
Constraints Speci�cation at Higher Levels of Abstraction

Felice Balarin, Jerry Burch, Luciano Lavagno, Yosinori Watanabe

Cadence Berkeley Laboratories

Berkeley, CA

Roberto Passerone, Alberto Sangiovanni-Vincentelli

Department of EECS

University of California at Berkeley

Berkeley, CA

Abstract

We are proposing a formalism to express performance con-
straints at a high level of abstraction. The formalism al-
lows specifying design performance constraints even before
all low level details necessary to evaluate them are known.
It is based on a solid mathematical foundation, to remove
any ambiguity in its interpretation, and yet it allows quite
simple and natural speci�cation of many typical constraints.
Once the design details are known, the satisfaction of con-
straints can be checked either by simulation, or by formal
techniques like theorem proving, and, in some cases, by au-
tomatic model checking.

1 Introduction

The value of any design can be divided into three broad cat-
egories: functionality, performance, and cost. All three are
equally important, and a design can be successful only if it
meets its goals in all three categories. However, the design
process usually starts only with functional speci�cation, be-
cause it is often not possible to evaluate performance and
cost until much later in the design cycle. In other words,
at higher levels of abstractions, performance and cost are
constraints that have to be met, but they depend on quanti-
ties that will be de�ned only at lower levels of abstractions,
when many implementation details are known. For exam-
ple, an engine control system needs to meet hard real-time
constraints, but its initial speci�cation is typically in an un-
timed programming language.

We believe it is important that system speci�cations in-
clude performance and cost constraints starting at the high-
est level of abstraction, even if they are expressed in terms
of yet unde�ned quantities. In this way, global constraints
can be propagated to subsystems, possibly based on rough
performance estimates. Inconsistent, or overly aggressive
constraints can be recognized early, and appropriate ad-
justments can be made (e.g. relaxing some constraints, or
adopting alternative designs). To gain wide acceptance, a
constraint speci�cation formalism must accomplish the fol-
lowing (somewhat con
icting) goals:

� it must be based on a solid mathematical foundation,
to remove any ambiguity in its interpretation,

� it must feel natural to the designer, so that typical
constraints are easy to specify,

� it must be compatible with existing functional spec-
i�cation formalisms, so that language extensions for
constraint speci�cation can be easily de�ned,

� it must be powerful enough to express a wide range of
interesting constraints,

� it must be simple enough to be analyzable, at least
by simulation, and ideally by automatic formal tech-
niques.

In this paper, we propose a constraint speci�cation formal-
ism that addresses all of these goals. In case of con
icting
goals (e.g. expressiveness vs. simplicity), we believe that the
proposed formalism presents a reasonable compromise.

1.1 Related work

Constraint de�nition is central to many methodologies. A
general approach is taken by the Rosetta [1] language: di�er-
ent domains of computation are described declaratively and
constraints can be expressed as predicates on some de�ned
quantities. Constraints are then applied by combining the
di�erent domains. In our work we restrict the scope of con-
straints de�nition in favor of a representation that is more
natural to the designer and that is more computationally
tractable.

A more restricted approach is taken in Object Constraint
Language (OCL) [8], part of the Uni�ed Modeling Language
(UML). OCL supports invariants, pre- and post-conditions,
and guards, applied to classes, operations of classes, and
states respectively. Another related proposal is the Design
Constraints Description Language (DCDL) [4] sponsored by
Accellera, which is intended mostly for low-level (i.e. chip-
level) constraints like clock slew, operating voltages and port
capacitances. In both of these approaches, constraints are
speci�ed for a collection of entities that represent a system
(classes and their operations and states in case of OCL, and
physical objects in case of DCDL). This facilitates specify-
ing constraints associated with the system as a whole, e.g.
area, yield, testability, time to market. In contrast, we fo-
cus on specifying constraints for particular executions of the
system, like response time, energy consumption and mem-
ory usage. OCL also supports this, to some extent, through
pre-conditions, post-conditions, and guards. However, while
these constructs naturally express constraints on a single
transition, our approach makes it easy to express constraints
that span several transitions. In fact, in our approach, it is
easy to specify properties for which it is impossible to bound
in advance the number of transitions needed to check them.

