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A Low-Power Vision System With Adaptive
Background Subtraction and Image
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Event Detection
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Abstract— This paper presents a smart ultra-low power
vision system targeted to video surveillance applications. The
sensor embeds a low-level image processing technique that
autonomously detects unusual events occurring in the scene,
relying on adaptive background subtraction. The resulting binary
image is then directly segmented by an FPGA, which triggers the
higher layer of processing, transferring only aggregate feature
information. The on-board processing relieves the rest of the
vision system from expensive computation. The 104 × 104 pixels
vision chip consumes 80 µW at 30 frames/s, while segmentation
dramatically cuts down the amount of data to be transferred,
resulting in an extremely low-power system suitable for embed-
ded applications.

Index Terms— Background subtraction, segmentation,
low-power, video surveillance, autonomous.

I. INTRODUCTION

THE growing interest in smart, low-power, networked
sensors is attracting increasing attention in many fields of

application, from battery-operated surveillance and monitoring
systems in smart cities to smart human-machine interfaces in
mobile devices. In this context, vision is the richest source
of information describing our surrounding environment, and
video monitoring applications are increasingly widespread. In
order to provide immediate feedback, most video surveillance
applications employ a human observer, who monitors a num-
ber of cameras for unusual events. The problem with this
approach is that human observers cannot attentively follow
10 cameras for over 15 minutes, and lose 90% of their
concentration capability after only 20 minutes [1]. Therefore,
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the probability of reacting immediately to an event captured by
a surveillance camera network is estimated at 1 out of 1,000.

Automatic detection of unusual events from video sequences
is therefore an important issue, and is increasingly adopted in
embedded applications. However, interpreting a scene requires
data-intensive vision algorithms, which, in turn, require large
computing resources and high power. Scaling power in vision
technology, even if limited to few use cases, is a big challenge
and cannot be simply approached through the optimization
of each single component, disregarding a system-level design
strategy. Currently, commercial imagers are mainly targeted
to high-quality image reproduction, meeting the huge demand
of vision technology by the multimedia market. These sensors
continuously deliver data, which often needs to be read and
interpreted by a processor in real-time. Although this comput-
ing paradigm is very powerful and straightforward, it is not
efficient from the energy point of view. The system has to
manage a large amount of data, provided by the imager at
frame rate, which is often redundant with respect to the tasks
to be executed. This is especially true of those surveillance
applications where the scene exhibits only slow or local
changes, and the events of interest occur rarely. This turns into
an oversizing of the computing resources, which represent the
main limitation for the power scaling of a system. Under these
assumptions, the sensor and the low-level image processing
algorithm represent the most critical part of the entire system.
In the last decade, significant effort has been put into the
development of novel smart CMOS cameras embedding on-
chip features extraction and image compression with the main
goal of optimizing the computing resources and reducing the
overall power consumption [2]–[8].

In this paper, we employ a custom vision sensor [9], [10]
and develop the image interpretation system that detects anom-
alous behaviors of pixels with respect to their past history
by means of an embedded robust algorithm for dynamic
background subtraction and image segmentation. The sensor
adaptively updates its sensitivity and thresholds in order to
efficiently filter out noise and slow ambient light changes. The
output of the vision sensor is a binary image where the asserted
pixels represent a potential anomalous event. An efficient
segmentation algorithm clusters the active pixels, extracting
a set of features that characterize the scene in terms of its

1549-8328 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0742-4642
https://orcid.org/0000-0001-6315-1023


BENETTI et al.: LOW-POWER VISION SYSTEM WITH ADAPTIVE BACKGROUND SUBTRACTION 3843

overall dynamics and distribution. This results in a robust
image compression, with a significant reduction of the data
to be delivered to and processed by the downstream high-
level algorithms for scene analysis and interpretation. These
functions are typically run by an embedded processor, which
can operate in sleep mode most of the time, and potentially
activate higher resolution imagers when an unusual event is
detected. With ability to operate only when necessary, our
main contribution is a careful design at the system levels,
employing a simplified standard segmentation algorithm, that
leads to a large reduction of the power consumption of the
system, making it suitable for embedded battery-operated
surveillance applications.

The paper is organized as follows. After reviewing the
related work in Section II, Section III presents the overall
system requirements and architecture, discusses the principles
of operation and explores the details of the implementation.
Then, Section IV presents the experimental setup, and then
discusses the performance of the implemented system both in
terms of its functionality (background subtraction and image
segmentation), and in terms of the achievable data rates (worst
case and typical). Finally, Section V concludes the paper.

II. RELATED WORK

Advances in standard CMOS Active Pixel Sensors (APS)
have facilitated the development of high-performance imagers,
with reduced pixel pitch, large spatial resolution and high
miniaturization level. High dynamic-range cameras and high
frame-rate imagers certainly represent some of the most rel-
evant examples of sub-micron CMOS technology [11]–[13].
However, with the constant increase of spatial resolution, the
imager has to dispatch large amount of data at high speed to
sustain the video frame rate. Recent trends toward wireless
sensor networks necessitate an efficient way to extract visual
data from a camera meeting the limited energy budget of
the sensor node. Conventional scanned imagers are not able
to fulfill these requirements due to their poor efficiency in
the use of the signal bandwidth and the requirement for
expensive video processing on the raw pixel data. For this
reason, it is important to use sensors that collect only the
necessary information in a scene and are able to process
data in advance. In the literature, several examples of vision
sensor implementations are reported, targeted to low-power
applications [14], [15]. In this work, we employ a custom
sensor with embedded dynamic background subtraction [9],
and develop a dedicated filter and segmentation algorithm to
extract and deliver only the information required for surveil-
lance applications. In particular, we focus on the segmentation
aspect of the system, and its integration with our imager. The
development of algorithms and digital architectures for image
segmentation has been widely addressed in the literature, and
different approaches have been proposed (see, in particular,
the excellent review by He et al. [16]). Here, we are concerned
with segmentation for unusual event detection, rather than for
object recognition, and therefore opt for a simpler solution that
minimizes both hardware and energy requirements.

