ports.

Dominance amounts to relaxing assumptions and reinforcing promises, therefore
strengthening the contract. Clearly, if M |= C and C � C′, then M |= C′.

Given the ordering of contracts, we can compute greatest lower bounds and least
upper bounds, which correspond to taking the conjunction and disjunction of contracts,
respectively.

Definition 4 (Bounds). For contracts C1 = (A1, G1) and C2 = (A2, G2) (in canoni-
cal form), we have

C1 � C2 = (A1 ∪ A2, G1 ∩ G2), (4)

C1 � C2 = (A1 ∩ A2, G1 ∪ G2). (5)

The resulting contracts are in canonical form. Conjunction of contracts amounts to tak-
ing the union of the assumptions, as required, and can therefore be used to compute the
overall contract for a component starting from the contracts related to multiple view-
points.

The operations of parallel composition and conjunction are related by the result be-
low, which allows the designer to relate in a precise way the designs obtained by fol-
lowing different implementation flows:

Theorem 1. Let C, C1 and C2 be contracts. Then,

(C � C1) ‖ (C � C2) � C � (C1 ‖ C2)

when both sides of the inequality are defined.

Proof. Let C = (A, G), C1 = (A1, G1) and C2 = (A2, G2) be contracts. Then, by (1),
(2) and (4),

C � (C1 ‖ C2) = (A ∪ (A1 ∩ A2) ∪ ¬(G1 ∩ G2), G ∩ G1 ∩ G2).

Similarly,

(C � C1) ‖ (C � C2) = ((A ∪ A1) ∩ (A ∪ A2) ∪ ¬(G ∩ G1 ∩ G2), G ∩ G1 ∩ G2).

Clearly,
¬(G1 ∩ G2) ⊆ ¬(G ∩ G1 ∩ G2).

In addition,
A ∪ (A1 ∩ A2) = (A ∪ A1) ∩ (A ∪ A2).

The result then follows by definition of dominance.

Multiple Viewpoint Contract-Based Specification and Design 209

The left hand side of the formula of Theorem 1 yields the contract obtained by first
combining viewpoints for each component and then composing the components. On
the other hand, the right hand side of the same formula yields the contract obtained by
applying the converse flow. Thus, the theorem expresses that component centric design
(left hand side) results in less flexibility in the implementations than a viewpoint centric
design (right hand side) would do.

3.2 System Obligations

Contracts are not the only way a designer would like to express system’s requirements.
System obligations are typically high level requirements that the designer would like
to hold without considering any environment nor assumption. System obligations are
useful for both overall system requirements and for overall properties of the computing
platform.

System obligations are formally defined as assertions, i.e., sets of behaviors. An im-
portant point is that system obligations should be checked on contracts as early as possi-
ble in the design flow, because this significantly reduces the analysis effort, required to
prove or disprove the obligation, and the design effort, required to revise the contract if
the obligation is not met. To formalize this idea we introduce the conformance relation:
a contract C = (A, G) conforms to a system obligation B if A ∩ G ⊆ B.

With each contract C = (A, G) we can associate an obligation, that we call the
contract obligation, defined as BC = A ∩ G. Hence, a contract conforms to a system
obligation if its contract obligation is contained in (i.e., it is stronger than) the system
obligation. There is a simple relationship between the maximal implementation MC of
contract C and the corresponding contract obligation BC , namely A ∩ MC = BC and
MC = BC ∪ ¬A. Indeed:

A ∩ MC = A ∩ (G ∪ ¬A) = A ∩ G = BC

BC ∪ ¬A = A ∩ G ∪ ¬A = A ∩ G ∪ ¬A ∩ G ∪ ¬A = G ∪ ¬A = MC

The formulation of the conformance relation in terms of the contract obligation suggests
an extension of the notion of conformance to contracts: a contract C2 conforms to a con-
tract C1 if BC2 ⊆ BC1 . This definition ensures that conformance is transitive, thereby
implying that contract C2 conforms to any system obligation which C1 conforms to.
Conformance is compositional with respect to parallel composition. This follows from
the fact that BC1||C2 = BC1 ∩ BC2 , i.e., the contract obligation associated with the
parallel composition of C1 and C2 is the intersection of their contract obligations. This
can be shown by using equations (1) and (2) of parallel composition. Contracts and
system obligations are specifications that are intended to guide the designer(s) towards
a consistent system’s implementation. Hence, in the design process we intend to relate
implementations to contracts and system obligations. In particular, implementations are
used in the contexts defined by contracts and are meant to satisfy all system obligations.
In more precise terms, given an implementation that satisfies a contract that conforms
to a system obligation, we want that such an implementation also satisfy in some sense
to the system obligation. To formalize this we say that an implementation M satisfies
a system obligation B through a contract C = (A, G) if A ∩ M ⊆ B. It can be read-
ily observed that if an implementation M satisfies a contract C = (A, G), and if C
conforms to a system obligation B, then M satisfies B through C.

