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Abstract—Effectively caring for patients suffering from chronic
diseases is a challenging and costly task. There is a need
to decrease the cost of treating these chronic patients, while
increasing the quality of the care provided to the patients.
Mobile health (mHealth) technologies such as remote monitoring,
telemedicine, and home-based monitoring have become effective
tools shifting the focus towards a more patient-centric healthcare.
In this paper we present HEAL, an intelligent healthcare
analytics and personal agent platform. The HEAL personal
agent enables on-the-go continuous monitoring of covert and
overt signals from patients. The HEAL agent consists of a
pipeline that aggregates signals from devices and sensor types.
The platform collects motion profiles, and user annotation for
performing activity recognition and stress level detection. We
evaluate the HEAL platform on patients suffering from essential
hypertension and show that an intelligent personal mobile agent is
capable of monitoring, analyzing and tracking the characteristics
of hypertension management.

Index Terms—Mobile health platform, Essential Hypertension,
Healthcare analytics

I. INTRODUCTION

Essential Hypertension (EH) is a highly heterogeneous
disorder with a multifactorial etiology arising out of a
combination of physiological, environmental and behavioural
factors [1]. Recent data from epidemiological studies indicate
that due to its high prevalence and long-term risks of
developing life-threatening cardiovascular diseases, EH has
become an important global health challenge. A 2005
life-expectancy study by Franco et. al [2], using the data
from the famous Framingham Heart Study, estimated that
hypertensives males and females had 5.1 and 4.9 years
lower expected longevity compared to their normotensive
counterparts.

Unhealthy lifestyle has been identified as an important
risk factor for essential hypertension. Evidence from
randomized control studies indicate that patients suffering
from hypertension and elevated blood pressure should follow
lifestyle modification techniques such as maintaining a
weight-reducing diet, restricting alcohol, and practicing regular
physical exercise [3]. The relationship between daily social,
environmental, and psychological factors such as stress
and workload with high blood pressure and hypertension
has also been well established in research [4], [5]. The
global INTERHEART study of 24,746 adults from 52
countries demonstrated that patients suffering from myocardial
infarction reported higher (statistically significant) presence of
psychosocial stress factors in their daily lives [6]. Due to the
importance of lifestyle choices and daily stress, continuous

monitoring and management of these factors are integral steps
for improving patient care and disease management [7], [8].

Continuous monitoring, care and management of such
patients is a challenging task. The multifactorial nature of
the treatment management, especially related to lifestyle
changes often requires involvement of an entire healthcare
team including doctors, nurses, community health workers,
and the patient’s family. While monitoring the lifestyles of
geriatric and other patients who are mostly confined to their
homes is often achievable, monitoring adult patients, who
are studying or working, is more challenging. Also, while it
has been shown that team-based care interventions has the
potential for effective hypertension management [9], the cost
per patient could be extremely high and hence may not be
sustainable and scalable. Therefore, there is a need to decrease
the burden of the primary care physician in treating such
patients, while increasing the quality of the care provided to
the patient.

Wearable and mobile health platforms which can automate
some parts of the care management process have shown to
lower costs [10], [11] while increasing treatment adherence
[12], [13] and improving patient outcomes [14]. Wearable and
mobile health platforms have been shown to be effective for
the management of a multitude of diseases including obesity,
diabetes, bipolar disorder, and anxiety.

In this paper we present HEAL - an intelligent mobile
health analytics platform, which can automate the day to
day management and care of patients suffering from chronic
diseases. The HEAL personal agent platform can track and
analyze multiple covert and overt signals of a patient to
personalize chronic care management. We apply the HEAL
mobile personal agent technology to patients suffering from
essential hypertension and show that an intelligent personal
mobile agent is capable of monitoring, analyzing and tracking
several characteristics of hypertension management.