To further increase energy efficiency, imagers have been
implemented as array of pixels where each pixel handles its

own information and dispatches data by means of an event-
based asynchronous protocol, called address-event represen-
tation (AER) [17], [18]. This is in contrast to frame-based
processing, where all frames must be entirely processed pixel-
by-pixel, even if they do not contain any significant data. An
event-driven approach for clustering events associated with
moving objects was proposed by Litzemberger et al. [19].
While several implementation exploit desktop PCs for event-
based data processing, an interesting embedded event-based
system eDVS was used within robotic applications [20]. Such
system showed a power consumption as low as 23 mW. Never-
theless, computation on event-based sensor data may become
extensive considering the random order, either spatial and
temporal, of the high amount of events detected [21]. Hence,
one shortcoming of purely asynchronous sensors is that the
processing unit must be able to handle the peak rate of asyn-
chronous events, which can be orders of magnitude larger than
the average. This is problematic in our specific application,
especially since the random order would require maintaining
the full history of the image and entail a large number of
comparison to detect the connected components. In practice,
as our system delivers only the active blob information, which
corresponds to events in the image, the combination of the
imager and embedded data processing behaves in a way similar
to the asynchronous representation, with a better fit in terms
of memory and computational constraints.

Several methods exist to segment and find connected regions
in an image, also called blobs, and to assign them a unique
label. We can distinguish two fundamental approaches. In
raster-scan algorithms, the image is scanned in raster direc-
tion, from top to bottom and from left to right. A new label
is associated to each pixel that is not connected to other
pixels in the same row or in the row above [22]. Otherwise,
the pixel is associated to the same label of the (previous) pixel
it is connected to. When two blobs are disconnected in one
row, but “merge” in the next row, a label conflict (or label
equivalence) arises. This problem can be solved by performing
multiple forward and backward raster scans [23], propagating
equivalent labels. Methods have been developed to solve the
problem with only two scans [24], or even with only one
scan [25], by recording the required information on the fly.

Contrary to raster scan methods, in search-and-label algo-
rithms [26] the image is searched for unlabeled pixels. When
one is found, a new label is assigned to the pixel and is
propagated transitively to all neighboring pixels. This step
is repeated until all objects are labeled. While the search
algorithm might scan the image in raster direction, the label
propagation requires in general an irregular access to the
image. Contour-tracing algorithms [27] operate in a similar
fashion, but they first look for border pixels of objects,
detecting outer and inner contours, and then label the rest
of the component. Also contour-tracing algorithms read the
image in an irregular way.

Several methods have been introduced recently to improve
image recognition algorithms by refining the concept of
“object” [28] and super-pixel [29], by operating directly on
compressed video sequences [30] or by jointly segmenting
multiple images to search for common objects [31], [32].
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In this work, we favor a simpler approach oriented towards
providing sufficiently condensed data about the clusters in
the scene that can be used to determine whether to wake up
higher-level, and more energy demanding processing steps in
the context of surveillance applications. In particular, we adopt
the raster-scan algorithm for several reasons. First, the sensor
delivers the image pixel by pixel in the usual direction,
matching the raster-scan order. In addition, this algorithm
requires that we buffer only one row of the image for
processing, making it a good fit for an implementation on
a board with limited resources, and reducing the processing
latency. The low memory requirements also limit both static
and dynamic power consumption. One difficulty of the raster-
scan algorithm is the label equivalence resolution, which
involves more complex operations, especially with the label
memory. However, the particular application we are targeting
does not require perfect label equivalence resolution, because
we are not interested in getting the exact shape of objects.
Instead, in the context of surveillance and alarm triggering,
it is more important to know how large the percentage of
changing areas is, compared to the whole scene, while still
taking only larger connected objects and discarding the smaller
ones.

To achieve our goal, we implement the segmentation and
labeling procedure on an FPGA. Of particular interest, and
closer to our approach, Appiah et al. [33] demonstrate the
use of an FPGA to both model and remove the background
and label the connected components. In our work, background
subtraction is embedded directly in the analog sensor pixel
structure, resulting in extremely low power operation. For
the labeling function, we do take inspiration from [33] and
adopt a run-length encoded strategy. Our implementation,
however, is at the same time simpler, avoiding the use of
an external RAM, and integrates filtering during run-length
encoding, instead of adopting a more costly morphological
structuring element. Several other methods have been reported
in the literature using FPGAs [25], [34]–[41]. We will discuss
them in detail later in Section IV. Relevant to our work,
Han et al. [42] have proposed an FPGA implementation of
image segmentation using Support Vector Machines. While
this approach may be more flexible, owing to its learning
capabilities, the performance is not yet sufficient to work in
real time. At the same time, Zhou et al. [43] propose a generic
method to increase the efficiency of image segmentation,
in terms of both computation time and memory, by performing
a coarse segmentation on a downsampled image, and then
refining the result. While the method can be applied to several
different algorithms, this approach requires having the whole
image available, and is more appropriate to a software-based
implementation with high resolution sensors. Rusci et al. [44]
propose the use of a dedicated low-power processor in place
of the FPGA. However, the results are extrapolated from an
FPGA-based emulator, as the processor silicon implementation
is not yet available. In addition, the design employs a simpler
imager which computes contrast information rather than per-
forming background subtraction. Finally, we should mention
that the FPGA can also be employed to integrate background
subtraction. For instance, Rodriguez-Gomez et al. [45] propose

Fig. 1. System architecture. The first processing step (HPLD) is executed
by the vision sensor. The other two steps are accomplished by the FPGA:
the CCL-1 stage calculates the super-pixels; the CLL-2 stage performs the
labeling.

a low-resource approach using the Codebook algorithm, which
stores information for each pixel regarding its variance.