210 A. Benveniste et al.

Conformance and dominance between contracts are complementary, in the sense
that one does not imply the other. Nevertheless, there is a strong relationship between
the two. Specifically, given two contracts, C1 = (A1, G1) and C2 = (A2, G2), if C2

dominates C1, then C2 conforms to C1 if and only if A2 ⊆ A1∪¬G2, as shown below:

G2 ⊆ G1 ⇒ A2 ∩ G2 ⊆ G1 and A2 ⊆ A1 ∪ ¬G2 ⇐⇒ A2 ∩ G2 ⊆ A1

Note that the condition A2 ⊆ A1 ∪¬G2 requires that if a given behavior is not allowed
by the contract C1 (i.e., is not in A1), but is possible in C2 (i.e., is in G2), then it must
be disallowed also by contract C2 (i.e., is not in A2). This condition together with the
dominance relation is called strong dominance.

3.3 The Asymmetric Role of Ports

So far we have ignored the role of ports and the corresponding splitting of responsibil-
ities between the implementation and its environment, see the discussion above. Such
a splitting of responsibilities avoids the competition between environment and imple-
mentation in setting the value of ports and variables.

Intuitively, an implementation can only provide promises on the value of the ports it
controls. On ports controlled by the environment, instead, it may only declare assump-
tions. Therefore, we will distinguish between two kinds of ports for implementations
and contracts: those that are controlled and those that are uncontrolled. Uncontrollabil-
ity can be formalized as a notion of receptiveness: for E an assertion, and P ′ ⊆ P a
subset of its ports, E is said to be P ′-receptive if and only if for all runs σ′ restricted
to ports belonging to P ′, there exists a run σ ∈ E such that σ′ and σ coincide over
P ′. In words, E accepts any history offered to the subset P ′ of its ports. This closely
resembles the classical notion of inputs and outputs in programs and HDLs; it is more
general, however, as it encompasses not only horizontal compositions within a same
layer, but also cross-layer integration such as the integration between application and
execution platform performed at deployment.

In some cases, different viewpoints associated with the same component need to
interact through some common ports. This motivates providing a scope for ports, by
partitioning them into ports that are visible (outside the underlying component) and
ports that are local (to the underlying component). The above discussion can be sum-
marized as a profile π = (vis, loc,u, c), which partitions a set of ports P into subsets
such that

P = vis � loc = {visible} � {local}
P = u � c = {uncontrolled} � {controlled}

Thus, in addition to sets of runs, components, implementations and contracts can be
characterized by a profile over a set of ports P . As before, for a contract C = (A, G) or
an implementation M , the sets A, G and M are constrained to include only runs over P .

The satisfaction and the dominance relations are easily extended to take profiles
into account, by simply insisting that the implementations and the contracts that are
put in relation have the same profile. Consequently, conjunction (the greatest lower
bound) can only be taken between contracts over the same profiles. If two contracts
have different profiles, then an operation of inverse projection is required. However, the

Multiple Viewpoint Contract-Based Specification and Design 211

resulting profiles must be consistent regarding which ports are controlled and which are
uncontrolled, and local. This restriction highlights the fact that the logical operations
that we have defined are relative to contracts that refer to the same components, and
which must therefore treat controlled and uncontrolled ports in the same way.

The situation is different for parallel composition. Here, we enforce the property that
each port should be controlled by at most one contract. Hence, parallel composition is
defined only if the sets of controlled ports of the contracts are disjoint. However, one
contract may regard one port as controlled, and the other as uncontrolled. In this case,
we are simply stating that the controlling contract determines the value of the port for
the other contract. Thus, in the composite contract, a port is controlled exactly when
it is controlled by one of the component contracts. Uncontrolled ports of the contracts
remain uncontrolled in the composite provided that they are not already controlled by
the other contract. A similar reasoning is applied to visible and local ports. In this case,
however, we distinguish between the composition of contracts for the same component,
and contracts for different components. In the first case, local ports have no effect on
the composition, since the scope of local ports extends to the entire component. In the
second case, instead, the set of local ports of one contract must be disjoint from the set
of ports of the other contract.

More formally, for contracts C1 = (π1, A1, G1) and C2 = (π2, A2, G2) for the same
underlying component, parallel composition is defined if and only if c1 ∩ c2 = ∅, and
in that case is the contract C = (π, A, G) defined by:

vis = vis1 ∪ vis2,
loc = (loc1 ∪ loc2) − (vis1 ∪ vis2),

c = c1 ∪ c2,
u = (u1 ∪ u2) − (c1 ∪ c2),

The formulas are the same for contracts of different components, where composition is
defined only if loc1 ∩ P2 = loc2 ∩ P1 = ∅.

