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Abstract—Transaction-level models promise to be the basis
of the verification environment for the whole design process.
Realizing this promise requires connecting transaction-level and
register-transfer-level (RTL) blocks through a transactor, which
translates back and forth between RTL signal-based communi-
cation and transaction-level function-call-based communication.
Each transactor is associated with a pair of interfaces, one at RTL
and one at transaction level. Typically, however, a pair of interfaces
is associated with more than one transactor, each assuming a
different role in the verification process. In this paper, we propose
a methodology in which both the interfaces and their relation are
captured by a single formal specification. By using the specifi-
cation, we show how the code for all the transactors associated
with a pair of interfaces can be automatically generated. Our
synthesis algorithm avoids the state-explosion problems associated
with certain features of the specification formalism, at the expense
of a more sophisticated simulation algorithm. We describe three
different code-generation techniques targeted at different veri-
fication languages: 1) C++; 2) Verilog; and 3) the combination
of the two that is compliant with the Standard Co-Emulation
Modeling Interface protocol. In addition, we present several case
studies demonstrating that automatically generated transactors
can indeed replace handcrafted ones in realistic designs.

Index Terms—Code generation, finite-state machine (FSM)
simulation, property specification language (PSL), standard
co-emulation modeling interface (SCE-MI), state explosion,
SystemC, transaction-level models (TLMs), transactor, verifica-
tion, Verilog.

I. INTRODUCTION

RANSACTION-LEVEL MODELS (TLMs) are emerging
as a key ingredient of system-level verification method-
ologies [1], [2]. They provide an accurate executable system
model, which is still at a sufficiently high level of abstraction
to enable full-chip simulation and early software development.
Because they can be simulated orders of magnitude faster
than register-transfer-level (RTL) models, TLMs can be used
as an efficient executable specification and also as the golden
reference for checking functional correctness and measuring
transaction coverage. In addition, they can also serve as a
verification environment for block-level verification and as the
basis for architectural performance analysis.
Despite their advantages, TLMs have been traditionally only
used for design requirement clarification and for early architec-
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tural performance estimations. The reason has to do with the
difficulty of making TLMs interact directly with RTL blocks,
due to the differences in their communication paradigm. Thus,
once the design of RTL blocks started, verification engineers
would put most of their efforts in developing block-level verifi-
cation environments, and the TLMs would soon become obso-
lete. To amortize the cost of their development, and to improve
verification productivity, there has recently been a growing
trend toward establishing TLMs as the basis of the verification
environment for the entire design process [3]. This is achieved
by introducing an additional object between transaction-level
and RTL blocks, called a transactor, which translates back
and forth between RTL, signal-based communication, and
transaction-level function-call-based communication.

We refer to a set of signals and to the protocol they use as an
interface. Each transactor in a design is associated with a pair
of interfaces, one at the RTL and one at the transaction level.
However, each pair of interfaces may be associated at various
times with more than one transactor, each taking a different
role as the master, the slave, or the monitor of the transactions,
depending on the kind of verification that needs to be performed
(Fig. 3 is an example). Each of these transactors deals with
different actions at the higher level (one sends the data, whereas
the others receive the data) and have complementary views of
the signals at the RTL (the inputs for one transactor are regarded
as output by the other). In addition, most tests do not use the full
capabilities of an interface. Thus, when designed manually, it is
often more efficient to create specialized transactors with just
the right capabilities, rather than to configure a complete, and
therefore also complex and inefficient, transactor. For these rea-
sons, the three transactors that are required for characterizing
a single pair of interfaces are often described as three distinct
entities, with limited code sharing, despite the fact that all three
transactors implement the same basic protocol.

The matter is made worse by considering that transactors
are written in a combination of different languages since they
bridge the gap between TLMs, which are often written in C or
C++, and RTL models, which are written in a hardware de-
scription language (HDL). In some cases, it may be efficient to
use standard C/C++ interfaces to HDLs and to specify most of
the transactors in C/C++. For example, several HDL simulators
are now capable of simulating SystemC [1] models as well.
In other cases, transactors are specified in an HDL. This may
be useful, for instance, when the transactor is to be partially
implemented on a hardware accelerator. This produces a prolif-
eration of different implementations of the same transactor and
of transactors corresponding to the same pair of interfaces. The
consequence is an obvious increase in development cost and,
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Fig. 1. Typical use case.

more importantly, the inability to maintain consistency among
the implementations of the same protocol across all its different
incarnations.

In this paper, we propose a methodology where both the in-
terface protocols and their relation are captured by a single for-
mal specification. Then, we show how all transactors associated
with a pair of interfaces can be automatically generated from
this specification. The transactors are generated either in some
flavor of C/C++, in Verilog, or in the Standard Co-Emulation
Modeling Interface (SCE-MI)-compliant combination of the
two [4]. Each generator is tailored to a different verification
environment. The choice of code generator is, however, inde-
pendent of the particular protocol role of the transactor. Thus,
by combining the two degrees of freedom (language and role),
one can generate a full matrix of different transactors from a
single protocol specification.

The specification formalism that we use is loosely based
on the Property Specification Language (PSL) [5] and can be
thought of as an extension of assertion-based verification. In its
simplest form, generating transactors from such specifications
is a two-step process. First, the specification is transformed into
a finite-state machine (FSM), and then, the code simulating the
FSM is generated. The generated code can then be used in any
standard simulation environment, as shown in Fig. 1. Unfortu-
nately, some PSL operators, and certain extensions that we in-
troduce to manipulate data, may cause an exponential explosion
in the number of states that are generated in this phase, making
the translation impractical. Our solution avoids this problem by
converting the specification into a nondeterministic hierarchical
FSM, where states are derived from the PSL operators and la-
bels (guards and actions) are derived from data operations. Our
main contribution in this paper is an algorithm that can simulate
the FSM (a simulation model) that can be used in several dif-
ferent simulation environments. We present a set of three case
studies to show that automatically generated transactors can
indeed replace handcrafted ones in realistic designs. In addition,
we have employed a generic FSM model so that the simulation
algorithm can be applied to complex finite-state systems that
are not necessarily derived from our transactor specification.

The rest of this paper is organized as follows: Section II
presents some related work. We then present our specification
formalism in Section III and the overall architecture of our soft-
ware tool in Section I'V. Section V gives a detailed description
of the generation and representation of the finite-state structure.
The main simulation algorithm is presented in Section VI,
whereas the specific code-generation strategy is presented in
Section VII. Finally, Section VIII presents the results of our
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technique applied to three industrial case studies, followed in
Section IX by an in-depth discussion of our design choices in
the context of the most relevant related work.

II. RELATED WORK

The problem of transactor specification and synthesis can
be seen as a special case of automatic generation of adapters
between incompatible protocols. There are several techniques
that can be used to achieve the correct result, including the
use of signal transition graphs [6], matching of constructs in
HDLs [7], and approaches based on finite automata [8]-[10].
We follow the latter approach, which fits well with our speci-
fication mechanism and that can be easily supported by formal
analysis tools.