III. SYSTEM ARCHITECTURE

To achieve high efficiency, the system architecture follows
a hierarchical approach, where the lower processing layers
progressively distill the information and wake up the higher
layers of the detection algorithm only when needed, as shown
in Figure 1. The system is composed of two parts. The first is
a custom vision sensor embedding an adaptive background
subtraction algorithm at the pixel level. The output of the
sensor is a binary image, where the asserted pixels, called hot
pixels, identify those pixels that differ from the background,
denoting a potentially anomalous situation. The second level
of processing is implemented on an FPGA, and is used to
cluster the hot pixels into coherent connected components,
called super-pixels, and to extract their features, condensing
the information to be delivered to higher level processing
layers, typically handled by a processor. The horizontal arrows
show the data that is exchanged from one stage to the next,
while the vertical arrows denote the kind of information that
can be extracted from the different stages.

At the level of the vision sensor, background subtraction
is intended to filter out all those situations in which nothing
abnormal is happening on the scene, and identify the unusual
events only. To make the detection reliable, the algorithm must
adapt to both slow changes (such as natural illumination), and
noise. At the second level, the standard Connected-Component
Label (CCL) algorithm [46] further increases the robustness of
the event detector. In practice, one can determine if an unusual
event is present in the scene according to the following criteria:

1) the total number of hot pixels delivered by the sensor;
2) the number of connected-component super-pixels deliv-

ered by the first part of the CCL algorithm;
3) the labels and their features which are computed during

the second part of the CCL algorithm.

The robustness of the decision taken on the basis of the number
of hot pixels alone is affected by their sparsity. Pixels can
be asserted either near the edges of moving shapes or after a
sudden variation in the illumination of the scene. In both cases,
the pixels take a certain number of frames to switch back to
the inactive state, as the sensor adapts to the new conditions.
The number of frames can differ from pixel to pixel, making
adjacent pixels become inactive at different frames, producing
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thick borders near the edges in case of a moving object,
as well as a sort of salt-pepper binary noise distributed in
the scene caused by ambient light variations. These affect the
total number of hot pixels in subsequent frames reducing the
reliability of the minimum allowable threshold used to detect
the anomalous event.

To minimize the impact of these effects, the first step
of the CCL algorithm erodes sparse hot-pixels and provides
Connected-Component Super-Pixels (CCSP), as required by
the second criterion. In this phase, the information on the
number of CCSP is more robust but requires that information
regarding previous lines be kept in memory. The second
step of the CCL provides Connected-Component labels and
their features can be evaluated in order to take application-
dependent decisions. More specifically, in our implementation
the sensor can detect variations both above and below the
background. It is thus possible to obtain a pair of different
CCLs, sometimes referred as Double Connected-Components
Labels [47]. In the rest of this section we discuss these two
processing levels in more detail.

A. Vision Sensor and Background Subtraction

The first stage of the system makes use of a custom
integrated circuit that combines the sensor with the low-
level processing layer [9], [10]. Background subtraction is
performed by executing the Hot Pixel Learning and Detection
(HPLD) algorithm [48]. HPLD works by keeping track of two
reference images, each storing for each pixel a minimum and a
maximum value, denoting a range of “quiescent” background
conditions. Every pixel Pi of the current image is compared
to the corresponding pixels mini and maxi of the reference
images to determine whether the pixel is cold, i.e., it lies
within the normal reference range, or hot, i.e., it deviates
from them and is therefore in the foreground. To account for
slowly changing lighting conditions and to filter out noise, the
reference images are also updated after every acquisition to
dynamically adapt to the environment. The update procedure
works by moving the reference values in the direction of the
current frame. Hence, if Pi ≥ mini , then mini is incremented;
conversely, if Pi < mini , then mini is decremented. The update
rule of the maximum value maxi is accomplished with the
complementary logic. The amount of the increment or decre-
ment can be adjusted depending on the specific application.

The low-level processing uses analog components which
directly interface to the sensors. The two frame buffers needed
to store the reference images are integrated in every pixel.
This makes the update and comparison operations fast, and
simple to implement with a classic SIMD (Single Instruction
Multiple Data) architecture. For every frame, the pixel light
intensity VP is compared with the two dynamic thresholds
VMax and VMin , stored in the frame buffers, and which take
into account the pixel past behavior. The status of the pixel
is denoted by two output bits QMax and QMin . As long as
VP lies within the two thresholds, no unusual event is detected
(cold-pixel), and the two bits are 0. Trespassing one of the two
thresholds, the pixel is recognized as anomalous and one of the
two bits, either QMax or QMin depending on which threshold

was violated, is asserted (hot-pixel = QMax + QMin ). After
the pixel readout, the two thresholds are updated according to
the result of the detection phase.