3.4 Consistency and Compatibility

The notion of receptiveness and the distinction between controlled and uncontrolled
ports is at the basis of our relations of consistency and compatibility between contracts.
Our first requirement is that an implementations M with profile π = (vis, loc,u, c) be
u-receptive, formalizing the fact that an implementation has no control over the values
of ports set by the environment. For a contract C we say that C is

– consistent if G is u-receptive, and
– compatible if A if c-receptive.

The sets A and G are not required to be receptive. However, if G is not u-receptive,
then the promises constrain the uncontrolled ports of the contract. In particular, the
contract admits no receptive implementation. This is against our policy of separation
of responsibilities, since we stated that uncontrolled ports should remain entirely under

212 A. Benveniste et al.

the responsibility of the environment. Corresponding contracts are therefore called
inconsistent.

The situation is dual for assumptions. If A is not c-receptive, then there exists a se-
quence of values on the controlled ports that are refused by all acceptable environments.
However, by our definition of satisfaction, implementations are allowed to output such
sequence. Unreceptiveness, in this case, implies that a hypothetical environment that
wished to prevent a violation of the assumptions should actually prevent the behavior
altogether, something it cannot do since the port is controlled by the contract. There-
fore, unreceptive assumptions denote the existence of an incompatibility internal to the
contract, that cannot be avoided by any environment.

The notion of consistency and compatibility can therefore be extended to pairs of
contracts. We say that two contracts C1 and C2 are consistent or compatible whenever
their parallel composition is consistent or compatible.

Consistency and compatibility may not be preserved by Boolean operations and by
parallel composition. For example, one obtains an inconsistent contract when taking the
greatest lower bound of two contracts, one of which promises that certain behaviors will
never occur in response to a certain input, while the other promises that the remaining
behaviors will not occur in response to the same input. This is because the contracts
control the same ports, and composition of promises is by intersection. Similarly, as-
sumptions may become unreceptive as a result of taking the least upper bound. We do
not generally use least upper bounds, so we do not elaborate further on this situation.
In general, however, the conjunction of compatible contracts is still compatible, since
assumptions compose by union.

Another form of inconsistency may arise when taking parallel composition. In this
case, certain input sequences may be prevented from happening because they might
activate unstable zero-delay feedback loops. The resulting behaviors may have no rep-
resentations in our model, thus resulting in an empty promise. This problem can be
avoided by modeling the oscillating behaviors explicitly (perhaps using a special value
that denotes oscillation) [11]. We assume that this kind of inconsistency is taken care of
by the user or by the tools.

Assumptions may also become unreceptive as a result of a parallel composition even
if they are not so individually. This is because the set of controlled ports after a com-
position is strictly larger than before the composition. In particular, ports that were
uncontrolled may become controlled, because they are controlled by the other contract.
In this case, satisfying the assumptions is the responsibility of the other contract, which
acts as a partial environment. If the assumptions are not satisfied by the other contract,
then the assumptions of the composition become unreceptive. That is, a hypothetical
environment that wished to prevent a violation of the assumptions should actually pre-
vent the behavior altogether, something it cannot do since the port is controlled by one
of the contract. Therefore, unreceptive assumptions denote the existence of an internal
incompatibility within the composition.

Finally, we point out that the operation of transforming a contract to its canonical
form preserves consistency (and compatibility), since the promises G are replaced by
their most permissive version G ∪ ¬A.

Multiple Viewpoint Contract-Based Specification and Design 213

3.5 Fusion

When several viewpoints and several components are present in a system, combining
conjunction and parallel composition may not be trivial. To overcome the problem, we
define a unique operator, which combines the operations of conjunction and parallel
composition, and results in an overall contract for a system. We call this operation a
fusion of contracts. The fusion operator takes a finite set of contracts (Ci)i∈I as operand,
and a set of ports Q to be eliminated, because internal to the component. The fusion of
(Ci)i∈I with respect to Q is defined by

[[(Ci)i∈I]]Q = �J⊆I

[‖j∈JCj

]
Q

, (6)

where J ranges over the set of all subsets of I for which composition is defined and,
after the composition, no input is contained in Q. In other words, fusion considers only
compositions of contracts for which internal connections have been fully established
and discharged, and therefore talk only about the global input to output behavior. To
guarantee the maximal flexibility in fusion, the subsets J are also chosen to be maximal
with respect to containment. By doing so, we avoid considering partial compositions
which, when taking the conjunction, restrict the range of accepted environments, and
therefore strengthen the assumptions.