In the rest of this paper, we �rst present our constraint
speci�cation formalism in Section 2. We show how the pro-
posed formalism can express some common constraints in
Section 3. Simulation and formal veri�cation of constraints

are discussed in Section 4. Finally, in Section 5, we make
conclusions and give some directions for future research.

2 Formalization

We aim at a constraint speci�cation formalism that is com-
patible with a wide range of functional speci�cation for-
malisms. Many of these describe a system as a network of
components communicating through �xed interconnections.
The observed behavior of the system is usually characterized
by sequences of values observed at the interconnections. In
the rest of this section, we �rst de�ne formal structures in-
tended to model these sequences, and then propose the syn-
tax and the semantics of the logic for specifying constraints
over these structures.

2.1 Representing system behaviors

We use the term behavior to denote the sequence of inputs
and outputs that a system exhibits when excited by the
input sequence. Formally, let E be a set of event names1

and for each e 2 E let V (e) be its value domain. Then, a
behavior is a mapping � : E � IN 7!

S
e2E

V (e) such that

�(e; n) 2 V (e) for each e 2 E, and each positive integer
n 2 IN. A system is speci�ed by a set of event names, their
value domains and a set of behaviors.

In a typical system, event names may represent inter-
connections, e.g. wires in a hardware system, or mailboxes
in a software system. The behavior of the system is then
characterized by sequences of values on wires, or sequences
of messages to mailboxes.

Behaviors by themselves are not su�cient to evaluate
constraints. For this, we need additional information regard-
ing performance measures. We represent this information as
annotations to behaviors. Formally, given an arbitrary set
T , a T -valued annotation is a function from E � IN to T .
Similarly to events, if f is a T -valued annotation, then we
say that T is the value domain of f . An annotated behav-
ior is a pair (�;A) where � is a behavior and A is a set of
annotations.

In this paper we show a few uses of annotations, but
make no proposal for their speci�cation. We assume that
they are part of functional speci�cation, and thus speci�ed
with the same language as functional speci�cation. In a
way, they are an extension of an already common design
practice, where comments and assertions are placed in the
code to ease design understanding and debugging.

Annotated behaviors are structures for which we want to
state constraints. We express these constraints in a subset
of �rst-order logic called the logic of constraints, or LOC for
short. In other words, annotated behaviors are models of
LOC formulas.

2.2 LOC syntax

LOC formulas are de�ned relative to a multi-sorted algebra
(A;O;R), where A is a set of sets (sorts), O is a set of opera-
tors, and R is a set of relations on sets in A. More precisely,
elements of O are functions of the form T1 � � � � � Tn 7!
Tn+1, where n is a natural number, and T1; : : : ; Tn+1 are
(not necessarily distinct) elements of A. If o 2 O is such
a function, than we say that o is n-ary and Tn+1-valued.

1In this paper, we assume that E is �nite. However, the approach
presented here could easily be extended to arbitrary sets of event
names. This extension would allow us to consider networks with dy-
namic process and interconnection creation.

Similarly, an n-ary relation in R is a function of the form
T1 � � � � � Tn 7! ftrue; falseg. We require that A contains
at least the set IN of natural numbers, and the value do-
mains of all event names and annotations appearing in the
formula. For example, if A contains integers and reals, O
could contain standard addition and multiplication, and R
could contain usual relational operators (=; <;>; : : :).

LOC formulas may contain only one variable, namely
i. The domain of i is IN. Having only one variable may
seem very restrictive, but so far we have not found a natural
constraint that required more than one. In e�ect, the ability
of de�ning annotations allows one to specify formulas that
otherwise require more than one variable, as we shall see
later with examples. The advantages of a single variable
are simpler syntax (fewer names), and simpler simulation
monitoring.