Unlike the update step of the original HPLD algorithm,
the two memories are not updated by adding or subtracting a
fixed value, which would be too complex to be implemented
in CMOS. Instead, a running average has been adopted, where
the update value linearly depends on the difference between
the values of the current pixel and the related memory through
a defined coefficient α, called learning rate. In the imple-
mented algorithm, the threshold which has been trespassed
by VP is updated quickly, while the one which was not
involved is updated more slowly. This is accomplished by
using two learning coefficients, αH for the “hot side”, and
αC for the “cold side”, implemented as switched-capacitor
low-pass filters. In practice, different learning rates can be
obtained by clocking the filter once every n frames, instead
of every frame. This solution is particularly simple, as no
analog component is involved and requires a digital control
block placed at the periphery of the imager. Under steady-state
conditions, both thresholds slowly converge toward the current
signal VP , minus a small offset to avoid triggering on signal
noise, retrieving the maximum pixel sensitivity and waiting
for an intensity change to occur. More formally, the update
steps apply the following update rules:

• High Threshold - hot-pixel (VP > VMax ):

V �
Max = VMax + αH (VP − VMax); (1)

• High Threshold - cold-pixel (VP ≤ VMax):

V �
Max = VMax + αC(VP − VMax); (2)

• Low Threshold - hot-pixel (VP < VMin ):

V �
Min = VMin + αH (VP − VMin); (3)

• Low Threshold - cold-pixel (VP ≥ VMin):

V �
Min = VMin + αC(VP − VMin). (4)

where the primed variable represents the updated value. Fig-
ure 2 [9] shows the change of VMax (top red line) and VMin

(bottom blue line) as VP (dashed line) changes. By means
of these moving thresholds, the pixels absorb slow brightness
changes, as well as fast ones, if they are repetitive and regular,
such as noise, as shown at the end of the plot. Faster, irregular
(unusual) changes are instead revealed by the pixels.

An example of the functionality of the sensor is shown in
Figure 3. When no motion is detected, the sensor does not
deliver hot pixels. As soon as a person enters the scene, some
pixels are asserted by a change in light intensity, becoming
hot, shown in white in the figure. Hot pixels have some
persistence, which can be programmed according to the spe-
cific application, and will take several frames to be absorbed,
and become cold pixel again, after the person has gone. The
number of hot pixels is usually a small amount of the total
number of pixels of the sensor, and can range between 10%
and 20% of the total resolution in typical people monitoring
applications [9]. This value is much larger in Figure 3, because
the person is placed very close to the camera. After detection,
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Fig. 2. Graphic representation of the adaptive background-subtraction
implemented in every pixel of the array ([9], Figure 2). The zone between
the two threshold curves (VMax , VMin ) represents a range of values inside
which the pixel (VP ) is considered normal (cold-pixel).

Fig. 3. Example of background subtraction executed by the sensor: a) image
acquired by the sensor showing a walking person; b) related binary image
provided by the sensor. White pixels represent the moving part of the image.

the hot pixels are assembled into a binary image which is
further analyzed by image segmentation, which identifies the
connected components of hot pixels, described next.

B. Segmentation

The interface between the sensor and the main processor is
implemented on an FPGA, which reads out the raw image data
and performs image segmentation and labeling. The FPGA is a
Xilinx Spartan 6 mounted on an Opal Kelly XEM6001 board.
The board is used to program the FPGA, as well as to read out
the FPGA memory and transfer the values to a PC, in order
to be able to visualize the images.

To reduce memory requirements, we compress the data
using run-length encoding while looking for connected pixels
in the current row, using the run information of the previous
row to detect overlaps [33]. Comparing runs of the current
and the previous row, rather than pixels, reduces the computa-
tional complexity, even considering the overhead required to
compute the run-length encoding itself, as several pixels are
handled at the same time. The system block diagram is shown
in Figure 4. It consists of three main blocks that implement
the interface to the imager and the host processor, run-length
encoding and blob detection. The memory that stores the
features and their labels is also instantiated here. The next
sections discuss each of the blocks and their interactions in
detail.

Fig. 4. System block diagram. The Run Length Encoder receives the pixel
data and forwards run data to the Blob Detection module, which stores the
feature information in memory. Interface and control logic orchestrates the
whole behavior.

1) Run-Length Encoding (RLE): The Run Length Encoding
(RLE) stage, shown on the top left in Figure 4, receives two
pixels from the imager as input, together with two signals
indicating when the data is ready and the end row condition.
The module outputs the run-length code of the incoming row,
and also informs the next stage when a new row begins.

During this step, the algorithm performs a simultaneous run-
length encoding and filtering of the image to remove the salt
and pepper noise. More specifically, a sequence of active pixels
is considered part of the foreground run only if its length is
larger than a minimum value FGmin. Symmetrically, the length
of sequences of background pixels must be at least BGmin.
This obviously affects the computation of the runs, which
makes use of two counters (fg-counter and bg-counter) to keep
track of the consecutive foreground and background pixels
along the row. The algorithm work as follows. The counter
are initially set to zero. Upon detecting the first foreground
pixel, the fg-counter is incremented, and the position of the
pixel is stored. After this, the fg-counter is incremented for
any consecutive foreground pixel. When a background pixel is
found, and if the fg-counter has reached FGmin, the bg-counter
is incremented until another foreground pixel is detected. At
this point, there are two possibilities:

• if bg-counter is at least BGmin, then a run was detected.
Its end position is stored, the counters are reset to zero,
and the block resumes looking for a new run;

• otherwise, the value of bg-counter is added to fg-counter,
effectively elevating the pixels to the foreground, and the
algorithm continues counting the consecutive foreground
pixels as before.

The same operations are performed at the end of the row.
Thus, the algorithm rejects runs of foreground and background
pixels which are shorter than their minimum length. The
selection of these parameters largely depends on the particular
features of the scene to be analyzed. In our experiments below,
we will use conservative values to avoid detecting single-pixel
blobs.