Certain particular cases are of interest. For instance, when Q = ∅, the fusion reduces
to the greatest lower bound: [[(Ci)i∈I]]∅ = �i∈ICi. Likewise, if for i = 1, 2,

∀Q (Ai ∪ ¬G) ⊇ ∀Q (A1 ∪ A2) (7)

then fusion reduces to the parallel composition operator: [[(Ci)i∈{1,2}]]Q = [C1 ‖ C2]Q.
Condition (7) says that the restriction to Q of each contract is a valid environment for
the restriction to Q of the other contract. This situation corresponds to two compo-
nents that interact through ports in Q, which are subsequently hidden from outside.
In practice, fusion computes the parallel composition of contracts attached to different
sub-components of a composite, whereas contracts attached to the same composite that
involve the same inputs and outputs (including their direction) fuse via the operation of
conjunction. The general case lies in between and is given by formula (6).

4 Methodology

The aforementioned relations and operations among contracts set the basis for compo-
sition and manipulation of components composed of contracts belonging to more than
one viewpoint. Moreover, we provide a methodology to orchestrate the usage of the
relations and give guidelines to the user on how to design and verify her model against
a number of requirements/constraints that follow the laws presented in the previous
sections.

We distinguish between the Design and the Analysis methodology. The former de-
fines the design steps that the user can take for the evolution of her system, while the
latter specifies the relations that should be established (or re-established) depending on
the corresponding design step.

214 A. Benveniste et al.

Fig. 2. Abstract view of the design methodology

An abstract representation of the design methodology is shown in Figure 2. Initially,
from a set of requirements, we derive a system model composed of rich components
and a (initially empty) set of relations between them. From this point, the user may take
a number of steps, perform analysis to enhance this set of relations or to perform design
space exploration. The latter is subject of future work.

We detail on the design steps later on, after we specify the different elements of the
design.

4.1 Elements of the Design

We distinguish between four categories of design elements, as defined in Section 3:
contracts, implementations, system obligations, and relations. A rule of thumb to dis-
tinguish the relations is that consistency, compatibility and dominance relations are
established between two contracts; the satisfaction relation between an implementation
and a contract; and the conformance relation between a contract and a system obliga-
tion. As part of the design methodology, we consider an organization of those elements
in three design spaces and furthermore in layers. These are: the implementation space,
the contract space and the system obligation space. Relations (since they are not syn-
tactic elements of the model) are represented as “connections” between elements of the
same or different spaces. For example, dominance “connects” two elements within the
contract space, while satisfaction “connects” one element from the contract and one
from the implementation space. Note that a relation may “connect” an element with
itself, as in the case of the compatibility relation.

Each space may be further subdivided into layers. In the context of the SPEEDS
project, only the layering of the contract space is relevant, because the main purpose
of the HRC model is to represent contracts. However, a layering of the obligation and
implementation spaces is also possible.

Multiple Viewpoint Contract-Based Specification and Design 215

Fig. 3. Organization of spaces and layers

Figure 3 shows a possible layering of the contract space in the case of automotive
applications. Here we identify three layers: 1) the functional layer, corresponding to de-
scribing the basic functional requirements and guarantees; 2) the Engine Control Unit
(ECU) layer, that sets forth the high level timing and architecture assumptions and guar-
antees; and 3) the Hardware (HW) layer, corresponding to a more detailed description
of the individual platform components. In addition, mapping an element from one layer
to an element from another will create an element that does not belong to either of the
operands’ layers. Thus, we have three extra layers for all the possible mappings, as de-
picted in Figure 4; one layer for the mapping of Function to ECU, one for the mapping
of ECU to HW and one for the mapping of all the layers.

4.2 Design Steps

A design step is an evolution of the development of the design, which can be seen
also as the evolution of the design in time. We use the elements defined in the previous
section to define the basic design steps that a user can follow during design. In principle,
a design step is defined as a tuple of source and target rich components. Moreover,
we specify a number of relations that are “required” between the elements of the rich
components participating in the step.

A design step is said to be validated if the required relations hold. This validation
is performed using high-level analysis services which are being developed within the
SPEEDS project, and include tools that can check satisfaction, dominance, compat-
ibility and consistency for a variety of models (from pure discrete to hybrid) using
both formal and semi-formal (simulation with dynamic property checking) techniques.
Moreover, we introduce the notion of valid rich component, that is a rich component
whose contract is compatible, consistent, it is satisfied by its implementation and con-
forms to its obligations.