The basic building blocks of LOC formulas are terms.
We distinguish terms by their value domains:

� i is an IN-valued term,

� for each value domain T 2 A, and each c 2 T , c is a
T -valued term,

� if � is an IN-valued term, e 2 E is an event name, and
f is a T -valued annotation, then val(e[�]) is a V (e)-
valued term, and f(e[�]) is a T -valued term,2

� if o 2 O is a T -valued n-ary operator, and �1; : : : ; �n
are appropriately valued terms, then o(�1; : : : ; �n) is a
T -valued term.

Terms are used to build LOC formulas in the standard way:

� if r 2 R is an n-ary relation, and �1; : : : ; �n are ap-
propriately valued terms, then r(�1; : : : ; �n) is an LOC
formula,

� if � and are LOC formulas, so are �, �^ , and �_ .

For example, if a and b are names of IN-valued events,
and f and g are IN-valued annotations, then the set of LOC
formulas includes the following:

val(a[i]) = 5 ^ val(a[i+ 1]) = 5

f(a[i+ 4]) + f(b[g(a[i])]) < 20

val(a[i]) = 0 _ f(b[i]) = 0 :

When reading these formulas, it is helpful to think of i as be-
ing universally quanti�ed, as clari�ed in the LOC semantics
next.

2.3 LOC semantics

Informally, LOC formulas are evaluated at annotated be-
havior (�;A) as follows:

� the variable i evaluates to any positive integer,

� if � evaluates to some positive integer n, then e[�] eval-
uates to �(e; n), and f(e[�]) evaluates to f(e; n),

� all other operators, relations and Boolean functions are
evaluated in the standard way, and

2It may appear that expression f(e[�]) is in con
ict with the def-
inition of a T -valued annotation as a function from E � IN to T .
However, when we de�ne the semantics of f(e[�]) it will become clear
that there is no con
ict.

� an annotated behavior satis�es an LOC formula if the
formula evaluates to true for all possible values of i.

More formally, we �rst de�ne the value of formulas and
terms with respect to an annotated behavior, and a value of
variable i. We use Vn(�;A)[[�]], where � is a term or a formula,
to denote the value of � evaluated at the annotated behavior
(�;A) and the value n of variable i. The value is de�ned
recursively as follows:

� Vn(�;A)[[i]] = n,

� Vn(�;A)[[c]] = c for each element c of each value domain
T ,

� Vn(�;A)[[val(e[�])]] = �(e;Vn(�;A)[[�]]) for each event name
e and each IN-valued term � ,

� Vn(�;A)[[f(e[�])]] = f(e;Vn(�;A)[[�]]) for each annotation
f 2 A, each event name e, and each IN-valued term � ,

� Vn(�;A)[[o(�1; : : : ; �k)]] = o(Vn(�;A)[[�1]]; : : : ;V
n
(�;A)[[�k]]) for

each k-ary operator o,

� Vn(�;A)[[r(�1; : : : ; �k)]] = r(Vn(�;A)[[�1]]; : : : ;V
n
(�;A)[[�k]]) for

each k-ary relation r,

� Vn(�;A)[[�]] = true if and only if Vn(�;A)[[�]] = false,

� Vn(�;A)[[� ^]] = true if and only if Vn(�;A)[[�]] = true

and Vn(�;A)[[]] = true,

� Vn(�;A)[[� _]] = true if and only if Vn(�;A)[[�]] = true or

Vn(�;A)[[]] = true.

We say that an annotated behavior (�;A) satis�es a formula
�, if Vn(�;A)[[�]] = true for all n 2 IN.