Each time a new run is detected, the start and end positions
are passed to the blob detector for further processing. The
end position corresponds to the position after the last pixel of
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the run. This way, the two positions are never the same, even
if the run is only one pixel long (if allowed by FGmin), and
a zero end-position can be used to mark an invalid run, for
instance at the end of the row.

While no run is “active”, i.e., the last run was already
delivered, and no new run was found since then, the RLE stage
also outputs the current position in the row. This way, the BD
stage can fast-forward to the next run in the row-buffer, when
it finds that the currently loaded run lies behind the position
provided by the RLE.

Run-length encoding clearly reduces the memory require-
ment. If storing the raw image, one needs to store the value
of the pixel and the value of the label assigned to the pixel.
Assuming 7 bits per label, with a resolution of 104 × 104
pixels, a total of 104 · (7 + 1) = 832 bits per row are
needed. Run-length encoding reduces this amount. Setting the
minimum run length FGmin to 3 pixels, with BGmin equal
to 1 to separate the runs by at least 1 background pixel,
the maximum number of runs in a row is

# px

FGmin + BGmin
= 104

3 + 1
= 26. (5)

Each run has a start and an end position, which require 7 bits
each (�log2(104)� = 7). Thus, the number of bits needed to
store information about all runs in a row (including the label
to which they have been assigned) takes at most

26 · (14 + 7) = 546 (6)

bits, saving approximately one third of storage space. Comput-
ing the RLE may be seen as additional overhead in terms of
resources. However, the output of our system includes feature
information, such as the bounding box. Performing run length
encoding on the pixels inherently provides the information of
connected blobs in a row, comparing the start and end of the
run, and thus effectively performs an operation that has to
be carried out anyway, resulting in no additional hardware.
Furthermore, it is easy to look for connections between two
rows by simply comparing the runs, instead of doing a per
pixel comparison.

2) Blob Detector (BD): The Blob Detector (BD), shown on
the top right in Figure 4, is the core of the segmentation algo-
rithm. It acquires the runs identified by the RLE block, looks
for overlaps, calculates features, creates new blobs or merges
runs into existing blobs. The operations are supported by a
row buffer, which records the runs of the previous row, and
by a feature and blob memory, both stored in a block RAM.

The row buffer is laid out in the block RAM using a
double buffering technique, storing odd and even rows, which
alternate between current and previous row. The same RAM is
used to store the blob information. The blob label also works
as an index that makes it easy to find the information in the
RAM. The block is configured as a “true dual-port” RAM,
so that two different memory cells can be accessed at the same
time, either in reading or writing mode, independently. Having
two ports allows the block to load the full blob information
in one step, while the run data can be stored in the buffer.

The BD stage is normally in a ready state, where it waits
for a new run from RLE and monitors the current process-
ing position in order to load the appropriate run and blob

Fig. 5. Blob detection with (left) and without (right) overlap; the arrows
show the stored start and end positions.

Fig. 6. Run overlap detection.

information from the previous row buffer. When a new run is
forwarded, BD checks if there is an overlap with the previous
row. If so, it updates the information about the blob features
contained in the feature memory. Otherwise, it creates a new
label, assigns it to the new run, and creates a new record in
the feature memory. In all cases, the start and end position and
the label of the new run are stored in the row buffer (to make
it available during the computation of the next row). Access
to the RAM has a latency of 2 clock cycles, one to provide
the address, and another to acquire the output.

Detecting an overlap or connection between foreground
pixels of the “current run” and a run in the previous row,
which we refer to as the “reference run”, is accomplished by
comparing the start and end position of the runs (see Figure 6
for pseudo-code). First, the algorithm loads reference runs
from the previous row until it finds one whose end lies after
the start of the current run. This ensures that an overlap is at
least possible. At this point, it checks if the start position of the
reference run is less than or equal to the end position of the
current run. If this is the case, then an overlap is detected,
and the current run is added to the blob of the reference
run. Otherwise, the current run constitutes a new blob, and
the information is stored in the memory. Figure 5 shows
examples of runs in the two rows, with and without overlap,
highlighting the start and end positions of the runs. Because
the end position of a run is the position after its last pixel, this
algorithm detects connectivity with the 8 surrounding pixels
(8-pixel connectivity). It is easy to change to 4-connectivity
by slightly altering the comparisons for equality in the two
conditions in Figure 6.

Because of the goals of this system, it is not necessary to
store the complete segmented image, with pixel-per-pixel label
information. Instead, it is sufficient to collect and calculate
features of the found blobs while processing the image. The
features that are extracted by the algorithm are

• the bounding rectangle: left, top, right and bottom coor-
dinates (each 7 bit wide, extended to 8 bit for simpler
memory management);

• the effective number of foreground pixels in the blob
(12 bit wide, extended to 16).
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Fig. 7. Memory layout; the gray cells represent the two row-buffers, the
colored cells show blob information.

Once sufficiently many blobs are detected, the higher-level
processing should intervene to notify the alert and activate
a more in depth analysis. For this reason, we can restrict
the system to only 127 labels. In total, with 127 labels and
48 bits per label, storing the features requires 6 kbits of RAM.
Figure 7 shows the memory layout, organized in 512 cells
of 32 bits each (16 kbit). For comparison, the full 104 × 104
binary image would instead require approximately 10 kbits,
while the complete labeled image (one label per pixel) would
require 74 kbits. The run-length encoded and labeled image,
assuming a worst case of 26 runs per row, would still require
up to 55 kbits. In the average case, the savings in terms of
memory are much larger.

3) Interface and Control Logic: The Interface and Control
block provides the clock and global reset signals to the
segmentation module, as well as all the signals required to
interface the FPGA to the imager and to the host PC, via a
USB connection.