216 A. Benveniste et al.

Fig. 4. Layers derived when mapping elements from different layers

When a design step is validated, and if the source rich components are valid, then
also the target components are valid, which means that the resulting component can be
used “safely” in place of the originating one, i.e., we can substitute without losing any
verification and validation results obtained previously.

We subdivide the design steps in two categories:

1. Design steps on single rich components. The first category contains design steps
which specify or modify only one element of a rich component, resulting in a new rich
component where the remaining elements are unchanged.

Let RC = {B, C, M} be the source and RC′ = {B′, C′, M ′} the target rich com-
ponents, where B, B′ are the system obligations, C, C′ the contracts and M, M ′ the
implementation.1 The design steps and the corresponding relations for their validation
are described below.

System obligation modification design step is when C = C′ and M = M ′, whereas
B �= B′. For the validation of this step there are two options:

– verify that B′ ⊆ B
or

– verify that C′ conforms to B ∪ ¬B′

Contract modification design step is when B = B′ and M = M ′, whereas C �= C′.
For the validation of this step there are two options:

– verify that C′ strongly dominates C
or

– verify that C′ is compatible, consistent, conforms to C and M ′ satisfies it
Implementation modification design step is when B = B′ and C = C′, whereas

M �= M ′. For the validation of this step there are two options:
– verify that M ′ refines M

or
– verify that M ′ satisfies C

The above steps are called “modifications” even though we may not have prior defi-
nition of the “modified” element, in which case, we consider the trivial element.

1 Even though a rich component may have more than one contract or system obligation, their
composition results into a unique one, and thus, without loss of generality, we consider this
assumption for the rest of the document.

Multiple Viewpoint Contract-Based Specification and Design 217

2. Design steps on multiple rich components. The second category contains those
design steps having more than one source or more than one target rich components. Let
RCn = {Bn, Cn, Mn} for n ∈ [1..κ] be κ source and RC′

m = {B′
m, C′

m, M ′
m} for

m ∈ [1..λ] be λ target rich components.

Decomposition design step: For the decomposition we have κ = 1 and λ ≥ 2.
Let RC′′ = {B′′, C′′, M ′′} be the parallel composition of all rich components
RC′

m for m ∈ [1..λ]. For the validation of this step there are two options:
– verify that C′′ strongly dominates C1

or
– verify that C′′ is compatible, consistent, conforms to C1 and M ′′ satisfies C1

Composition design step: For the composition we have κ ≥ 2 and λ = 1.
Since parallel composition preserves (strong) dominance, satisfaction and refine-
ment, no verification task is needed for integration.

Mapping design step: Mapping is a composition (fusion) of design elements from
different modeling layers and therefore we refer the reader to the discussion for
composition.

Using the design steps. The above design steps are all possible actions that can ad-
vance the system design and are the “bricks” to build the design methodology. The
design methodology that we follow uses these building blocks in a viewpoint centric
approach. This means that we should not apply any contract prior to performing decom-
position. In that way, and following Theorem 1, we retain a greater level of flexibility
for the implementations that should satisfy the decomposed components. We can see
this in Figure 5, where component RC, containing two contracts Cr and Cf, from the
real time and functional viewpoints respectively, has two possible decompositions: rich

Fig. 5. Two possible decompositions of RC

218 A. Benveniste et al.

components RC′ and RC′′. Therefore, we propose decomposition to RC′′, where the
real-time viewpoint is not applied (composed) to the decomposed components.

Note that the relations between the different elements of this decomposition should
hold according to the definition of the decomposition design step above, if we want to
have a valid design step. Thus, since we have no implementation or system obligation
in our example, the following must hold: Cf1 ‖ Cf2 � Cf.

5 Illustrative Example

Our approach aims at supporting component based development of heterogeneous em-
bedded systems with multiple viewpoints, both functional and non-functional. The
following simple example illustrates this for the case of functional, timed, and safety
viewpoints. The top level view of our system is shown in Figure 6. It consists of a sys-
tem controller that can let the underlying plant “start”, “stop”, or “work” (signals r, s,
and w). The system controller promises that the mean amount of work performed by
the plant does not exceed a maximum and that the work is not paused for too long. A
human operator may decide to reinitialize the controller by sending the “reset” message
z. The system controller, which is the part of the system under design, must conform to
the following obligations:

Protocol obligation: “work” requests can be sent only after a “start” and before
a “stop”. A “stop” must follow a “start” or a “work” request.

Longest idle time obligation: a “work” request must follow a “start” or a
previous request at most after τmax seconds.

Maximum mean work obligation: from the last operator “reset”, the amount
of “work” requests per unit of time must not be greater than 1/ξ.