There have been many proposals for formal interface specifi-
cations. The purpose of many early proposals was to specify in-
terface properties that can then be formally verified. Therefore,
the focus was on formalisms that can express complex relation-
ships between control signals (which is a sweet spot for formal
verification), whereas data were generally abstracted (because
data can easily overwhelm formal verification tools). In par-
ticular, two formalisms have emerged as a foundation of most
of the approaches: 1) regular expressions [11] and 2) temporal
logic [12]. The formalisms are similar in that they can both be
expressed with finite-state automata. The difference between
the two is that for regular expressions, it suffices to consider
only finite traces accepted by finite-state automata, whereas
temporal logic requires also infinite traces. Infinite traces are
convenient to talk about eventualities. For example, to refute
the property “Every request is eventually granted,” one needs
to show an infinite trace in which there is a request that is
never granted. While eventualities are clearly useful to specify
individual properties that a system should satisfy, they are less
useful for complete system specifications. Such a specification
needs to precisely describe a finite sequence (or possibly se-
quences) of events that leads from a state where request is made
to a state where it is granted.

More recently, standard languages that are based on temporal
logic have been proposed to specify system properties. Two
notable examples are PSL [5] and SystemVerilog Assertions
(SVA) [13]. While regular expressions capture the full power of
finite-state automata on finite traces [11], the common temporal
logics can express a strict subset of finite-state automata on
infinite traces [14]. Therefore, both PSL and SVA extend the
temporal logic to include the power of regular expressions. In
PSL, such an extension is called Sequential Extended Regular
Expressions (SERESs). Since we are interested in complete inter-
face specifications, rather than abstract properties, we base our
formalism on SEREs and examine aspects in which they are,
or they are not, suitable for our purposes.

The use of regular expressions for hardware description in
general and for protocol description in particular is not new
and has been already presented in the literature. Seawright
and Brewer demonstrate how effective regular expression
could be for protocol and control intensive specifications [15].
Oberg et al. use a similar grammar-based specification for
the synthesis of hardware for data communication protocols,
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although the problems of software and transactor generation
are not addressed [16]. Shimizu et al. propose a monitor-
based specification style for the verification of communication
protocols that decomposes the specification into several au-
tomata, each specifying a particular property that the protocol
should exhibit [17]. Their approach is, however, limited to the
generation of monitors. Recently, Siegmund and Miiller have
proposed a similar approach where the regular expressions are
embedded in the description language, in this case SystemC,
using appropriate supporting classes [18]. The advantage is
that the transactor description can be simulated directly with
the existing application. However, in this approach, the user
is required to describe each transactor individually, instead of
having it be generated automatically from a description of the
communicating protocols and their relation.

The properties specified in PSL or SVA can be used as a
front end to formal verification tools. In addition, commercial
simulation environments are capable of generating simulation
monitors from such properties, so that they can be verified
by simulation as well. Oliveira and Hu [19] have studied the
suitability of regular expressions to specify complex interfaces
for the purpose of generating simulation monitors. They have
found that certain extensions to regular expressions to model
pipelining and data can make interface specification signifi-
cantly simpler and more compact. Our work is of similar nature,
but our goals are complete interface specification and transactor
generation.

As indicated by the aforementioned discussion, most of the
previously published work is focused on generating simulation
monitors, and little has been published on the synthesis of
more general transactors. However, transactor generation has
attracted some industrial interest, including TransactorWizard
from Structured Design Verification [20], Bus Compiler from
CoWare [21], and Cohesive from Spiratech [22]. Unfortunately,
the proprietary nature of these tools prevents us from making a
direct comparison with these tools.

Our approach to generating transactors is a two-step process,
where a finite-state automaton equivalent to the regular expres-
sion is generated, followed by the synthesis of the simulation
code. Converting a regular expression into a finite automaton is
a fairly standard procedure [11]. Code generation has also been
investigated, both for software implementation [23], [24] and
for direct mapping to circuits [15], [25]. We will discuss some
of these techniques in detail in Section IX.

PSL has been translated to finite automata not only for formal
verification but also for simulation [26]. Still, our problem
has several distinguishing features. First, as we will see in
Section III, our approach extends PSL with data variables.
Dealing with data variables may appear easy, but it actually
gets quite cumbersome when nondeterminism and subsequence
instantiations cause several versions of the same variable to
coexist simultaneously. Second, existing simulation tools use
finite automata generated from PSL as monitors, which are a
special case of transactors that have only inputs and no outputs.
The advantage of monitors is that parallel sequences can be
monitored independently. This is no longer true for a transactor
with outputs since all parallel sequences need to coordinate the
choice of outputs. At the same time, keeping parallel sequences
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Fig. 2. Utopia Receive interface.

separate is essential to avoid an exponential increase in the
number of states. Finally, PSL has been traditionally used for
specifying simple properties. For these, a naive approach may
still generate automata that are small enough to be handled.
We aim at fully specifying complex protocols using a PSL-like
specification and the naive approach is no longer feasible.

Another formalism that exhibits similar features is Esterel
[27]. Esterel compilers deal with parallelism by compiling
Esterel in either concurrent hardware or parallel software
threads [28]. In these approaches, the size of generated code
is small, although the size of state space that it represents may
be very large. Unfortunately, it is hard to extend this approach
to a formalism with nondeterminism, where multiple alternative
states need to be maintained during simulation.

Statecharts [29] is also a specification mechanism that has
all the problematic features of our formalism and that targets
the modeling of complex systems. Statecharts is supported by
simulation tools, but unfortunately, little has been published
about simulation algorithms in these tools beyond the fact that
“calculating the effect of a step contains involved algorithmic
procedures” [30].

III. TRANSACTOR SPECIFICATION

Our formalism is based on the SERE subset of PSL [5].
SEREs are regular expressions with multiple variants of the
sequencing, repetition, OR, and AND operators. We also intro-
duce certain extensions that we find necessary to more easily
and completely specify transactors. We will discuss the exten-
sions, and their implications, later in this section. We present
our formalism by way of the transactor protocol used in the
Utopia interface [31]. Our specification of the protocol is sim-
plified and somewhat incomplete, but it nevertheless captures
its essence, which is typical of many other similar protocols.

Utopia is a standard protocol that is used to connect devices
implementing physical (PHY) and asynchronous transfer mode
(ATM) layers [31]. Here, we focus on the Receive part, which
covers a transfer of an ATM cell from a PHY to an ATM device.
The latter is often referred to as Master because it generates the
clock that drives the transfer. For the same reason, the PHY
device is referred to as Slave.

A possible design and its TLM are shown in Fig. 2. At
the transaction level, the PHY and ATM devices communicate
through a simple mailbox. The transaction-level PHY model
calls the function SendCell to put a cell in the mailbox where it



1752

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 10, OCTOBER 2007

PHY | scndcell GetCell |ATM
Dev. 1 cell cell [ Dev.
TLM
=oom o ] TLM
RTL Data[0..15] Data[0..15] m RTL
E Clay Clav m
< Soc ATM PHY | Soc ;
= Enbl Dev. Dev.| Enbl
wn Clk RTL RTL| cik é
Addr[0..4] Addi[0..4]
SendCell = GetCell
cel
____________________________ M .
pao1gf  of RTL
o
PHY | Soc = ATM
Dev. Enbl Dev.
RTL Clk RTL
Addr[0..4]

Fig. 3. Master, slave, and monitor transactors for the Utopia Receive Interface.

is picked up by the ATM device model, when it calls GetCell.
At RTL, the PHY device asserts the Clav signal when it has
a new cell available. After the ATM device confirms that it is
ready to receive by asserting the Enb signal, the PHY device
starts transmitting by setting the Data signals and asserting the
Soc signal to indicate the start of a cell. Thereafter, the PHY
device may put fresh Data on each cycle that follows one in
which Enb is asserted, or it may temporarily stop the transfer
by deasserting the Clav signal. The process continues until all
53 bytes of the cell are transferred (the Addr signals are relevant
only with multiple PHY devices, which is a case that we will not
consider here).