The RLE and BD blocks are logically connected in a
pipeline. Because the processing in the BD stage may not
always require the same number of clock cycles, that stage
can stall the RLE stage. In that case, the RLE still continues
to grab and elaborate the data that it receives from the sensor,
but when it is ready to deliver data to the BD, it stores that
data and waits until the blob detector is done with processing
and ready for the new data. Differently, the RLE stage cannot
stall the sensor, because the acquisition can not be delayed.
Because the run length encoding needs to be active during the
whole time of image acquisition, while the blob detection has
to wait for a new run to finish, the control logic stalls the
blob detector during the wait intervals, reducing the amount
of consumed power.

While the RAM is dual port, both ports are used by the BD
stage during operations. Thus, the interface logic can disable
the RLE and BD stage, and relay the RAM ports towards the
PC interface. In particular, the interface logic notifies the PC
by communicating the number of blobs that were found in the
last image, and then transfers the contents of the RAM to the
PC 16 bits at a time. These functions are implemented through
standard interface block provided by the Opal Kelly board.

Fig. 8. System prototype based on the vision sensor.

IV. EXPERIMENTAL RESULTS

In this section, we show the results of the combined
background removal and image segmentation algorithm, and
discuss the advantages compared to a traditional setup.

A. Experimental Setup

The system prototype, shown in Figure 8, consists of the
sensor mounted on the Opal Kelly board, connected to the PC.
For the purpose of demonstration, the images that the sensor
acquires are stored in the FPGA memory, such that they can
be transferred to the PC. Nonetheless, the goal of this system
is not to display images. However, it is impractical to look
at the bare blob information to check whether the algorithm
works as expected. Thus, we visually integrated the blob
information in the real time image that is displayed on the PC,
showing the bounding rectangles. To achieve this, the program
reads out the label information from the FPGA RAM and
takes the information about the corners of each blob. This
information is then used to draw a rectangle with OpenCV
appropriate functions. When the software reads out the raw
image produced by the sensor, it checks whether the sensor is
acquiring an odd or even frame, and reads out the frame on
which the sensor is not currently working. This is necessary to
avoid simultaneous write access by the acquisition logic and
read access by the PC through the board USB interface.

In a real use case, the pixel data would simply be discarded,
and only the high level information would be transferred. Thus,
in a real application, after the segmentation, some decision
logic would decide if the next stage of processing, for example
a microcontroller which detects motion of the blobs, should
be triggered. This could be decided for example on the basis
of blob sizes. To pass on the information to the next stage,
the blob information needs to be read out from RAM. In order
to be able to test this feature, and also to verify the correctness
of the algorithm results, we integrated a readout function into
the PC software controlling the test board.

B. Background Removal and Segmentation

The result images that are shown in Figure 9 to 12 were
obtained by filming a moving hand at 30 fps in front of
the vision sensor, equipped with a wide-angle lens. Since
the sensor preforms the online background subtraction, only
moving parts of the scene are visible. Thus, only movements
that involve intensity changes on pixels are tracked. Notice that
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Fig. 9. Rapid appearance of the hand, fully visible; left: original image from
the sensor; center: detected blobs; right: labeled image.

Fig. 10. The hand is waving and the palm is vanishing; original image -
detected blobs - labeled image.

Fig. 11. After waving, only the fingers remain visible; original image -
detected blobs - labeled image.

Fig. 12. Original image - detected blobs - labeled image.

in a hand waving motion, the palm usually does a rotating
movement, thus no movement perpendicular to the edges is
registered by the sensor in this area. This explains why, with
the exception of the first image (Figure 9), only the fingers
are visible.

We show three images for every example. The first always
shows the original image delivered by the sensor, after the
inherent background subtraction. The middle frame shows the
same image again, overlaid with the bounding rectangles of the
blobs. The third image shows the fully labeled image, where
different colors represent the different blobs. This image is not
returned by the system, but is shown here simply to get a better
impression of what connected components were identified by
the algorithm. These results demonstrate the correct operation
of the algorithm.

A second experiment consists of a freely moving pattern
displayed on a PC monitor. The pattern is a black star moving
from right to left on a white background. In this experiment,

Fig. 13. Experimental results of the proposed image processing flow on real
images. a) image acquired and HLPD processed by the sensor; b) super-pixels
obtained by the first part of the CCL algorithm; c) labels obtained by the last
part of the CCL algorithm.

we distinguish between the two thresholds. Therefore, the left-
side edges are black hot-pixels, detecting light-to-dark varia-
tions (VMax ), while the right-side edges are white hot-pixels,
detecting dark-to-light variations (VMin). Unlike the previous
set of experiments, which showed the original images, in this
case we show the partly processed images, where isolated
pixels have been filtered out by the algorithm.

Figure 13 shows three snapshots referring again to the three
phases of the proposed image processing. Figure 13.a) shows
the binary image processed by the sensor. It is possible to
detect several isolated pixel mostly located at the edges of
the moving pattern. At this stage, the total number of pixel
contributes to the first-level FPGA wake-up. Figure 13.b)
shows the super-pixel image, obtained by running the first part
of the CCL algorithm, corresponding to run-length encoding
and filtering. The number of super-pixels can be used to
trigger the second part of the CCL algorithm. Figure 13c)
finally shows the identified blobs, together with their bounding
box. This is the last processing stage which is application-
independent. Now, the criteria adopted here to proceed with
the labeling phase depends on the targeted application and can
be based on different features, such as blob area or blob aspect
ratio.