Figure 7 shows the automata that specify the obligations. For this example, the notation
[g]s/a denotes a transition. It is a triple consisting of a guard g, a triggering event
s, and an action a. Action a may, in turn, assign some variables and/or emit some
output(s). The idle time and mean work obligations are specified in terms of hybrid
automata. These hybrid automata use a timer x bound to physical time, thus satisfying
the differential equation ẋ = 1 (x increases with constant speed 1).

The system controller is decomposed into several components as shown on Figure 8.
It consists of a simple controller that is responsible for sending the “start”, “stop”, and
“work” signals to the underlying plant. The controller is deployed over a computing

Human

Operator
System Controller Plantz

w

s

r

out

Fig. 6. System view

Multiple Viewpoint Contract-Based Specification and Design 219

idle working

Longest idle time obligation

Maximum mean work obligation

Protocol obligation

r

s

w

ẋ := 1

ẋ := 1

[x ≤ τmax]w/x := 0r/x := 0

z/x := 0, m := 0 [m/x ≤ 1/ξ]w/m := m + 1

Fig. 7. System obligations

computing platform

controllersupervisorz w

s

r

o

c

f

Fig. 8. The decomposition of the system controller

platform subject to “failure” f . This component guarantees that the underlying plant re-
ceives “work” requests within a maximum amount of time. The supervisor component,
instead, limits the “work” requests sent by the controller (the plant has limited capacity)
by moving the controller into a “blocked” mode. This is achieved by mimicking the to-
ken bucket mechanism used for traffic shaping in communication networks: every unit
of time, the supervisor accumulates a token for doing “work”; every request of “work”
reduces the token amount by ξ. The supervisor monitors the flow of w’s. When they get
too frequent, i.e., no token is available, an “overloaded” message o is sent to the con-
troller, stopping it from emitting further w requests. Only after an appropriate amount
of time, long enough to let a token accumulate, does the supervisor emit a clear “c”

220 A. Benveniste et al.

message to the controller to enable the emitting of additional w requests. The supervisor
resets the accumulated tokens when the human operator sends the “reset” message z.

This system involves three viewpoints: functional, Quality of Service (QoS) of timed
nature, and safety. The contracts for the different viewpoints are depicted in Figures 9–
11. For each contract, we show its assumption (top) and promise (bottom). Assumptions
are specified as observers, meaning that the corresponding diagrams define the negation

workingidle

functional
viewpoint

viewpoint
QoS

trivial assumption

[h > τn]

r

o

c

r

s

w

c

o

ḣ := 1

[h ≤ τn]w/h := 0

r/h := 0

w

⇓

⇓

Fig. 9. The two contracts Cfunct and CQoS specifying the two viewpoints of the controller. The

assumption is put on top of the promise and both are separated by the implication symbol ⇓ .

safety
viewpoint

no guarantee

f

Fig. 10. The contract Csafety specifying the contract of the computing platform

Multiple Viewpoint Contract-Based Specification and Design 221

ẋ = 1, ḣ = 1

QoS supervisor

ξ

x w w

time

z

controller is blocked

[x ≥ ξ and

z/x := 0

w

w,o

w

z/x := 0

w

ξ

w w

o c o c o c; o c c coo

c

z/c, x := 0

[x < ξ]/o

h := 0
[x ≥ ξ]w/x := x − ξ,

h < τn]/c

⇓

Fig. 11. Contract Cs of the supervisor and its behaviour

of these assumptions. In these diagrams, the circles filled in black denote not accepting
states.

Figure 9 depicts the set of contracts associated to the controller. The first contract
Cfunct describes the functional aspect under trivial assumption. The promise of the
contract CQoS indicates that there exist two modes: nominal, corresponding to normal
operation, and blocked, in which w’s are not emitted. Contract CQoS relates to timing.
This contract assumes that, if the controller is blocked, it will move to the nominal
mode (by receiving an event c) at most τn seconds after the last “work” request. If not,
the observer will move to a non accepting state. When in nominal mode, the controller
guarantees that the time interval between two successive “work” requests is at most τn

seconds. The timer h is dedicated to computing the elapsed time for both assumption
and promise.

222 A. Benveniste et al.

Contract Csafety , shown in Figure 10, is attached to the computing platform and as-
serts an assumption of no failure. The failure f is abstracted and considered as input to
the platform itself. The promise is not provided and can be thought as “any” possible
behavior (i.e., the “universe”). If a failure event arrives, then the assumption moves to a
non accepting state, meaning that nothing could be guaranteed about the provided be-
havior of the platform. This kind of contracts is useful to introduce assumptions without
altering the guarantees of the system.