Transactors deal with the signals that cross the thick line
in Fig. 2. The three roles are shown in Fig. 3. The Master
transactor is used to verify the RTL model of a PHY device,
the Slave transactor is used to verify the RTL model of an ATM
device, and the Monitor transactor is used with the RTL models
of both PHY and ATM devices.

A portion of the specification of Utopia Receive is shown
in Figs. 4 and 5. The specification is a conjunction of several
SEREs. The largest one, dealing mostly with RTL signals, is
shown in Fig. 4, and some of the others are shown in Fig. 5.
The code in Figs. 4 and 5 shows our extensions, which are
not part of the standard SERE formalism. The first extension is
the addition of data variables. For instance, we use an array of
53 bytes called cell to represent the ATM cell. The addition
of data variables is essential in protocol specification since
the values that are presented at one end of the interface must
match those that are received at the other end. In addition,
the functionality may sometimes depend on the values that are
exchanged by the communicating parties. However, cell is not
part of the design itself but is rather an auxiliary object that
is used to specify the interface. The second extension is the
addition of loop counters such as the variable i (which ranges
from O to 51) associated with the loop that repeats 52 times.
This is particularly convenient as an index to arrays, such as
cell[i + 1], and therefore accesses a different value at each
iteration. Both of these extensions (data variables and loop

// It starts with Clav asserted...
(!Soc && Clav && Enb )[*];
...and waiting for Enb asserted
(!Soc && Clav && !Enb );

{

// transfer the first cell, Enb stays active ...

( Soc && Clav && |Data == cell[0] | && !Enb )
FIA

// or, transfer the first cell, with Enb inactive for a while
( Soc && Clav && Data == cell[0] && Enb );
( 1Soc && Enb )[*];
( !Soc && !Enb )
1A
// repeat 52 times, for cell[l]...cell[52]
// first, Clav can be inactive for a while

( 1Soc && !Clav && Enb )[*];
( !Soc && !Clay && !'Enb )
HEL
// then, transfer cell ...

/... with Enb staying active ...
(1Soc && Clav && Data ==|cell[i + 1]| && !Enb)
H
// ...or Enb inactive for a while
// (body omitted here)
}
NU525500| /7 repeat 52 times with index i

Fig. 4. Utopia Receive interface: RTL signals.

counters) add extra states to the interface specification and must
be handled with care. Section V discusses our approach to avoid
potential state-explosion problems.

Adding data and loop counters to SERE is necessary for
a complete and compact interface specification at the RTL.
Another class of extensions must be included to deal with
function-call-based transactions at the higher level. An example
of this extension is shown in Fig. 5. With each function call f,
we associate three different Boolean expressions, called action
expressions, which evaluate to true at different times during
the protocol execution. The term B(f), for begin f, is true at
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// Sendcell is followed by asserting Clav

( IClav && |B(SendCell, inCell)| && |inCell == cell | );
( !Clav && N(SendCell) H[*];

( Clav && N(SendCell) );
( )[*J; ( E(SendCell) )
}

// GetCell is preceeded by a complete cell transfer

{

N(GetCell)[*]; [ B(GetCell) |; N(GetCell)[*]
} && {

[]; {

(Clay && !prev(Enb) ); []

H*531;
}
([E(Getcell, outCell, outCell)| && [outCell == cell

);

Fig. 5. Utopia Receive interface: other SEREs.

all cycles in which the function is invoked, whereas E(f), for
end f, is true whenever the function returns. The term N(f), for
neither f, is true at all other times. Function arguments are made
available at function invocation and are syntactically attached to
the B term, as for inCell in B(SendCell, inCell). Similarly,
the return value (if any) is associated with the E term, as for
outCell in E(getcell, outCell).

Function arguments and return values can be related to data
objects. This is shown in Fig. 5 by the data literals inCell ==
cell and outCell == cell. In this way, we can separate the
specification of the object being transferred over the interface
(cell) from its source or destination (inCell or outCell).
This is important because cell is an object that appears in all
the transactors, whereas, for example, SendCell and inCell
do not appear at all in the Master transactor. Notice also that
a property like inCell == cell must be satisfied by the
generated transactors, but there is considerable freedom in how
to achieve that. For example, one can use pointer manipulation
to ensure that inCell and cell refer to the same memory
region, or one could copy the whole array. It is up to code
generator to resolve these choices in an optimal way.

In addition to our extensions, we take advantage of other
features of PSL that facilitate a compact description of the spec-
ification, such as the instantiation of subsequences. Sequence
definitions may be parameterized with arguments that need to
be specified when a sequence is instantiated. An example of
sequence instantiation, and its implications on code generation,
is discussed in Section V. We have found that our extensions,
together with the facilities provided by PSL, are sufficient to
express complex behaviors such as overlapped (or pipelined)
transactions and burst transfers. While regular expressions are
equivalent to state machines, and are therefore complete for
finite-state models, other extensions might be necessary to
easily express particularly complex cases. These additional
extensions would have to be handled using techniques that are
similar to those presented in this paper.

IV. SOFTWARE ARCHITECTURE

Our transactor generation methodology is supported by
a prototype synthesis software that accepts the declarative
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description of the RTL and transaction-level protocols and
generates appropriate code to support different protocol roles.
The overall software architecture is shown in Fig. 6.

The input specification is divided into three sections. The
first section, i.e., variable declaration, is used to declare the
variables and functions that are used or exported by the trans-
actor(s). This section extends the PSL language, which does
not need declarations since these are inherited from the host
language. The middle section is the PSL-like description of the
translation protocol, as described in Section III. This section is
independent of the particular role that is played by a transactor
implementing the protocol. This is necessary, as we require
that one protocol specification be used to construct several
different transactors. In particular, the protocol specification is
nondirectional, in the sense that data and control may flow in
either direction. This is accomplished by declaring the legal
sequences of data and control actions without specifying the
initiator or the recipient of the action. The third section of the
input, i.e., transactor specification, is used to add transactor-
specific information. Here, for each transactor implementing
the protocol, specific directions are assigned to the variables
and functions. For regular data signals, the direction is classified
as input or output. Transaction-level function calls (or actions),
instead, are designated as served or used. Served actions are
functions that are implemented by the transactor and called
by other TLMs. Used actions are functions that are called
but not implemented by the transactor. This information is
used during synthesis to determine how to translate from the
declarative specification to executable code, as described in
Section VII. More customization options can be declared in
this section. For instance, a transactor may declare certain
quantities to be constant or implement only a subset of the avail-
able functionality. This could allow our synthesis technique
to greatly simplify the transactors on an as-needed basis, thus
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sequence transfer(num_bytes, start_addr) {

(addr = start_addr); <addr_cntrl>
b && {
< burst(num_bytes)> | < burst(num_bytes/2) >[*2]
}
s
sequence addr_cntrl( ) {/* body omitted here # };
sequence burst( nb) {/* body omitted here */ };

Fig. 7. Simple protocol specification.
reducing simulation time while maintaining compliance with
the protocol.

The front end takes the input specification and builds an ab-
stract syntax tree that represents the regular expression that de-
scribes the protocols. We support a simplified PSL parser (i.e.,
we only recognize the part of PSL that is related to SEREs) that
has been extended with the required language features that were
discussed in Section III. This has been developed primarily
to have a quick way of implementing and evaluating different
extensions to the language, without the burden of a large
infrastructure. However, the set of functions that are used to
construct the syntax tree (create and connect the nodes) is
exposed to the user as an application programming interface so
that other languages, such as SVA, could be easily integrated.

