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Abstract—Depression is a major debilitating disorder which
can affect people from all ages. With a continuous increase in the
number of annual cases of depression, there is a need to develop
automatic techniques for the detection of the presence and
its severity. We explore different modalities (speech, behavioral
characteristics, language and visual features extracted from face)
to design and develop automatic methods for the detection
of depression. In psychology literature, the eight-item Patient
Health Questionnaire depression scale (PHQ-8) is well established
as a tool for measuring the severity of depression. In this
paper we aim to automatically predict the total sum of PHQ-8
scores from features extracted from the different modalities. We
demonstrate that among the considered modalities, behavioral
characteristic features extracted from speech yield the lowest
MAE, outperforming the best system at the Audio/Visual Emotion
Challenge (AVEC) 2017 depression sub-challenge.

Index Terms—Affective Computing; Depression Detection;
Machine Learning; Speech; Natural Language Processing; Facial
Expressions

I. INTRODUCTION

According to the World Health Organization (WHO),
depression is a major mental disorder with about 300 million
people of all ages affected worldwide. According to the Global
Burden of Disease Study [1], depression is the second leading
cause of disability worldwide and is on the rise. If left
untreated, it can lead to complications such as reductions in the
volume of the hippocampus [2]. There is a growing evidence
that depression can cause impairment of the immune function
by affecting different immunological pathways such as the
central nervous system (CNS), the endocrine system, and the
cardiovascular system. This can lead to the development or
aggravation of co-morbidities and worsen health conditions in
other diseases [3].

Current diagnosis of depression is dependent on an
evaluation by a psychiatrist, supported by standard
questionnaires to screen for depression. The Personal
Health Questionnaire Depression Scale (PHQ-8) Scoring
and the Hamilton Depression Rating Scale are two well
established tools for the diagnosis of depression. However,
the stigma around the disease and lack of understanding
often prevents patients from seeking early psychiatric help.
Depression often comes with side effects such as social
anxiety, and decreased social contact, making it often go
unnoticed by friends and family for a long time.

The growing burden of this disease suggests that there
is a need to develop technologies, which can aid in
automatic detection and effective care of patients suffering
from depression. The recent development in the field of

affective computing, focuses on the sensing, detection,
and interpretation of affective states of people from their
interactions with computers or machines. Affective computing
methodologies use various modalities ranging from overt
signals such as speech, language and video to covert signals
such as heart rate, skin temperature, and galvanic skin
response to understand the mental and affective states of
humans. Such techniques can be used for the automatic
detection of psychological states and mental health, including
conditions such as Post-Traumatic Stress Disorder (PTSD) and
depression.

The motivation of this study is to explore different sources
of information, such as audio, video, language and behavioral
cues, to predict the severity of depression. While doing so, we
also investigate different feature representations and modeling
techniques corresponding to each modality to improve the
automatic prediction.

The paper is organized as follows. In Section II, we
present relevant works in the literature for the detection of
depression and affective disorders from speech, language, and
facial expressions. This is followed by a brief description of
the multi-modal data used for the study in Section III. An
overview of the features and experimental methodology used
in this study are given in Section IV. Section V provides
concluding remarks.

II. STATE OF THE ART - SPEECH, LANGUAGE AND FACIAL
EXPRESSIONS

Speech, language and facial expressions are three of
the major overt signals which have been widely used for
interpreting human psychological states. Automatic analysis
of speech has been used for emotion recognition [4], [5],
stress detection [6], [7], and mood state characterisation [8],
[9]. Natural language and speech processing from diaries
and recordings have been used to detect the onset of
dementia, alzheimer’s, and aphasia [10], [11]. Analysis of
facial expressions have shown to be highly effective in tracking
the progressive degeneration of cognitive health in patients
suffering from schizophrenia and bipolar disorder [12].

A. Speech and Language

Several psychological conditions clearly manifest
themselves through changes in speech patterns and language
use. Computational and automatic screening methods have
the power to detect micro-changes in speech and language
patterns which would otherwise have gone unnoticed.
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Properties such as speech rate, pause duration and usage of
fillers can be indicative of cognitive decline in individuals.
Changes in prosody and fluency can also be useful in
detecting mental health changes of depressive patients.