Figure 11 depicts the QoS contract for the supervisor, which is in charge of avoiding
system collapse that may occur when an excessive amount of “work” is supplied to the
plant. The assumption says that no w must occur when the system is in the overloaded
state. The promise is specified in terms of a hybrid automaton. This hybrid automaton
uses two clocks x and h bound to physical time, thus satisfying the differential equation
ẋ = 1, ḣ = 1. Timer x is used to implement the token bucket mechanism, while timer
h is used to guarantee that a w request will be delayed by at most τn seconds. When
action w occurs, timer x decreases and, if w occurs too frequently, in the long range x
eventually reaches ξ, which causes the emission of message o and switches the mode
to “blocked”, where latency is at most the smallest between ξ and τn. At some point,
when x is again greater than ξ, a cleaning message c is sent to the controller to switch
to mode “nominal”. It is guaranteed that the sending of c is at most τn seconds after
the last “work” command. It is also guaranteed that, if the operator sends a reset by an
event z, then the system resets the timer value x and after ξ seconds the system turns
back to its nominal mode.

Contract conformance to the system obligations
As introduced in Section 3.2, system obligations are compositional, i.e., if a contract C1

conforms to a system obligation B1 and a contract C2 conforms to a system obligation
B2, then the parallel composition between C1 and C2 conforms to the system obliga-
tion B1 ∩ B2. This property allows us to “allocate” system obligations (see Fig. 7) to
components in order to check conformance of the corresponding contracts separately,
thereby reducing the complexity of the verification task. In order for this check to be
successful it is necessary that the system obligation’s interface be part of the allocated
component’s interface. For example, the protocol obligation relates r, s and w, that are
outputs of the controller component (see Fig.8). Hence, we can allocate the protocol
obligation to the controller for the conformance check. Similarly, the longest idle time
obligation relates r and w, so that it can also be allocated to the controller component
for the conformance check.

Conversely, the maximum mean work obligation relates z and w. Hence, this obliga-
tion can either be allocated to the supervisor, because z and w are supervisor’s inputs,
or to the parallel composition of the supervisor with the controller, because w is also a
controller’s output. In the former case, the verification task is simpler, because it does
not require the parallel composition of the supervisor and the controller. Nonetheless,
the conformance check may fail in this case because w is controlled by the controller
and not by the supervisor, so that the parallel composition might in the end be necessary
to verify conformance to the system obligation.

To illustrate how the conformance check works, we show that the controller’s con-
tract conforms to the protocol and the longest idle time obligations. Let us first consider

Multiple Viewpoint Contract-Based Specification and Design 223

workingidle

safety and functional
viewpoint

f

s

w

r

�

⇓

Fig. 12. Composed contract of the functional and safety viewpoints of the system controller

ẋ := 1

[x ≤ τmax]w/x := 0r/x := 0

c

o

r/h := 0

[h > τn]w
[x > τmax]w

¬B

[h ≤ τn]w/h := 0

A ∩ G ḣ := 1

Fig. 13. Controller’s contract obligation and negation of the corresponding system obligation

the protocol obligation. Observe that the controller’s promise (Fig. 9) is equal to the
protocol obligation. Conformance of a contract to a system obligation requires that
the contract’s promise subject to the contract’s assumption (also called the contract
obligation) is contained in the system obligation. In formulas: A ∩ G ⊆ B, where
(A, G) denotes the contract and B denotes the system obligation. Since the controller’s
promise is equal to the protocol obligation, then the controller’s contract conforms to
the protocol obligation for any assumptions. This shows that the controller’s contract
conforms to the protocol obligation even after composition with the safety viewpoint
(Figs. 10 and 12).

Let us now consider the longest idle time obligation. The conformance check of the
controller’s contract to this obligation is not as trivial as in the case of the protocol obli-
gation. To verify conformance in this case we need to compute the contract obligation
A ∩ G and check the containment relation with the longest idle time obligation. To
do so we can check that A ∩ G ∩ ¬B = ∅. The contract obligation and the negation
of the longest idle time obligation are shown in Fig. 13. To compute the negation of
the longest idle time obligation, we first complete the obligation’s specification with its
non-accepting states (not shown for clarity reasons). Since the resulting automaton is

224 A. Benveniste et al.

deterministic, its negation can be computed by exchanging accepting and non-accepting
states. If we now take the intersection of the two automata shown in Fig. 13 we obtain an
automaton that has no accepting states if we assume τn ≤ τmax, representing therefore
the empty assertion. This proves that conformance is met.

6 Conclusion

We have presented mathematical foundations for a contract-based model for embed-
ded systems design. Our generic mathematical model of contract supports “speculative
design”. This is achieved by focusing on component behavior, via compositions of con-
tracts, with which diverse (functional and non-functional) aspects of the system can
be expressed. This enabled a formalization of the whole process of component and
multiple viewpoint composition through the general mechanism of contract fusion. A
key contribution of our approach is that the incremental consideration of components
and viewpoints can be handled with flexibility — whether through a component or a
viewpoint centric methodology. The formalism and the design methodology has been
illustrated through a multi viewpoint example.