3 Examples of constraints expressed in LOC

In the following examples, we assume that the set of event
names is E = fin; outg, and that a real-valued annotation t
is de�ned. Intuitively, we assume that t(e[i]) corresponds to
the time of the i-th occurrence of an event e. The following
common constraints are now easy to express:

rate: \a new out will be produced every P time units":

t(out[i+ 1])� t(out[i]) = P ;

latency: \out is generated no more than L time units after
in":

t(out[i])� t(in[i]) � L ;

jitter: \every out is no more than J time units away from
the corresponding tick of the real-time clock with pe-
riod P":

jt(out[i])� i � P j � J ;

throughput: \at least X out events will be produced in
any period of T time units":

t(out[i+X])� t(out[i]) � T ;

burstiness: \no more than X in events will arrive in any
period of T time units":

t(in[i+X])� t(in[i]) > T :

Consider the latency constraint above. It is valid as-
suming that in and out are kept synchronized, i.e. the i-th
occurrence of in causes the i-th occurrence of out. However,
this is not true for all systems. In some systems, input events
may be lost or intentionally ignored. In these cases, it is not
obvious which occurrences of in and out should be compared
for latency. Annotations provide a convenient way for a de-
signer to add this information to the system speci�cation.
For example, assume that an IN-valued annotation named
cause is de�ned for each out event, and that cause(out[i])
represents the index of the occurrence of in which caused
out[i]. In this case, the latency constraint can be speci�ed
as follows:

t(out[i])� t(in[cause(out[i])]) � L : (1)

This example illustrates how annotations can be used to
augment the design with information which is not strictly
necessary for its functionality, but which helps in under-
standing design intentions. In general, such information
could be also used by formal techniques to help prove (or
disprove) the correctness of the design.

This example also illustrates how annotations can some-
times replace additional variables. Assume that out should
be compared with the most recent in for latency. If LOC
allowed variable j in addition to i, then this property could
be expressed by:

(t(in[j]) < t(out[i]) ^ t(out[i]) � t(in[j + 1])) =)

(t(out[i])� t(in[j]) � L) : (2)

If cause is properly de�ned, then (1) and (2) are equivalent.
We can check that cause is properly de�ned by verifying the
following LOC formula:

t(in[cause(out[i]) < t(out[i])^

t(out[i]) � t(in[cause(out[i]) + 1]) :

4 Verifying LOC constraints

At the beginning of a design cycle most annotations will
likely not be de�ned, and LOC formula cannot be evalu-
ated. Later on, as design details are �lled in, annotations
will become de�ned and constraints can be veri�ed. In gen-
eral, this can be done either informally by simulation, or by
formal techniques like theorem proving or automatic model
checking.

4.1 Simulation

Annotated behaviors are intended to be a formalization of
simulation traces. However, annotated behaviors are in�-
nite structures (�(e; n) is de�ned for all positive integers
n), while in reality, any simulation trace is only a �nal pre-
�x of a conceptually in�nite trace. By letting a simulation
run longer, the trace can be extended, but it can never be
completed. To check that a formula is satis�ed by a trace,
one needs to evaluate it for all possible values of variable
i. Unfortunately, given only a �nite pre�x one can typically
evaluate a formula only for some values of i. If any of these
evaluations produces false, we can conclude that the for-
mula is not satis�ed. However, we can never conclude that
an arbitrary formula is satis�ed just from a �nite simulation
trace.

A simple algorithm that checks whether a given simula-
tion trace satis�es a given LOC formula is:

1. Let the current value of i be 0.

2. Try to evaluate the formula for the current value of i.

3. If the formula evaluates to true, or if the given trace is
too short to evaluate the formula for the current value
of i, then increase i by one and go to step 2. Otherwise
(i.e. if the formula evaluates to false), report that the
formula is not satis�ed and stop.

This algorithm will terminate only if the formula is not sat-
is�ed. To ensure that the algorithm terminate, we need to
enable it to either:

� conclude that the formula is satis�ed for all values of
i, or

� conclude that the trace is not long enough to evaluate
the formula for any additional values of i.