The nodes of the abstract syntax tree correspond to the
sequential operators, whereas the leaves of the tree are the
Boolean expressions, which are represented in sum-of-product
form. The abstract syntax tree is further translated into an
FSM representation that we use as the basis to generate the
executable code. Section VII provides details of how this is
accomplished. In addition, our parser interprets the transactor
specification and creates the necessary transactor-specific in-
formation as a set of transactor parameters that include the
direction of the signals and the constants. This, together with
the state machine representation of the protocol, is passed to the
code-generation back end, which can generate either C++ code
or Verilog, as described in Section VII. The code that is
common among all transactors, such as the simulation code
that traverses the state machine, is collected in a set of runtime
libraries that are used with the generated code to construct a
complete executable transactor. The combination of the gener-
ated code and the runtime library is then instantiated within the
preferred simulation environment, such as a Verilog and/or a
SystemC simulator, to bridge the communication between the
transaction-level and RTL codes, as shown in Fig. 1.

V. FSM GENERATION AND STATE REPRESENTATION

The first step of the synthesis process consists of translat-
ing the extended PSL specification of the transactor into an
equivalent finite-state representation. We will use the example
in Fig. 7, which is a simple protocol to transfer num_bytes
bytes starting from address start_addr, to illustrate the
procedure. The example also illustrates the use of sequence
instantiation using the operator (...). The transfer consists of
two parallel subsequences. In the first, the addr is initialized
with the starting address, followed by the execution of se-
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quence addr_cntrl, which (presumably) defines how addr
is updated. Concurrently, a data transfer is started, either as a
single burst of num_bytes bytes or as two shorter bursts of
num_bytes/2 bytes.

A. FSM Generation

To avoid constructing an overly large data structure, the size
of the finite-state representation should not grow more than
polynomially (ideally linearly) with the size of the input de-
scription. Unfortunately, there are several situations that could
lead to a potential exponential explosion of the number of
states. One is nondeterminism, which is shown in Fig. 7 by the
choice of two different kinds of burst transfers. One approach
to handling nondeterminism is to replace a nondeterministic
FSM with an equivalent but deterministic one. Unfortunately,
the deterministic equivalent may have exponentially many more
states [11]. Our solution takes advantage of runtime deter-
minization, where the simulator keeps track not only of the
current state but also of the set of all possible current states
consistent with the inputs [23]. The set of current states may
still grow exponentially large. In practice, however, since we
traverse only the portion of FSM that is excited by the input
sequence, we have not observed this phenomenon when we
applied the algorithm to specifications of realistic protocols.
Section IX discusses our choice in more detail, in the context
of other relevant related work.

Another source of potential state explosion is the extension
to data variables, such as addr in the example. The explicit
state representation of an n-bit variable requires 2™ states,
which is infeasible. The obvious solution is simply to record
the variable as an n-bit value. Symbolic state-space search
(such as reachability) remains hard in this case. However, for
simulation, we only record the current value of the variable
along a specific input sequence. Nondeterminism may force us
to consider several values for the variable, one for each con-
current nondeterministic state. As discussed, however, realistic
protocols are, in practice, well behaved.

The process of deriving FSMs from PSL SEREs is syntax
driven, where the FSM for each expression is constructed
starting from the FSMs of each of its subexpression. Each FSM
is defined by its initial state, its final state, and a transition
function that assigns to each state a set of next states. For a
given state s, we use the function next(s) to denote this set.
The construction for a representative of every class of operators,
which is similar to the one proposed in [11] and [23], is shown
in Fig. 8. The construction for other operators is also similar. In
Fig. 8, s and ¢q are SEREs, b is a Boolean expression, n is an
integer expression, c is an integer variable, and SEQ stands for
a name of a previously defined SERE with k parameters. The
solid lines in the graph represent the next states.

The top two rows of Fig. 8 are essentially the same con-
structions that are presented in [11] and [23]. The states of the
machine correspond to the nodes in the abstract syntax tree
that are generated by the parser. In addition, the leaves of the
abstract syntax tree, i.e., the Boolean expressions in the PSL
specification, are used to label certain states. These states are
called labeled states and are represented in the graph as solid
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Fig. 8. Deriving FSMs from PSL SEREs.

circles. For example, the expression (addr = start_addr) in
Fig. 7 generates a state with that same label.

Formally, labels are Boolean expressions over the set of
input, output, and state variables. The atomic expressions in-
clude Boolean signals, data expressions of the form e; ==
ea, where e; and ey are terms over the data variables, and
action expressions of the form B(f), E(f), or N(f), where
f is a transaction-level function. Intuitively, the label describes:
1) conditions that must be satisfied for the system to transition
into a state; 2) outputs that need to be generated when transi-
tioning into a state; and 3) updates to state variables that need
to be performed when transitioning into a state. In addition,
expressions distinguish between present-state variables, which
have already been assigned, and next-state variables, whose
value must be computed. In each simulation step, the values
of input and present-state variables are given. These values
are then substituted into the label of the potential next states
by partially evaluating the expression. If the label of a state
becomes unsatisfiable, then the state cannot be entered under
the given input condition. Otherwise, there exists an assignment
to output and next-state variables that satisfies the label, and the
state can be entered. Finding such an assignment is a crucial
part of each simulation step.

The constructions for the sequencing and the choice opera-
tors are straightforward, and they simply require the generation
and connection of the appropriate initial and final states, which
are represented in the graph by dashed circles. The initial states
of sub-FSMs are marked by “i,” and the final states are marked
by “f.” These states are called transient states because they
could, in principle, be eliminated and can never be observed
as system states. They are retained in the representation because
they simplify the simulation. During execution, transitions orig-
inating from transient states are traversed immediately upon
reaching the transient state, without waiting for the next cycle.
Thus, they behave like the € transitions in [11] and [23].

In addition to the initial and final states, there may be tran-
sient states to which we associate variable updates or conditions
that must be satisfied for the system to enter into that state.
These are shown in the graph under the circle representing the
state. One example is the translation of the repetition operator
[¥n], which denotes repetition for n times. The straightforward
implementation of the PSL semantics of [n] would be to unroll
the loop n times. If repetitions are nested, this would clearly

incur an exponential blowup. By introducing a counter variable
¢, the FSM can be represented as compactly as the original PSL
expression. The exit condition and the update to the counter
variables are executed in appropriate transient states. However,
this complicates the task of simulating the system because:
1) variables need to be considered as part of the global state
and 2) there could be variable updates and entrance conditions
associated with transient states. The simulation algorithm that
we propose addresses these two problems in general: 1) It is
capable of handling state variables (including, but not limited,
to counter variables); and 2) it is capable of handling variable
updates and entrance conditions in transient states (including,
but not limited to, those arising from the operator [xn]).

The FSM for the subexpressions in the top two rows of Fig. 8
are “in-lined”; that is, they will become part of a larger FSM.
Effectively, this flattens the hierarchy by eliminating the node
for the operator from the graph and by replacing it with its
operands. Also, the subsequence and the parallel operator &&
could be eliminated this way. However, both of these operations
may incur an exponential blowup. For example, in sequence
transfer of Fig. 7, subsequence burst is instantiated twice,
with different parameters. In-lining requires that we build two
copies of the same FSM for burst and place them in the
appropriate location within the FSM for transfer. However,
if burst, in turn, instantiates some other sequence twice, and
so on, up to some depth level n, then this approach would result
in a state space that grows exponentially with n. The same
problem happens with composition. In Fig. 7, there are two
parallel subexpressions: one dealing with the address and the
other with data. To in-line the composition, we need to create
one FSM for each subexpression and then form their product
[11]. Unfortunately, if there are n parallel subexpressions, then
the state space of the product is exponential in n.