C. Resource and Performance Estimation

Table I compares the resource requirements and the per-
formance of several implementations of connected compo-
nent analysis found in the literature with those used in our
prototype for a Spartan 6 device, highlighted in bold. The
table indicates the kind of algorithm that is used (mainly
CCL with a few exceptions) and the number of passes on
the image. A fair comparison is made difficult because of
the use of different devices, as listed in the table, with fairly
different characteristics. Nevertheless, the second section of
the table shows the requirements in terms of resources: look-
up-tables (LUTs), fabric registers and block RAMs (BRAM).
In the last case, we report the number of bits, as the size
of the BRAMs differs for different devices. The third section
reports the achieved performance, in terms of clock frequency
and frame rate (FPS). The algorithms employed are generally
suitable for images of arbitrary size. The table reports the
image size that corresponds to the resource usage, and in some
cases the largest number of blob labels that can be handled.
When no value is indicated, the implementation is able to
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TABLE I

COMPARISON OF THIS WORK WITH EXISTING FPGA SOLUTIONS FOR CONNECTED COMPONENT ANALYSIS. CCL: CONNECTED COMPONENT
LABELING, BS: BACKGROUND SUBTRACTION, NF: NOISE FILTERING, MUM-SH: MUMFORD-SHAH, MS: MEAN-SHIFT, N/A: NOT AVAILABLE

handle all possible labels. In none of the reported cases was
data concerning power consumption available in the literature.
Background subtraction is only included in the implementation
by Appiah et al. [33].

Lee et al. [34] were first to propose an FPGA implemen-
tation for connected component labeling. In their approach,
they store the whole image acquired from a frame grabber and
binarized using a simple threshold. The algorithm performs a
double scan to identify the labels. Details on the implemen-
tation are however not available. Johnston and Bailey [25]
develop a single scan implementation, using a merger table
to store the labels for conflict resolution. Limiting the design
to 256 labels reduces the memory requirements. The same
authors improve on their design by relieving the limitation on
the number of labels, with a modest increase of the required
memory, achieved by recycling labels between rows [35].
Subsequently, Ito and Nakano proposed a method using a
single scan to approximate the result, focusing on reducing the
latency to obtain the first label [36]. A parameter is used to
control the amount of look-ahead for label merging. Its value
strongly affects the resource requirements. Table I reports
the results with zero look-ahead, to match the characteristics
of our solution. We have already discussed the work by
Appiah et al. [33, Sec. II], which uses run-length encoding
to process the image. Zhao et al. [37] also use a run-based
labeling approach. Their implementation is somewhat more
complex, leading to a larger resource usage than comparable
solutions. More recently, Klaiber et al. [38] propose an effi-
cient architecture to reduce the amount of required memory.
The algorithm employs dedicated memories to record patterns
and speed up the analysis, for images of different sizes, up to
8 K. Here we report the resource usage for the smallest image.

Our proposed system differs compared to previous
approaches for the integration with low-power background
subtraction, and for the use of run-length encoding to simul-
taneously filter out noise and reduce the amount of data to
process. The overall requirements are modest, considering the
kind of device we are using, and generally in line or below
those reported in the state of the art. In particular, we process

the image as it is acquired, avoiding the need to store it in
memory, and favor a simpler approach which results in very
low memory requirements, since we do not employ a merger
table. Without any particular optimization, the system runs at
48 MHz on a low-cost device. The 30 fps value reported in
the table is due to the imager. With a worst case latency of 3
clock cycles per run, the segmentation system can sustain the
operation in real time also for large sensors running at high
frame rate.

Besides the CCL implementations, Table I also reports the
data for more complex algorithms. Ngan et al. [39] present
an FPGA implementation of the Connected Component Tree
(CCT) algorithm, focusing in particular on optimizing the
data structure to use memory efficiently. Our approach dif-
fers significantly, as we do not need the full complexity of
CCT for our analysis and we employ a binarized instead
of a gray scale image, computing the result as the image
is acquired. Zhang et al. report an implementation of the
Mumford-Shah regularization algorithm, used for image seg-
mentation as well as reconstruction for tomography applica-
tions. This is, in absolute terms, the most complex solution,
and is not meant to run in real time. More recently,
Trieu and Maruyama [41] have proposed an FPGA imple-
mentation of the mean-shift algorithm, suitable for segment-
ing color images. While the approach achieves real-time
performance, its complexity requires considerable hardware
resources, and is therefore not suitable for our low-power
application.

The overall power consumed by the 104 × 104-pixel sensor
was measured at 80 μW at 30 fps [10], turning into a Figure Of
Merit (FOM) of 246 pW/pixel·frame, thus contributing very
little to the overall energy consumption of the system. The
chip is fabricated in a 350 nm technology, has a pixel pitch
of 16 μm and measures 2.5 · 2.5 μm2.

The absolute power consumed by the FPGA in our pro-
totype, which is clearly much larger than the sensor, is less
significant, as alternative devices could be used with consider-
able differences in terms of power supply (which affects power
consumption quadratically), current and total capacitance.
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For instance, because of the low resource usage, our imple-
mentation could easily fit in extremely low power devices,
such as the Microsemi Igloo.1 In this paper we show the proof
of concept of the working system, while the development of
a dedicated FPGA board employing this technology is part of
our future work. Thus, in order to estimate the improvement
in power consumption of the proposed approach with respect
to a standard one, it makes more sense to consider instead the
achievable data rate of the link between the sensor and the
processor, in our case the PC.

The data rate is an indicator of how well the system
performs in removing redundancy or irrelevant information
and representing the information contained in the image. Thus,
it is also related to the processing power needed to interpret the
information in a useful way, and therefore gives a hint for the
power required by the higher-level hardware in the processing
chain. A low data rate means that much of the processing has
been moved from the PC to the low-level hardware. In the
following, we therefore compare different solutions, assuming
a frame rate of 30 fps, a pixel depth of 7 bpp and a resolution
of 104 × 104 pixels.