II. PLATFORM OVERVIEW

The Health Analytics (HEAL) Intelligent Agent platform
(Fig. 1) consists of three components:
Empatica wristband: The Empatica E3 [15] wristband,
developed by Empatica (www.empatica.com), is a bluetooth
enabled wearable device capable of recording physiological
and motion signals that can be used to monitor the health and
well-being of a user. It is unobtrusive with a small form factor
and can be worn on the wrist like a watch, making it ideal for
ambulatory recording of physiological signals in the wild.
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Fig. 1: The 3 components of the HEAL platform: The
Empatica E3 wristband, the HEAL intelligent agent, and the
HEAL cloud.

HEAL intelligent agent: The HEAL intelligent personal agent
is a custom companion application designed to reside on the
user’s smartphone. This personal companion application is
capable of recording and securely uploading physiological
signals from the Empatica E3 wristband to the server. The
companion features of the personal agent allow continuous
and momentary collection of user annotations through both
speech and text. It also acts as an agent to elicit information by
prompting the user to answer regular questionnaires regarding
his or her daily stress and workload.
The HEAL cloud - The Health Analytics cloud is the server
component of the HEAL Intelligent Agent platform. All the
individual HEAL mobile companions upload their data to
the HEAL cloud. The HEAL cloud encrypts and stores the
data for secure access. At the back-end, it stores, parses,
structures, cleans and runs machine learning algorithms on
the data to learn about the user’s behaviour including the
user’s activity and stress levels. The cloud also provides a
web visualization platform which can be accessed by the user
to be used as a reflective life-logging and monitoring tool. If
access is provided, it can also be used by the healthcare team,
family members or doctors for keeping track of the well-being
of the user/patient.

III. THE EMPATICA E3 WRISTBAND

The Empatica E3 (Fig. 2) has one motion sensor and three
integrated sensors for recording physiological signals. These
sensors report the following physiological and motion signals:
a) Blood Volume Pulse (BVP): The E3 reports BVP at a 64
Hz rate. b) Electrodermal Activity (EDA): EDA is reported
at a 4 Hz rate. c) Inter Beat Interval (IBI): IBI is reported
as a time-IBI pair. d) Skin Temperature: Skin Temperature
is reported at a 2 Hz rate. e) Tri-Axial Acceleration: XYZ
Acceleration of the wristband is reported at a 32 Hz rate.
When active, the E3 can continuously record and stream these
signals to a smartphone (Android or iOS) over the bluetooth
low energy (BLE) protocol. On a single charge the E3 device
lasts for about 10 to 12 hours in streaming mode, making it
ideal for ambulatory data collection during a typical workday.

Fig. 2: Empatica E3 wristband – wearable, lightweight,
wireless, multi-sensory data acquisition device.

IV. THE HEAL INTELLIGENT AGENT

The HEAL intelligent agent runs on any iOS device that
supports the bluetooth low energy (BLE) protocol (iPhone 4s
and up). The HEAL intelligent agent has four main functions:

• To continuously store and upload the physiological and
motion signals being streamed from the Empatica E3
wristband.

• The agent also records the data from the sensors (tri-axial
accelerometer, gyroscope, and location sensor) on the
smartphone.

• The agent transmits the data for analysis to the HEAL
cloud.

• The agent elicits information from the user using multiple
strategies including predefined questionnaires, list-based
activity annotations, and free open text and voice notes.

A. Signal Storing and Streaming

The HEAL intelligent agent connects to the E3 device and
continuously records the physiological signals in a time-value
pair format. The HEAL intelligent agent uploads the data to
the cloud in two steps:
(1) Streaming mode: Whenever the HEAL intelligent agent
is actively collecting the data (the E3 wristband is connected
to the agent), the agent down-samples the data and uploads it
to the HEAL cloud, once every minute in a json format. This
down-sampled version of the data is used for live visualization
of the physiological and activity signals.
(2) Bulk mode: At the end of the day, the user can upload
the entire signal stream to the HEAL cloud. This upload can
also be triggered automatically if the HEAL agent detects that
the user has not manually uploaded the data for some time
(2 days). Since this data can be quite large, at the time of
the upload, the data for each session is compressed and a
MD5 (Message-Digest algorithm 5) checksum for the file is
calculated. The compressed file along with its checksum is
uploaded to the server.