To avoid this problem, we retain the operator in the FSM
as a compound state, which is shown as a dotted circle in the
figure, and build a hierarchical FSM by recursively generating
the FSM for the operands. For the subsequence operator, a
subsequence state is generated and is associated (dotted lines
in the figure) with the FSM that represents the instantiated
sequence. The subsequence is represented only once. In other
words, if two subsequence operators instantiate the same sub-
sequence, then they will be associated with the same FSM,
thereby avoiding static duplication. In the case of the parallel
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Fig. 9. Example of a hierarchical state.

operator, we introduce a parallel state that has references to the
FSMs for the two subexpressions. Because we represent the two
operands separately, we do not compute the product and avoid
the potential complexity.

It is not hard to see that the number of FSMs generated by
our procedure and the size of the generated FSMs both grow at
most linearly with the size of the initial specification. Therefore,
we have avoided the exponential explosion in FSM generation.

B. Global State Representation

The result of the FSM generation process is a nondetermin-
istic hierarchical state machine. Because the representation is
generic, we will refer to the state machine for the transactor
simply as a system. Starting from the initial state, for a given
level of the hierarchy, the system may transition to a labeled
state (or a transient state) or to a compound state. Whenever a
compound state is reached, the state machine at the lower level
is also activated by entering its initial state. The compound state
is abandoned as soon as the lower level FSM reaches its final
state. Therefore, at any point in time, the state machine is at
some labeled or transient state at a certain level of the hierarchy
and at a compound state at each of the higher levels of the
hierarchy. The combination of the labeled/transient state and the
higher level compound states forms the global state of the FSM.
By contrast, we will refer to the states of the individual FSMs in
the hierarchy as local states. Because the FSM is hierarchical,
the global state can be represented by a tree, where the internal
nodes are the compound local states and the leaves are the la-
beled or transient local states, as shown in Fig. 9. Equivalently,
we can represent the global state g as an expression. We define
a hierarchical state h as an expression in the grammar

h:= () |(s,h1)| (p, b1, h2)

where [ is a labeled or transient state, s is a subsequence
compound state, and p is a parallel compound state. Hierar-
chical states corresponding to subsequence and parallel states
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contain references to the hierarchical states h; and ho (called
substates) rooted at the associated subsequences. A global state
g is then a hierarchical state rooted at the top-level FSM and
is therefore a tree that spans the entire system hierarchy. The
example in Fig. 9 is represented as

(Lo, (I, (I3)) , (I2, (1)) -

In addition to the explicit state information, the state comprises
the evaluation of the variables that are present in the
specification. Variables are classified as input, output, or state
variables. Input and output variables are used to communicate
with the environment, and they include both the simple signals
carrying the data and the extra variables used to denote the
value of action expressions (such as B(func)) corresponding to
the activation of transaction-level function calls. State variables
record internal information, and they include the data and the
counter variables of the extended PSL specification. With each
local state, we therefore associate a data inferpretation, i.e.,
a function I that assigns values to the variables in scope, or
visible, at that state. The values assigned by the interpretation
are computed during simulation according to the given input
sequence and the transitions of the hierarchical FSM. A local
state [ (labeled, transient, or compound) with interpretation I is
denoted as the pair [I, I]. The example in Fig. 9, together with
interpretations, will then be denoted with the expression

([lo, Lo, ({1, 1], (I3, £3])) , ([l2, 12], ([la; 14]))) -

This expression can efficiently be stored in the program by
recording the values of the variables that are given by the
interpretation functions and by maintaining the appropriate
references to the local states in each of the FSM that make up
the system.

Global variables have global scope, whereas other variables
have limited scope. For example, the counter variable c of Fig. 8
goes in scope at the state labeled ¢ = 0 and goes out of scope
at the state labeled ¢ == n. The scope is well defined since
there are no transitions going in or out of the portion of the
FSM enclosed between the initial and final states. The scope of
a variable also extends to all the substates in the lower hierarchy
levels that are reachable while the variable is in scope at a
certain level. Thus, when two distinct states refer to a state
variable x, which is already in scope at a common state at a
higher level of the hierarchy, then they actually refer to the same
variable. In this case, we say that the two states share variable
x. Otherwise, the two states refer to two distinct variables that
simply happen to have the same name.

For a labeled local state [, we say that the pair [I,I] is
consistent whenever the label of [ is satisfied by the values of the
variables that are assigned by . During simulation, we always
construct pairs of states and interpretations that are consistent.
We say that a hierarchical state h is compatible whenever all
labeled local states in h are consistent with the associated
interpretations, and all interpretations agree on the values of the
variables that are shared by their associated states (including
all global variables). Thus, a noncompatible hierarchical state
either has interpretations that are inconsistent with the labels
of their local states or has at least two interpretations that
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require that different values be assigned to the same variable.
For example, consider a state h = ([lo, Io], h1, h2) (a parallel
composition), where hy = [l1,[1] and hg = [lo, I5]. Assume
that states [; and [, are labeled with the expressions “x == 3”
and “x == 5,” respectively, where z is a state variable. If x
is in scope at [y, then hy; and ho share x. The condition of
compatibility requires that both 77 and I assign the same value
to x. It follows that h; and ho cannot be made simultaneously
consistent (since, then, = would be equal to 3 and 5 at the same
time), and thus, state h is not compatible. Otherwise, if x is a
state variable that is not in scope at [y, i.e., it enters in scope in
l1 and I separately, then x is not shared, and the compatibility
condition can be satisfied by assigning z to 3in /; and to 5 in
I5 to ensure consistency.

An interpretation may be incomplete; that is, not all the
variables that are in scope have to be assigned a value. Typ-
ically, we start with an interpretation that assigns values only
to input and present-state variables. Later, when the system
transitions to the next state, we extend it to a compatible
interpretation that assigns values also to output and next-state
variables. Compatibility is therefore the criterion used during
simulation to select a set of next states that are consistent with
the chosen interpretation. Different choices for output variables
will therefore result in different sets of compatible next states.
This process will be described in more detail later in this paper.

The transitions between global states are computed bottom-
up starting from the leaves. From a leaf [, we first determine
the set of next states next(l) (obtained from the construction
in Fig. 8) found at the same level of the hierarchy. If no final
or compound state is reached, then the structure of the tree is
unchanged, except that we update the leaf node. Otherwise, if
we reach a final state, then we trim the branch of the tree at
the parent compound state and compute the next states from
there. If, instead, we reach a compound state, then we extend
the branch of the tree to a new level, which is initialized to the
initial state. In addition, every time a transient state is reached,
we immediately continue to its next states until a labeled or
compound state is reached. This process is implemented by a
recursive procedure, as described in the next section.