1) Camera With General Purpose Processor: In a conven-
tional approach, the raw image of an ordinary camera would
be transferred to the processing unit. At the greyscale precision
of 7 bits per pixel, this results in a data volume of

7 · 104 · 104 = 75712 bit ≈ 74 kbit

per frame, or in a data transfer-rate of

74 kbit · frame−1 · 30 fps = 2.17 Mbps.

While lossy compression could reduce this rate by high factors,
it is usually not allowed to have coding losses in images that
need further processing, since coding artifacts could highly
influence change detection algorithms. Therefore, only lossless
compression methods are suitable in this case, leading to a gain
of about 1 : 4 [49] at best, thus leaving a data rate of around

2.17 Mbps ÷ 4 ≈ 550 kbps.

The processing system would then need to perform adaptive
background subtraction, apply thresholding for binarization,
do the segmentation, after having decided whether it is neces-
sary, and decide what to do on the basis of the found blobs. All
these operations would be performed on every frame, 30 times
per second, most of them regardless of whether there are
relevant changes in the scene, or any changes at all.

2) Custom Sensor With General Purpose Processor: The
imager system would take care of the initial processing steps
of adaptively subtract the background, and apply hot-pixel
thresholding, leaving the processor only with the task of
segmenting the image and interpreting the blobs. Regarding
data transfer, this means that only binary pixels need to be
transferred, resulting in

1 bpp · 104 · 104 = 10816 bit ≈ 10.5 kbit

or

10816 bit · frame−1 · 30 fps ≈ 317 kbps.

1https://www.microsemi.com/product-directory/fpgas/1689-igloo#overview

This already represents a significant reduction in data, com-
pared to traditional systems, especially considering that for
binary images, compression like run-length encoding could
efficiently decrease the data rate even more, without adding
much computational overhead. Furthermore, we need to take
into account that with this setup the general purpose processor
can stay in a low power state, as long as the sensor detects
fewer than a critical number of hot pixels. This, together with
the implementation of the background subtraction algorithm
being integrated in hardware and potentially ultra low-power,
contributes to considerable power savings.

3) Full Proposed Architecture: In the proposed system,
information redundancy is further reduced. The segmentation
logic takes the binarized image, finds connected blobs and
calculates their features. The data rate necessary to encode this
information depends on the type and number of features that
are extracted. In the test setup, the bounding rectangle corner
coordinates and the pixel count in the blob were considered.
This results in

• 7 bits per coordinate, adding up to 28 bits;
• 14 bits for the pixel count.

So 42 bits are needed to encode information about one blob.
At most, in a 104 × 104 pixel image,

26 runs · row−1 · 104 rows

2
= 1352 blobs

can be found. However, the number of blobs is usually
much lower. A reasonable size, below which the blob can
be rejected, is around 1% of the total image size (see for
example Figure 11, where the index finger is represented by
the smallest blob, still of a size of 10 · 10 pixels). Therefore,
the maximum number of blobs needed to be transferred would
be limited to about 135. This equals to a (uncompressed) data
rate of

135 blobs · 42 bits · blob−1 = 5670 bit,

5670 bit · frame−1 · 30 fps ≈ 166 kbps.

On average, the number of blobs is typically much lower.
Considering a reasonable number of 20 blobs per frame,
the data rate is further reduced to

42 bits · blob−1 · 20 blobs · frame−1 · 30 fps ≈ 25 kbps.

4) Summary: To summarize, the image sensor alone already
greatly reduces the amount of data because it performs
background subtraction, which reduces the pixel depth from
7 to 1 and potentially leaves only the active pixels to be
transferred. On top of this, the segmentation algorithm further
reduces the data necessary to represent the relevant informa-
tion contained in the scene, by at least a factor of 2 in the worst
case, and more than 10 in the typical case. The overall gains
in terms of data rate reduction are summarized in Table II. In
addition to reducing the amount of transferred data, the sensor-
embedded hardware system can dynamically wake up the
higher levels of processing only when necessary. Therefore,
by optimizing across levels, the proposed architecture dramat-
ically reduces the operating duty cycle and consequently the
power consumption.



3852 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 11, NOVEMBER 2018

TABLE II

COMPARISON OF DATA RATES, USED AS A FIGURE OF MERIT FOR
POWER CONSUMPTION, NORMALIZED WITH RESPECT TO PIXEL

DEPTH, FRAME RATE AND RESOLUTION, TAKING A CONVEN-
TIONAL VISION SYSTEM AS REFERENCE

V. CONCLUSIONS

We have presented a micropower vision sensor and low-
level processing intended to be part of an image analysis
and interpretation algorithm. The architecture is based on a
robust low-level adaptive background subtraction, which is
implemented at the pixel level, taking advantage of analog
fully parallel architecture. The binary image delivered by the
sensor is directly segmented using efficient digital techniques,
implemented on an FPGA. The prototype and experimental
results demonstrate the correct behavior of the system and
provide estimates of the potential power savings for higher
level processing algorithms, which utilize only aggregate
feature data. Our current work includes the development of
an FPGA board employing dedicated low-power components.
At the same time, we are studying the implementation of
the segmentation algorithm directly on the sensor chip, thus
providing an even tighter integration and reducing even further
the overall power consumption. The integrated solution could
then function as a standalone low-maintenance device for
embedded unusual event detection. To prove the effectiveness
of the system in real applications, we are developing a live
demonstrator making use of a larger imager recently presented
at ISCAS 2018 [50]. The integration of segmentation to the
demonstrator is part of our current work.
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