## Distinct but Effective Neural Networks for Facial Emotion Recognition in Individuals with Autism: A Deep Learning Approach

Juan Manuel Mayor Torres,<sup>1,2</sup> Tessa Clarkson,<sup>1</sup> Kathryn M. Hauschild,<sup>1</sup> Christian Luhmann,<sup>1</sup> Matthew D. Lerner,<sup>1</sup> and Giuseppe Riccardi<sup>2</sup>

<sup>1</sup>Social Competence Treatment Lab, Stony Brook University, NY

<sup>2</sup>Signals and Interactive Systems Lab, University of Trento, Italy



## Background

- Individuals with ASD evince deficits in facial emotion recognition (FER; Lozier et al., 2014)
- 2. Failure to *encode* FER information OR to deploy correctly-encoded information (Yang et al., 2018, Dawson et. al 2005)



## Background

- 1. Deep Convolutional Neural Networks (Deep ConvNets)
  - Isolate neural networks for encoding FER using single-trial EEG
- 2. Deep ConvNets can determine if those with ASD correctly encode FER similarly to non-ASD individuals



## Outline

- 1. Experiment Design / Participant Samples
- 2. Deep ConvNet Architecture
  - Performances Results
- 3. iNNvestigate package
  - Saliency/Feature-importance Results
- 4. Conclusions



## **Questions and Hypothesis**

- 1. Are face emotion recognition (FER) deficits in ASD exhibited at the level of neural encoding?
  - Can Deep Learning successfully decode emotion recognition from neural activity elicited by the viewing of faces?
- 1. What is distinct about the way individuals with ASD *are* encoding emotions, when and where do they do so?



## **Experiment Design - Participants Sample #1**

|             | <u>TD</u><br>N = 48 |               | <u>ASD</u><br>N = 40 |               |
|-------------|---------------------|---------------|----------------------|---------------|
|             | <b>μ</b> or #       | <b>σ</b> or % | <b>μ</b> or #        | <b>σ</b> or % |
| Age (years) | 16.73               | 3,41          | 14.89                | 2.35          |
| Male N, %   | 29                  | 60.42%        | 32                   | 80.0%         |
| ADOS-CSS    | 3.33                | 2.71          | 8.15                 | 2.05          |
| IQ          | 107.82              | 14.03         | 100.78               | 16.54         |

IQ is calculated averaging across participants per group



## **Questions and Hypothesis**

### Deep ConvNet Blackbox?



DANVA-2 faces TD/ASD participants

#### Elicitation

> EEG neural activity





## **Questions and Hypothesis**

- **1.** Are face emotion recognition (FER) deficits in ASD exhibited at the level of neural encoding?
  - Can Deep Learning successfully decode emotion recognition from neural activity elicited by the viewing of faces?
- 1. What is distinct about the way individuals with ASD *are* encoding emotions, when and where do they do so?



## **Emotion Decoding - Full Pipeline**



### Performance Results - Sample #1 TD N=48, ASD N=40





### **Performance Results - Confusion Matrix FER/Deep ConvNet TD**



## Performance Results - Confusion Matrix FER/Deep ConvNet ASD



### **Performance Results - FER-Deep ConvNet intra-group**



### Performance Results - FER-Deep ConvNet-ADOS-CSS intra-group



### Can Deep Learning successfully decode emotion recognition from neural activity elicited by the viewing of faces? - answer question #1

- Deep ConvNets of EEG response in ASD and TD → similarly high performance in terms of correctly encoding FER
- ASD  $\rightarrow$  significantly poorer behavioral performance on FER
  - Compared to TD
  - Compared to *their own* correct encoding
- $ASD \rightarrow DO$  encode FER correctly!
  - Do not reliably DEPLOY this information for FER judgement as expected

## **Questions and Hypothesis**

- 1. Are face emotion recognition (FER) deficits in ASD exhibited at the level of neural encoding?
  - Can Deep Learning successfully decode emotion recognition from neural activity elicited by the viewing of faces?
- 1. What is distinct about the way individuals with ASD *are* encoding emotions, when and where do they do so?



#### Feature Importance Results - Average LRP flat B preset TD



LRP B Preset is the most reliable method included in iNNvestigate package (P.J. Kiendermans et. al 2017, Montavon et. al 2018)



# Feature Importance Results - Average LRP B flat preset TD-ASD differences





### Feature Importance Results - Average LRP B flat preset TD-ASD



## What is distinct about the way individuals with ASD *are* encoding emotions, when and where do they do so? - Answer question #2

- Identified which time windows (and channels) are **most relevant** for accurate FER encoding in ASD and TD
- Temporal distribution is somewhat *later* for ASD
  - consistent with previous findings related to altered networks activation presented in ASD groups.

## **Overall Study Conclusions and Broader** Implications

- Deep ConvNet: effective perceptual classifier from EEG data
  - can successfully complete FER from TD and ASD groups
- No difference between ASD and TD at the level of encoding FER information.
  - Despite difference in behavior!
  - Replicates in multiple datasets
  - $\circ$  FER behavioral deficits in ASD  $\rightarrow$  translation, no encoding
- Relevance pattern using reliable saliency maps → altered post-cognitive neural activation in ASD groups
- Interventions need *not* teach encoding
  - Should focus on *gap* between encoding and behavior



Dr-Ing Giuseppe Riccardi Matthew Lerner Ph.D Christian Luhmann Ph.D Tessa Clarkson Kathryn Hauschild Ph.D

## Acknowledgements

- We acknowledge all the research assistants, and lab-members who participate in data collection, participant recruitment, behavioral outcome measures registration across the three participants samples included in this study.
- Funding provided by
  - National Institute of Mental Health grant #1R01MH114906
  - Alan Alda Fund for Communication
  - American Psychological Foundation
  - Jefferson Scholars Foundation
  - American Psychological Association
  - Association for Psychological Science