VI. SIMULATION ALGORITHM

The simulation of a system evolves through a series of
transitions between the global states of the finite-state structure.
Given a global state and a set of input values, the possible
destination states include all those next states whose label can
be satisfied by an appropriate assignment to the output and
state variables. In general, there may be one or more possible
destination states; that is, the FSM may be nondeterministic.
We distinguish between two types of nondeterminism: 1) state
nondeterminism, where the choice has to do only with which
state to transition to; and 2) output nondeterminism, where
the choice involves selecting among several output values that
are consistent with the execution. We do not resolve state
nondeterminism, but rather maintain a record of all the possible
current states that the system may transition to, thus perform-
ing at runtime the subsets construction [11], [23]. We cannot
follow the same approach to solve the output nondeterminism,
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function Simulate

1 Curr = {(go, Io) };
2 forever
3 Wait ();
4 UpdateInputs(Curr);
5 Temp= |J Newt(g);
g€Curr
6 Curr = UpdateOutputs(Temp);

end forever
end Simulate

Fig. 10. Simulation algorithm.

as the transactor needs to generate a unique output at every
point in time. Our approach is to offer a simple heuristic for
resolving output nondeterminism and to keep it isolated so
that the user can easily replace it with a more sophisticated
strategy.

The overall simulation algorithm is shown in Fig. 10. The
procedure is similar to [23, Algorithm 3.4] (the two-stack
algorithm), with the additional computation of output variables
and handling of the hierarchy. Variable Curr is used to keep
track of the set of current states. It is initialized in step 1 to
the initial state go of the top FSM, and to Iy, which is the
interpretation that assigns initial values to global variables.
The algorithm then enters an infinite loop in step 2, and it
immediately stops to wait in step 3 for the next triggering event,
indicating that inputs have arrived and that outputs need to be
generated. The triggering event is usually a clock edge, but our
approach is not limited to this case.

The following three steps execute a transition: First, in step 4,
the function Updatelnputs updates the interpretation of all
states in the set Curr to reflect the current value of the inputs.
Next, in step 5, the set of next states for all states in Curr
are combined to compute the set of provisional next states that
are consistent with the input assignment. The set is provisional
because only those states that are consistent with the (yet to be)
chosen assignment to the output and next-state variables will
actually be retained. We will discuss this step in more detail
later in this section.

The output assignment is determined in step 6. To understand
the process of output selection, we need to extend the notion
of state compatibility to sets of global states under incomplete
interpretations. Intuitively, two global states are compatible if
their labels can be simultaneously satisfied by interpretations
that agree on the variables shared by the two states. We say that
a set of global states is compatible if:

1) leaf nodes of all the states in the set are labeled local states

(i.e., none of the leaf states are transient);

2) the interpretations associated with all the leaf states can
be extended to output and next-state variables so that all
leaf labels are satisfied (consistency);

3) if two states share variable x, then the extensions in
condition 2 assign the same value to x (compatibility).

It can be shown from the definition of Next (as discussed later
in this section and shown in Fig. 11) that each state of Temp in
step 6, taken individually, satisfies the aforementioned condi-
tions and is therefore compatible. The set Temp taken as a
whole, however, may not. The task of UpdateOutputs is to find
a compatible subset of Temp and the interpretation extensions
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function Next(s)
1 if (s ==[,1])
/l'l is a labeled/transient state

2 Res = SimpleNext(l,I);
3 else if (s == ([I,1],q))
/I'l is a subsequence state
4 Res ={([l,I],d') | ¢ € Next(g) and ¢ not final };
5 if (there are final states in Nexzt(q))
6 Res = Res U SimpleNext(l, I);
8 else if (s == (I, I],q,7))
//'l is a parallel state
9 Res ={([l,I],d',7") | ¢' € Next(q),r" € Neat(r)and
{q', 7"} compatible };
10 if (there are final states in Newt(q) and Next(r))

11 Res = Res U SimpleNext(l, I);
12 return Res;

end Nezt
Fig. 11. Computation of next states.
function SimpleNext(l, )
1 Res = {;
2 forall (n € next(l))
3 if (n is consistent with 1)
5 if (n is labeled or n is final
6 Res =Res\U {Global (n,])};
7 else
// n is a compond or a non-final transient state

8 Res =Res\U Next{Global (n,1)};

return Res;

end SimpleNext

Fig. 12. Helper function for the computation of next states.

satisfying the compatibility conditions 2 and 3. The set depends
on the particular choice of values for output variables. Once a
compatible set is found, UpdateOutputs updates all interpreta-
tions in the selected subset of Temp, making sure that all states
satisfy condition 3. Finally, it updates the values of current-state
variables to reflect the selected next-state values, removes the
next-state variables from all the interpretations (making them
undefined), and returns the selected subset, which now becomes
the new set of current states.

In our implementation, the compatibility conditions are
efficiently enforced by storing in the interpretations only a ref-
erence to actual variables and making sure that interpretations
associated with all states that share a variable have a reference
to the same actual variable. Note also that UpdateOutputs has
some flexibility in choosing outputs if the FSMs are output
nondeterministic, i.e., if in a given state for given inputs, output
variables may be assigned several values. Different choices
may affect the quality of verification, as defined, for example,
by a coverage metric. Therefore, in our implementation of the
simulation algorithm, we provide a customization interface so
that the user (or a verification tool) may make a choice that is
smarter than our default one.

The function Next, as shown in Fig. 11, computes the set
of next states of a state g. Since the FSM is hierarchical, the
procedure must traverse the levels of the hierarchy each time
a compound state is reached or when an FSM at some level
reaches its final state. In addition, the machine must transition
out of transient states immediately, without waiting for the next
simulation step, since transient states are used only for book-
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keeping and are not part of the real state of the system. Thus,
transient states correspond to the ¢ moves in [11] and [23],
with the addition of data operations.

The function Next differs depending on the type of the root
local state associated with g. If g is a labeled or transient state
[l,I], then the algorithm computes and returns (step 2) the
states reachable from [ in one step by calling SimpleNext, as
discussed in the following paragraph. For compound states, the
procedure explores next states at the current and at the lower
level of the hierarchy. For a subsequence state g = ([, I],q),
we first compute all states reachable from ¢ in the lower level
by recursively calling Next on ¢ (step 4). If this search reaches
the final state of the subsequence, in addition to the already
computed set, we also compute and return the states reachable
from [ at the current level (step 6). Similarly, if g is a parallel
state g = ([, I], q,r), we first compute the set of compatible
pairs of states reachable in the associated FSMs (step 9). If
both of the parallel subsequences reach their final states, then
we continue the search at the current level (step 11).

SimpleNext, as shown in Fig. 12, actually executes the tran-
sitions. It first iterates over all local next states next(l) of [
(step 2) and removes from the computation those states that
are not consistent with the current interpretation, i.e., transient
states with an entering condition that is not satisfied by I, or
labeled states where the label is not satisfiable in the context
of I. Then, for labeled and final states, it simply constructs a
new global state (step 6). Transient nonfinal states (the e moves)
are instead processed immediately by recursively calling the
function Next (step 8). The same occurs for compound states,
so that the appropriate substates of the FSM can be activated.

The function Global(n,I) creates a new global state with
n at its root. If n is a labeled or transient state, then
Global(n,I) = [n,I'], where I’ is the same as I except that I’
reflects the variable updates associated with n (if there are any).
Also, the variables that are no longer in scope at m are not
assigned a value by I’, and the variables that are just entering
in scope at n are assigned their initial values by I’. If n is a
subsequence state, then Global(n, I) = ([n, I], ([s,I'])), where
s is the initial state of the FSM associated with n, and I’ is
the same as I except that actual parameters are exchanged for
formal parameters. If n is a parallel state, then Global(n,I) =
([n, I, ([s, 1), ([g, I])), where s and q are initial states of the
FSMs associated with n.