B. Overt Signal Acquisition

The HEAL platform uses both interval-contingent and
event-contingent recording strategies. In interval-contingent
recording, data are collected at pre-determined regular
intervals, which in our case is once every three hours (once
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(a) Reporting the Stress Level (b) Add a new activity

Fig. 3: The HEAL Companion for recording anticipated and
perceived stress and workload and activity. The interface is
in Italian for ratings and English for activities, which was
sufficient for the use case with Italian patients.

when the user first wears the device at the beginning of
the day, after three hours, and at the end of the daily data
collection). In event-contingent reporting, users can record a
report every time he or she experiences a stressful event. Using
these strategies the HEAL platform collects the following
overt signals: (1) Periodic Structured Information in the
form of anticipated and perceived stress and workload
questionnaire; (2) Spontaneous Structured Information in
the form of event annotations; (3) Spontaneous Structured
Information in the form of user diaries.

1) Anticipated and Perceived Stress and Workload
Questionnaire: The HEAL intelligent agent uses
interval-contingent strategies to periodically record user’s
stress and workload level (Fig. 3a).

• Anticipated Stress and Workload Reporting: This is a
user report of the level of stress and workload for the
upcoming period.

• Perceived Stress and Workload Reporting: This is a user
report of the level of stress and workload perceived for
the period which has passed.

At the beginning of the day the user is asked to record the
anticipated stress and anticipated workload levels for their
morning session. The Stress annotations are obtained on a five
point Likert scale as follows (see Fig. 3a): a) Not at all stressful
(per niente stressante) b) Little stressful (poco stressante) c)
Moderately Stressful (abbastanza stressante d) Quite stressful
(stressante) e) Very Stressful (molto stressante).

Around noon, the users are presented with the same
questionnaire again, but this time they are required to assess
how their morning really was (perceived stress and workload),
and provide their prediction (anticipated stress and workload)
for the afternoon. Similarly, at the end of the afternoon, they
are asked to assess their afternoon.

2) Event Annotations: The HEAL intelligent agent
encourages the user to annotate events and activities during
the day. These annotations are also used later to ground the
automatic activity recognition done on the analytics cloud.
Analysis of these activities can also be used to identify the
stress inducing activities in the user’s everyday life.

3) User Diaries: Experiences are inherently temporal in
nature. If not recorded, over a period of time most people
tend to forget the exact nature of the event and the emotions
it invoked at the time. Diaries are self-reports intended
to capture daily events, interactions, mood and reflections.
Diaries are a popular tool for life-logging for memory aiding
and recollection [16]. The reflective nature of the process
of writing and reading one’s own diary has been shown to
increase self-awareness about physical activity or emotional
states in different situations.

Diaries have been shown to be very effective in gaining
a deep insight into a patient’s well-being, and can be used
by a therapist for learning about the patient’s behaviour
and routines. They can also be used for tracking medicine
adherence and compliance to treatment regimes. In psychology
research, diaries have been shown to be an effective tool in
monitoring and promoting psychological recovery for patients
suffering from various symptoms like anxiety, depression, and
stress [17], [18].

One of the main challenges of diary-keeping is the need
to carry around a physical diary, and finding the right place
and time to record one’s thoughts. The growth in the usage
of mobile phones in our lives has resolved this problem
– it provides an easy interface to write or speak to. The
HEAL mobile companion encourages the user to maintain a
multimodal diary – the user can either take frequent written
notes or record speech about his or her feelings, current state,
and elicit about the surroundings, and how his day is.

V. THE HEALTH ANALYTICS CLOUD

The analysis and machine learning for the intelligent agent
is performed on the Health Analytics (HEAL) cloud. The
HEAL cloud has three parts - (1) Data Processing Engine (2)
Analytic Engine (3) Visualization Dashboard (see Fig. 4).