Future work includes the development of effective algorithms to handle contracts,
coping with the problems raised by complementation. Taking complements is a delicate
issue: hybrid automata are not closed under complementation; in fact, no model class is
closed under complementation beyond deterministic automata. To account for this fact,
various countermeasures can be considered.

First, the designer has the choice to specify either E or its complement ¬E (e.g., by
considering observers). However, the parallel composition of contracts requires manip-
ulating both E and its complement ¬E, which is the embarrasing case. To get compact
formulas, our theory was developed using canonical forms for contracts, systemati-
cally. Not enforcing canonical forms provides room for flexibility in the representation
of contracts, which can be used to avoid manipulating both E and ¬E at the same time.
A second idea is to redefine an assertion as a pair (E, Ē), where Ē is an approximate
complement of E, e.g., involving some abstraction. In doing so, one of the two char-
acteristic properties of complements, namely E ∩ Ē = ∅ or E ∪ Ē = �, do not hold.
However, either necessary of sufficient conditions for contract dominance can be given.
The above techniques are the subject of ongoing work and will be reported elsewhere.

Acknowledgments

The authors would like to acknowledge the entire SPEEDS team for their contribution
to the project and to the ideas presented in this paper.

References

1. Damm, W.: Embedded system development for automotive applications: trends and chal-
lenges. In: Proceedings of the 6th ACM & IEEE International conference on Embedded
software (EMSOFT 2006), Seoul, Korea, October 22–25 (2006)

Multiple Viewpoint Contract-Based Specification and Design 225

2. Butz, H.: The Airbus approach to open Integrated Modular Avionics (IMA): technology,
functions, industrial processes and future development road map. In: International Workshop
on Aircraft System Technologies, Hamburg (March 2007)

3. Sangiovanni-Vincentelli, A.: Reasoning about the trends and challenges of system level de-
sign. Proc. of the IEEE 95(3), 467–506 (2007)

4. Damm, W.: Controlling speculative design processes using rich component models. In: Fifth
International Conference on Application of Concurrency to System Design (ACSD 2005),
St. Malo, France, June 6–9, pp. 118–119 (2005)

5. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
6. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM 18(8), 453–457 (1975)
7. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Transactions on

Programming Languages and Systems 12(3), 396–428 (1990)
8. Back, R.J., von Wright, J.: Contracts, games, and refinement. Information and communica-

tion 156, 25–45 (2000)
9. Back, R.J., von Wright, J.: Refinement Calculus: A systematic Introduction. Graduate Texts

in Computer Science. Springer, Heidelberg (1998)
10. Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Cir-

cuits. ACM Distinguished Dissertations. MIT Press (1989)
11. Wolf, E.S.: Hierarchical Models of Synchronous Circuits for Formal Verification and Substi-

tution. PhD thesis, Department of Computer Science, Stanford University (October 1995)
12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth Annual

Symposium on Foundations of Software Engineering, pp. 109–120. ACM Press, New York
(2001)

13. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur,
R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

14. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: Proceedings of the 13th

Annual Symposium on Foundations of Software Engineering (FSE 2005), pp. 31–40. ACM
Press, New York (2005)

15. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877.
Springer, Heidelberg (2000)

16. Passerone, R.: Semantic Foundations for Heterogeneous Systems. PhD thesis, Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA
94720 (May 2004)

17. Burch, J., Passerone, R., Sangiovanni-Vincentelli, A.: Overcoming heterophobia: Modeling
concurrency in heterogeneous systems. In: Proceedings of the 2nd International Conference
on Application of Concurrency to System Design, Newcastle upon Tyne, UK, June 25–29
(2001)

18. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. Journal of the Association for Computing Machinery 31(3), 560–599 (1984)

19. Engelfriet, J.: Determinacy → (observation equivalence = trace equivalence). Theoretical
Computer Science 36, 21–25 (1985)

20. Brookes, S.D.: On the relationship of CCS and CSP. In: Dı́az, J. (ed.) ICALP 1983. LNCS.
vol. 154. Springer, Heidelberg (1983)

21. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of com-
putation. IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems 17(12), 1217–1229 (1998)

	Multiple Viewpoint Contract-Based Specification and Design
	Introduction
	Related Work
	Model Overview
	Components and Contracts
	System Obligations
	The Asymmetric Role of Ports
	Consistency and Compatibility
	Fusion

	Methodology
	Elements of the Design
	Design Steps

	Illustrative Example
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