For example, if n is the state corresponding to the instanti-
ation (burst(num_bytes/2)) in Fig. 7, then Global(n,I) =
([n,I],([s,I'])), where s is the initial state of the FSM for
burst, and I’ is the same as I except that I’ assigns to nb
half of the value that I assigns to num_bytes. Similarly, if n
is the state corresponding to the && operator in Fig. 7, then
Global(n,I) = ([n, 1], ([s,I]), (g, I])), where s is the initial
state of the FSM for the subexpression

{(addr = start_addr); (addr_cntrl)}
and q is the initial state of the FSM for the subexpression

{(burst(num_bytes)) | (burst(num_bytes/2))[*2]}.
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VII. CODE GENERATION

We have implemented the FSM generation and the simu-
lation algorithms for several target verification environments.
In all cases, the tool generates code to build the hierarchical
FSM data structure and to instantiate the appropriate ports
and transaction-level functions to connect the transactor to
the rest of the system. Additional code is generated to eval-
uate input constraints for consistency checking, and it exe-
cutes assignments to output and state variables. Specific hooks
in the code have been reserved to let the user modify the
strategy to solve output nondeterminism. In addition to the
transactor code, the tool generates a procedure to implement
each of the protocol functions served by the transactor. This
code intercepts function calls issued by the transaction-level
testbench; that is, it computes the value of action expressions
such as B(func) and then returns when the machine reaches
a state labeled with E(func). The data handling associated
with served functions is instead obtained by manipulating the
interpretations.

The rest of the code, i.e., the algorithm that traverses the FSM
data structure to compute one transition and the set of next
states (the execution engine), and the code to interface to the
simulation environment are not transaction specific. These have
been developed manually and are collected in a precompiled
runtime library that is simply linked during program execution.
For C++, the library consists of approximately 4000 lines of
code for the execution engine and another 300 lines to interface
to the simulation environment.

A. C++ Code Generation

In general, a transactor needs to interface both to transaction-
level modules through served and used functions and to RTL
modules through ports. Function calls are natively supported
in C++. However, communication through ports can be done
in different ways, supported by different verification environ-
ments. Our approach is to generate code based on a generic
notion of a port and to use runtime wrappers to specialize ports
for the particular verification environment used. For example,
we have developed a runtime wrapper that creates SystemC
ports [1] out of generic ports. We have also developed alter-
native runtime wrappers that can be used with the TestBuilder
(TB) environment [32]. If any other similar C++-based environ-
ments became relevant, we can easily develop new wrappers
without the need to change the code-generation part of our
system.

B. Verilog Code Generation

The algorithm in Section VI is not directly suitable for
Verilog implementation because data structures representing
both global states and sets of such states are dynamic. While
it is in many cases possible to tightly bound the size of a
representation of an individual global state, it is usually much
harder to find a reasonable a priori bound on the number of such
states that need to be stored at the same time. Our approach is
to make this bound a user-controlled parameter. A warning is
reported if this bound is exceeded during an execution. The
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simulation results represent correct system behaviors even if
this happens. However, some of the correct behaviors may be
impossible to exhibit (see also Section IX for a discussion of
these choices).

As mentioned earlier, transactors need to offer both function-
calling interfaces to TLMs and port interfaces to RTL models.
For Verilog code, port communication is natively supported,
whereas there is no clear best way to do function calls. Our
generated code uses a simple handshaking protocol to indicate
the beginning and the end of a function call. Alternatively, we
could use Verilog tasks for the same purpose.

C. SCE-MI-Compliant Transactor

SCE-MI is a protocol supporting transaction-based
acceleration, where transactors consist of a software (SW)
part and a hardware (HW) part communicating through SCE-
MI-defined ports [4]. The HW part, which is responsible for
most of the computation, can then transparently be simulated
by a simulator or emulated by an accelerator supporting
SCE-ML. This clear advantage of SCE-MI is traded off with
the additional burden on the designer of creating SCE-MI-
compliant transactors. We have alleviated this burden by
implementing a generator of SCE-MI-compliant transactors
from formal protocol specifications.

The generated code consists of two parts. The SW part,
which is written in C++, implements functions served by the
transactor. The implementation of the served functions does no
processing, but it simply forwards function arguments to the
HW part through SCE-MI-defined ports and then waits for the
HW part to indicate that the function must return (possibly with
a return value also communicated through SCE-MI-defined
ports). The HW part is written in Verilog, and it is similar to
the Verilog-only code except that it uses SCE-MI-defined ports
to communicate function arguments and return values to the
SW part.

In this scheme, only the transaction-level arguments and
return values cross the HW—SW boundary. All the detailed
RTL signal manipulation, which would usually require a much
higher bandwidth, takes place instead on the accelerated HW
side. This is important because the HW-SW bandwidth may
limit the gains obtained by emulating the HW part.

VIII. CASE STUDIES

We have applied our transactor generation techniques to three
case studies. In each of the three cases, we started from an
existing design coupled with a TLM of at least the testbench, if
not the whole design. Every case included several handwritten
transactors based on standard protocols. In every case, we
formally specified the protocol and used our system to generate
transactors. We then replaced handwritten transactors with the
ones we generated and verified that the overall behavior did
not change.

In developing our code generator, we have been primarily
concerned with the verification methodology and with avoiding
state explosion, rather than with optimizing simulation speed.
Nonetheless, for all cases, there was no observable change
in performance between the simulation of the system with
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TABLE 1
TRANSACTOR GENERATION CASE STUDIES

lines of code
States | hand | PSL | C++ | Ver | SCE-MI | SCE-MI
design C++ Veril
ATM (TB) 59 | 1012 | 60 | 634 |299 72 313
UART (Ver) | 50 S5 53 450 126 169
SoC (C++) | 279 513 | 5600 100 11000

the handwritten transactor and with the generated transactor.
Indeed, the bulk of the simulation time is likely to be spent in
the (RTL) code for the device under verification, thus severely
limiting the impact of any optimization in the transactors. We
have therefore simply focused on avoiding obvious inefficien-
cies. For designs that are transactor dominated, however, op-
timization techniques might be required to achieve acceptable
performance [33], [34].

The first test case is an ATM switch design that follows the
Utopia protocol to transfer ATM cells. It was verified by a
C++ transaction-level testbench generating ATM packets that
were then converted to RTL signals by a handwritten transactor
using TB utilities. We replaced this transactor with the one we
generated in C++, supported by the runtime wrappers we have
developed for TB.

The second test case is a universal asynchronous receiver/
transmitter (UART) design that communicates to the outside
world through the on-chip peripheral bus protocol [35]. It
was originally verified by a transaction-level testbench and
transactors, both of which were written in Verilog. Therefore,
we have used this case study to test our Verilog code genera-
tion. We have also rewritten the testbench in C++ to test our
C++ code generation with SystemC runtime wrappers. Finally,
we have tested our SCE-MI-compliant code generation using
the same testbench.

The third test case is a complex system-on-chip (SoC) design
consisting of two processors, four direct memory access chan-
nels, and a number of application-specific integrated circuit
(ASIC) engines targeted at multimedia application. A partial
TLM in SystemC has been created for this design. This model
communicates with the rest of the system (written in RTL
Verilog) through the advanced microcontroller bus architec-
ture (AMBA) [36], and handwritten transactors in C++ were
used to convert AMBA transactions into sequences of RTL
signals. We have replaced these handwritten transactors in two
experiments: once by transactors we generated in C++ with
SystemC runtime wrappers and once by the generated SCE-
MI-compliant transactors. The generated transactors did not
support arbitration and split transfers since the system did not
make use of these features. However, they did support both
single and burst transfers, as well as overlapped (pipelined)
transactions.