A. Data Processing Engine

The data preprocessing engine performs the various subtasks
involved in preparing the data and signals for feature extraction
and machine learning performed by the analytic engine. It
consists of four components:
Data aggregation and verification: The data from the
intelligent agent application is uploaded to the Health
Analytics cloud. The backend uses a mysql database to store
all the structured data. The signals and the audio themselves
are stored on the disk, and their references are saved to the
respective database tables.The json files from the streaming
data are parsed and entered into the mysql database for
continuous visualization through the HEAL dashboard. For
the end of the day data, the compressed files are decompressed
and their validity is checked against their md5 checksum. In
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Fig. 4: The Health Analytics Cloud Pipeline. The pipeline
consists of the (1) Data Processing Engine (2) Analytic Engine
(3) Visualization Dashboard

case a problem is detected, a message is returned to the HEAL
application to re-compress and upload the file which did not
match the checksum. The same step is taken for the audio files
uploaded from the HEAL intelligent agent.

Signal Conditioning: The signal conditioning module is
responsible for signal processing. Physiological signals
recorded by the Empatica E3 collected during everyday
ecological settings suffer from a variety of artifacts and noise.
The electrodermal activity (EDA) and skin temperature signals
are passed through a low pass filter and detrended. The
accelerometer signal is used for active noise cancellation from
the blood volume pulse (BVP) signal which is used in the
inter-beat-interval (IBI) estimation module.

Artifact Removal: Physiological signals are highly susceptible
to artifacts which can limit their usage for identification of the
mental state of the user. These artifacts can be generated due to
a variety of factors such as local pressure, nervous fidgeting,
vasoconstriction due to cold weather, change of posture, or
gross body movements. It is therefore extremely important
to apply effective signal processing methodology for artifact
removal before further analysis of these signals. The HEAL
data processing unit identifies and removes such artifacts using
the approaches described in [19], [20].

Inter-beat Interval Estimation: The time-series of the
Inter-beat Interval is an extremely important signal stream used
to generate a clean Blood Volume Pulse (BVP) signal (Fig. 5).
The BVP signal is used to extract Heart Rate Variability (HRV)
features. Heart Rate Variability (HRV) is the measure of the
variations of the time-interval between heart beats, and can be
used to estimate the hearts ability to adapt to the autonomic
neural regulation. A reduction of heart rate variability has been
accepted as a correlate for stress among individuals [21] and in
several cases is associated with increased risk of cardiovascular
mortality [22], [23]. This module estimates the interpolated
inter-beat-interval signal from the conditioned blood volume
pulse (BVP) signal. The IBI estimation is performed using the
data and approaches described in [20], [24].

Fig. 5: Raw and Clean BVP signal after processing through the
Inter-beat Interval Estimation module of the Data Processing
Engine of HEAL

B. Analytic Engine

The analytic engine is responsible for the extraction of
features and further analysis of the processed signals. It
applies machine learning algorithms for performing activity
recognition, stress recognition and hypertension detection. The
analytic engine prepares the data to be visualized. The analytic
engine consists of the following modules:
Feature extraction: The feature extraction module extracts
various features from the physiological, motion, and user
profile data. The nature, and number of extracted features
depends on the downstream task performed by the module
(activity recognition, stress recognition and hypertension
detection modules) which utilises these features. For example,
for the activity recognition tasks, features are extracted from
the motion signals (accelerometer and gyroscope), and the
hypertension detection module mostly uses features from
the physiological signals. While most downstream tasks use
a combination of the multiple features extracted by this
modules, some of the individual features themselves can
be quite informative. For example, the density plot of the
detrended, and normalised mean skin conductance level (SCL)
of normotensive and hypertensive patients demonstrate how
their daily skin conductance vary.
Activity recognition: This module performs activity
recognition using the accelerometer and gyroscope signals
recorded from the smartphone. The goal is to add context for
the analysis of the physiological signals. The type and amount
of daily activity contributes to the daily stress levels of the
users. Factors such as long commute hours and commuter
stress are highly correlated with workplace aggression. Both
driving a car [25] and taking a train [26] to work have been
shown to increase the stress response of an individual. Longer
commuting times have also been demonstrated to decrease
the tolerance for frustration [27].