Both of this analyses can be automated, but, unfortunately,
they require complex capabilities typically found in theorem
proving tools.

For example, the formula:

i > 5 _ val(a[i]) = 1

obviously evaluates to true for all values of i greater than
5, so if it is not violated by a �nite trace with at least �ve
occurrences of a, we can conclude that it is satis�ed by all
in�nite extensions of that �nite trace.

Similarly, given a trace in which event a occurs 18 times,
the formula

val(a[i3 � 10i2 + 26]) = 1

can be evaluated only for �ve values of i (1, 3, 4, 5, 6).
Unfortunately, �nding this fact requires solving the following
non-linear integer inequality:

i
3 � 10i2 + 26 � 18 :

In any case, incomplete veri�cation results are intrinsic
to simulation. Systems can typically exhibit in�nitely many
di�erent behaviors (prompted by di�erent input stimuli),
only few of which can be simulated with �nite resources.
Nevertheless, simulation is still the cornerstone of all prac-
tical veri�cation methodologies. Therefore, it is reasonable
to expect that checking LOC constraints by simulation will
be valuable in increasing con�dence in design performance.

4.2 Theorem proving

LOC is just a subset for �rst order logic, so any theorem
prover that can handle �rst order logic can also handle LOC,
e.g. [3]. If a system behavior is also represented inside the
prover, then satisfaction of LOC constraints can be formu-
lated as theorems, and checked by the tool. How to rep-
resent system behaviors within a theorem prover is beyond
the scope of this paper, but it is a topic that has attracted
a lot of interest in the research community (e.g. [6]).

Even without the system speci�cation, theorem provers
can be useful in analyzing constraints. Consider for example
the latency constraint:

t(out[i])� t(in[i]) � 10 :

If we architect the system such that it consists of two subsys-
tems, the �rst one of which takes in as input and produces
an intermediate event x, and the second takes x as input

bool a val, b val

a val := b val := T

repeat f
await (new input event)
if (value of input event is T)

emit event a with value a val
a val := a val

g else f
emit event b with value b val
b val := a val

g
g

Figure 1: A simple system.

� 1 2 3 4 5 6 7 8 � � �
input T F F F T F F T � � �

a T F T � � �
b T F F F T � � �

Figure 2: A behavior of the system in Figure 1.

and produces out, we may decide to decompose the global
latency constraint into the following two local constraints:

t(out[i])� t(x[i]) � 5

t(x[i])� t(in[i]) � 5 ;

and proceed with the design of subsystems based on the
local constraints. Theorem provers can help ensure that
local constraints indeed imply the global constraint, even
before the design of subsystems is done.

4.3 Model Checking

In order to use automatic model checking [7, 5] to verify
LOC constraints, the following needs to be done:

1. system behaviors (including annotations) need to be
represented as a �nite-state automaton over some �-
nite alphabet,

2. an LOC formula needs to be converted into a temporal
logic formula over the same alphabet (or, equivalently,
into a �nite state automaton over the same alphabet).

Both of these steps are non-trivial, and each one may be
impossible. Both are clearly impossible if value domains of
some events or annotations are in�nite. But even if all value
domains are �nite, problems may arise.

Consider the system described by the pseudo code in
Figure 1. It has three event names (input, a, b), all with
the value domain fT; Fg. It has many behaviors, determined
by di�erent input streams. One of its behavior is shown in
Figure 2.