Table I shows the experimental results. The table lists the
number of generated states, the size of the handwritten transac-
tors, the size of the formal protocol specifications in PSL, and
the size of the generated C++, Verilog, and SCE-MI-compliant
codes (both the C++ and Verilog part). The UART design
did not use general-purpose transactors, but rather some code
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specific to this testbench that acted as a transactor. Thus, in
this cases, the original transactors were rather small and very
similar in size to the formal protocol specification. The size
of the generated transactor is considerably larger than that of
the handwritten one, but it is still relatively small and, as we
explained earlier, grows only linearly with the size of the formal
specification. Even in this case, our approach has the advantage
that the formal specification can be shared between transactors
for different protocol roles and in different languages.

In the case of the ATM switch, a full-fledged UTOPIA
transactor was used. It is much larger not only than the protocol
specification but also than the generated code. However, our
protocol specification did not cover the complete protocol,
but only the features exercised by the testbenches. Hence, the
handwritten transactor also has much larger functionality than
the transactor generated from our protocol specification.

Our largest case study is the SoC design. In this case, the
original handwritten transactors were not available in source
code but were part of a dynamic library. We are therefore unable
to report the number of lines of code. This study, however,
shows that a relatively complex transactor can be specified
compactly in our extended PSL.

The full comparison of our approach versus the handwritten
one must also take into account the size of the runtime library,
which consists of approximately 4300 lines of code. However,
developing this library is a one-time effort that can be amor-
tized over many designs. In addition, the execution engine and
the hierarchical FSM representation are generic. The runtime
library could therefore be used for other purposes where a
compact nondeterministic representation is required. Exploring
other uses of our technique, such as in architecture analysis, is
part of our future work.

IX. DESIGN CHOICES AND RELATED WORK

Our approach to code generation is inspired by the produc-
tion based specification (PBS) framework and its evolutions,
such as Clairvoyant and Protocol Compiler [15], [37], but it
differs significantly in objectives and focus. As for PBS, our
specification mechanism is based on regular expressions. In
PBS, besides the operators, the specification is grammar based
and partitioned into conditions, which depend on the input vari-
ables, and actions, which set the value of the output variables.
This distinction is useful during synthesis. However, this is
contrary to our methodology, where the transactor specification
is shared between all protocol roles, and where the direction
(input/output) of the signals must be initially abstracted away.
Some of our extensions to PSL are, in fact, motivated by the
requirement of representing “actions” in an abstract form within
the context of a Boolean expression. These considerations also
justify our use of the sum-of-product form for representing
Boolean and data expressions, which is easier to handle when
extracting the information about output assignment than the
binary decision diagram (BDD) representation used in PBS.
Indeed, actions in PBS are represented procedurally, which
is a choice that makes it hard to represent the output non-
determinism that may arise as a consequence of a particular
partition of the signals into inputs and outputs. In addition,
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our extensions are conceived to directly support function-call-
based communication, which is an area that is not covered
by PBS. Besides these modeling aspects, PBS also faces the
same issues regarding state explosion during synthesis. Their
implementation makes use of an encoding of the global state
that effectively keeps track of all the possible nondetermin-
istic states simultaneously by asserting a set of bits, each of
which corresponds to one of the currently active states. This
is therefore equivalent to executing the subsets construction
at runtime [23]. This scheme, which is typical also of Esterel
compilers [28], is particularly indicated for a hardware imple-
mentation of the protocol since hardware is good at working
with bits and the representation is very compact. Our focus,
however, is not on the synthesis of hardware as in PBS, but
rather on the software simulation of the transactor protocol.
Indeed, transactors are regarded as part of the testbench and
are not generally intended for inclusion in the final system. As
such, we have opted for a simpler synthesis strategy, which
is inspired by parser generators (see next paragraph), that is
easy to implement in software and that facilitates the creation
and simulation of a hierarchical state machine. For this reason,
and to avoid potential state explosion connected with one-hot
encoding of data or counter variables, we have maintained the
same approach also for the Verilog code generation. Similarly
to our hierarchical representation, Seawright and Meyer also
consider the problem of partitioning the synthesized hardware
by taking advantage of the hierarchical nature of the specifica-
tion [38]. The process involves the application of reachability
analysis to compute the set of sequential don’t cares required
for Boolean simplification and optimization. Using this tech-
nique, the authors demonstrate a substantial reduction in the
size of the generated circuit and an increase in performance.
Such complex procedure is justified in the case of hardware
synthesis to achieve higher performance or lower power and,
more importantly, where the area of the circuit is directly
proportional to the production cost. These problems are far
less relevant in simulation, where program memory is relatively
cheap, and simulation speed is not affected by code size the
way hardware is. Therefore, we were satisfied with avoiding
state and code-size explosion and did not pursue further oppor-
tunities for optimization. That notwithstanding, advanced opti-
mization techniques could be applied in the case of transactor
generation for hardware-based acceleration. The evaluation of
the tradeoffs that are involved in this choice is, however, part of
our future work.

Similarly to PBS, our framework resembles the specification
style and implementation strategy employed in parser genera-
tors such as Lex and Yacc [39], [40]. Our modeling approach
is somewhat simplified since it is based on regular expressions
and is therefore not concerned with lookahead. On the other
hand, as discussed before, our model is distinguished by the
implicit (as opposed to explicit) representation of actions that
we use to obtain transparency with respect to protocol role. In
addition, we must handle the parallel composition operator and
output nondeterminism, which are not present in parser speci-
fications. Several techniques have been developed for avoiding
state explosion. As shown, we rely on the runtime subsets con-
struction [23, Algorithm 3.4]). Other techniques include lazy
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evaluation [3, p. 128] (where the explicit transition structure
itself is built only at runtime for the part of the state machine
that is actually traversed) and alternative ways of constructing,
partitioning, and/or encoding the finite automata [34], [41].
While it would be possible to use these methods in our case, we
have again preferred to use a simple translation algorithm and
to focus on the aspects of the translation that are characteristic
to our problem. In particular, for partitioning, we rely on
the natural decomposition denoted by the hierarchy building
operators of our source language.

X. CONCLUSION

The development of transactors connecting TLMs to RTL
models is complex, costly, and error prone. We have proposed
a methodology where interface protocols are specified formally
only once, in a way that is very similar to assertions used in
verification. Transactors are then automatically generated from
such a specification. Many transactors may be generated from
a single interface specification, depending on which part of the
design is being verified, what modes of the interface are being
exercised, and which verification technology is being used (e.g.,
simulation versus acceleration). In addition, formal interface
specifications can be used as assertions and verified either
dynamically or statically (in which case, some abstraction may
be necessary).

The specification formalism supports data variables, non-
determinism, parallelism, and submodule instantiation. Our
scheme avoids state-space explosion associated with a naive
treatment of these features by postponing dealing with them un-
til simulation time. The burden is thus shifted to the simulation
algorithm, which we have also proposed. In the worst case, the
number of states visited in simulation may be exponential in
the size of original specification, but, in practice, it is typically
proportional to the size of the input sequence. Our approach can
be applied to FSM generation from other formalisms that have
some or all of the critical features.

We believe that formal interface specification and auto-
matic transactor generation reduce development effort, foster
transaction-based acceleration, enable more reuse, and allow
designers to explore more design options.
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