The HEAL activity recognition system was trained using
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Fig. 6: Density plot of the of the detrended, and normalised
Mean Skin Conductance Level (Mean SCL) of Normotensive
and Hypertensive Subjects

the data, features and algorithm presented in [28]. The
activity recognition module identifies six activities - Walking,
Standing, Sitting, Driving, Travelling by bus, and Travelling
by Train and segments the signal data using continuous labels.
Stress recognition: The stress recognition module uses
the daily stress annotations collected from the users as
explained in Section IV-B1, and was trained using the
approach explained in [19]. The Stress recognition system
was trained using features extracted from physiological signals
(time and frequency domain features from EDA, HRV, Skin
Temperature), and activity profile features (total commute
time, time spent on each activity type during the segment),
among others. The training and evaluation of the system was
performed using a “Leave One Subject Out” (LOSO) cross
validation scheme for all classification tasks, and achieved an
average F-measure of 0.91 when combining features from all
signal streams.
Hypertension detection: One of the goals of the HEAL
platform is to detect, track and monitor patients suffering
from Essential Hypertension. The most common technique
for the diagnosis of essential hypertension is the detection
of high-blood pressure using brachial cuff-based measurement
devices. However, these devices are cumbersome to use on a
regular basis and commonly not regularly used by otherwise
healthy people. Due to the recent increase in popularity of
wearable devices capable of recording physiological signals,
the goal of the HEAL platform is to enable patients who
use wear such devices to be able to continuously monitor
their well-being, and possibly lead to early detection of
hypertension. The Hypertension detection module was trained
on data and algorithms reported in [20]. The module, using a
combination of features extracted from electrodermal activity,
and heart rate variability signals was able to achieve an
F-measure of 0.83 using the Adaboost classifier under a LOSO
evaluation scheme.

C. Visualization Dashboard

The HEAL Dashboard can act as a visualization, annotation
and analysis platform for both users/patients as well as the care
team. The dashboard visualizes the near real-time streaming
physiological signal data and overlays the context to it by

Fig. 7: HEAL Dashboard visualizing the physiological signals
(electro-dermal activity (EDA), skin temperature (TEMP) and
Inter Beat Interval (IBI). The user annotations (audio and text
notes) and responses to the daily questionnaires are overlaid
on the graph to provide context to the signals.

adding the patient supplied notes, and the annotations on the
signal timeline. Each user/patient can view and edit their data.
They can also provide more context or delete information
which they might consider private. This can be used as a
reflective tool by the patient to perceive their physiological
response to the various stressors in their life (Fig. 7).

The healthcare team has access to the data to keep track
of the most important vital signs of the patients during the
day (Fig. 7). In the streaming mode, they can see minute by
minute update of the physiological signals of the patients. They
also have access to summaries and visualizations highlighting
differences between different patient groups. In figure Fig.
8 we can see the summary of the data collection for
a Hypertension detection study carried out at the Centro
Ipertensione Ospedale Molinette.

VI. CONCLUSION

In this paper we present the HEAL health analytics personal
agent platform for the tracking and care-management for
chronic conditions. We presented a) an intelligent personal
agent platform for on-the-go continuous monitoring of
covert and overt signals and b) a pipeline which combines
various physiological signal streams, motion profiles, and user
annotations for on-the-go activity and stress recognition. The
HEAL intelligent agent platform streamlines the collection,
annotation, and automatic analysis of the diverse signal
streams. The HEAL intelligent agent platform has the potential
to change the care-management for chronic conditions
by empowering patients and improving the detection and
subsequent self-management of diseases such as hypertension.
By providing patients with an updated view of their signals,
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Fig. 8: One screen of the HEAL overview dashboard for
doctors. The top part of the dashboard provides an overview
of the patient population distribution, the number of hours
of physiological signals collected, and the total number of
annotations in the form of audio and text notes. The bottom
part shows the distribution of the anticipated stress annotations
by the two patient populations.

it can help engage and empower patients, making the task of
primary care physicians and care teams easier.
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