Note that the behaviors are well de�ned only if the input
event takes both value T and F in�nitely often. Otherwise,
there are only �nitely many occurrences of a or b, and our
de�nition of a behaviors requires that each event occurs in-
�nitely many times. Not being able to consider events which
occur only �nitely many time might be considered a short-
coming of our approach. This shortcoming could be �xed
by allowing behaviors to contain �nite sequences for some
events. While this modi�cation is conceptually simple, it
does introduce signi�cant technical di�culty. In particular,
LOC syntax needs to deal with the case when terms like

a val = T

a val = T

b val = T b val = T

a val = F

a val = F

b val = F

INIT

input = F=b = F

input = F=b = T

input = T=a = T

input = T=a = F

input = T=a = F

input = T=a = T

input = F=b = F

input = F=b = T

b val = F

Figure 3: A �nite state automaton for the system in Fig-
ure 1.

val(e[i]) are not de�ned. To avoid these tedious details, we
have decided to stick with in�nite behaviors in this paper.

Getting back to the example in Figure 1, if we want to
represent it as a �nite-state automaton, we �rst need to
choose an alphabet. It may seem that fT; Fg3 is a good
choice. In this alphabet, the behavior in Figure 2 would be
represented as the sequence:

(T; T; T); (F; F; F); (F; T; F); : : :

Unfortunately, in this representation, the system cannot be
modeled with a �nite number of states, because it needs
to make and remember a potentially unbounded number of
guesses about future input values in order to determine the
value of b in the current \step".

A better choice of alphabet is f?; T; Fg3, where ? indi-
cates that the corresponding event is not emitted in that
step. In this alphabet, the behavior in Figure 2 would be
represented as the following sequence:

(T; T;?); (F;?;T); (F;?; F); (F;?; F); (T; F;?); : : :

A �nite state representation of the system is shown in Fig-
ure 3.

The choice of alphabet also a�ects how LOC formulas
are translated into automata. For example, in the alphabet
fT; Fg3, the formula

a[i] = b[i]

is represented by a trivial one-state automaton. However,
the same formula in the alphabet f?; T; Fg3 requires in-
�nitely many states, because i-th occurrences of a and b can
be separated by arbitrary many steps. On the other hand,
some formulas are represented by the same automaton in
both alphabets. An example is the constraint:

a[i+ 2] = a[i]

a = F

a = T a = Fa = F

a = F

a = T

a = F

a = T

INITT F

a = T

a = T

TT TF FT FF

Figure 4: A �nite state automaton for the constraint a[i +
2] = a[i].

which states that a is periodic with period 2. The automaton
for this formula is shown in Figure 4. Automatic model
checking tools can easily check that all sequences generated
by the automaton in Figure 3 are accepted by the automaton
in Figure 4, proving that a is indeed periodic with period 2.

5 Conclusions

The logic of constraints is a simple subset of �rst order logic
that is still su�cient to express many interesting constraints.
It is interpreted over structures that closely resemble sim-
ulation traces. Therefore, it can be analyzed both by for-
mal techniques and simulation. We intend to use the LOC
as a part of a comprehensive system-level design environ-
ment called Metropolis, a successor to POLIS design envi-
ronment [2].

References

[1] P. Alexander, C. Kong, and D. Barton. Rosetta usage
guide. available at http://www.sldl.org, 2001.

[2] Felice Balarin et al. Hardware-software co-design of em-
bedded systems: the POLIS approach. Kluwer Academic
Publishers, 1997.

[3] R.S. Boyer, M. Kaufmann, and J.S. Moore. The boyer-
moore theorem prover and its interactive enhancement.
Computers & Mathematics with Applications, pages 27{
62, January 1995.

[4] Quick reference guide for the Design
Constraints Description Language (DCDL). available at
http://www.eda.org/dcwg, 2000.

[5] Z. Har'El and R. P. Kurshan. Software for analysis of
coordination. In Proceedings of the International Con-
ference on System Science, pages 382{385, 1988.

[6] Warren A. Hunt Jr. and Steven D. Johnson, editors. For-
mal methods in computer-aided design: third interna-
tional conference FMCAD 2000. Springer-Verlag, 2000.
LNCS vol. 1954.

[7] Kenneth L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[8] Object Constraint Language speci�cation. available at
http://www.omg.org, 1997.