The utility of speech and language for the diagnosis of
mental health is well established [13], [14]. The speech
features such as tempo, prosodic pauses, absence of glottal
rasping are associated with patients suffering from affective
disorders. Formant and power spectral density (PSD) based
features, on the other hand, have been demonstrated to have the
highest discriminative power for classification in both genders
[15]. Speech disturbances and resistivity have been found to
have a positive correlation with anxiety, whereas silent pauses
with depression [16]

Natural Language Processing (NLP) techniques such as
topic modeling and sentiment analysis have been applied to
detection of depression and prediction of psychiatric disorders
[17], [18].

B. Face Analysis

Facial expressions can be an extremely powerful medium
used to convey human overt emotional feedback. In recent
times, there has been significant progress in developing
methods for facial feature tracking for the analysis of facial
expressions and the detection of emotions. Studies have shown
that it is possible to effectively detect the presence of pain
shown on faces.

Machine learning techniques have been shown to be
effective for the automatic detection of pain and mental state
from facial expressions [19], [20]. One of the most popular
technique used for capturing the subtlety and fine-grained
variations in facial expression is the Facial Action Coding
System (FACS) developed by [21]. The FACS is based on
the consensus of the judgment of human experts who observe
pre-recorded facial expressions and perform manual annotation
of FACS codes for each frame. These annotations, which are
called action units (AUs), can belong to one of 44 different
classes. FACS has been widely used in the field of psychology
for measuring emotions, affect, and behavior [22], [23], [24].
More recently [25], FACS has been shown to be correlated
with depression severity. Specifically, [25] found that severely
depressed subjects are more likely to show fewer affiliative
facial action units (AU12 and AU15) and more non-affiliative
ones (AU14).

Head pose and eye gaze have also been shown to encode
information about depression. For instance, [25] observes
that an increase in the severity of depression comes with a
diminished head motion. Other works such as [26], [27], [28]
have also investigated the link between head pose, eye gaze
and depression, providing evidence that such a link exists and
it is all worth considering.

III. AVEC AUDIO VIDEO DATABASE

The 2017 Audio/Video Emotion Challenge and Workshop
(AVEC 2017) “Real-life depression” provides a corpus
comprising of audio and video recordings and transcribed

TABLE I: Distribution of the AVEC data set into training and
development sets for depressed (D) and non-depressed (ND)
classes, and overall (ALL).

ND D ALL
Training 77 (72%) 30 (28%) 107
Development 23 (66%) 13 (34%) 35

speech from the Distress Analysis Interview Corpus (DAIC)
[29].

The dataset comprises of recordings from 189 sessions of
human agent interaction, where each subject was interviewed
by a virtual psychologist (see Table I for the distribution of
labels in the training and development sets). The audio files,
transcripts and continuous facial features of the human subject
are provided as part of the challenge. The Personal Health
Questionnaire Depression Scale (PHQ-8) score of the subjects
is also provided in the dataset. The PHQ-8 [30] is a set of
8 short multiple choice questions which has been established
as a diagnostic tool for the measurement of the severity of
depressive disorders. Automatic estimation of the total sum
of PHQ-8 scores from different modalities, such as speech
and video, can aid in the early detection of depression and
monitoring of depressive states. In the AVEC challenge, the
goal is to look at different streams of data recorded during
a session with the subject to predict the total sum of PHQ-8
scores, and to classify the subject as depressed or not.

IV. EXPERIMENTS

In this section we describe the experiments conducted for
the feature extraction and regression experiments conducted on
the speech, behavioral, language and visual (facial) modalities.

A. Speech and Behavioral Characteristic Features

1) Acoustic Features: To understand the predictive
characteristics of low-level acoustic feature groups to assess
the depression severity of the participant, we extracted
low-level descriptors (LLDs). These features are extracted
using openSMILE [31], from the participant’s turns in each
conversation, motivated by the studies in [32], [33], [34],
[35]. To extract the acoustic features we used approximately
100 overlapping frames per second and with 25 milliseconds
window. The low-level features are extracted as three groups
including:

• Spectral features (S) such as energy in spectral bands
(0-250Hz, 0-650Hz, 250-650Hz, 1-4kHz), centroid, flux,
max and min-position and roll-off points (25%, 50%,
70%, 90%).

• Prosodic features (P) such as pitch (Fundamental
frequency f0, f0-envelope), voice-probability, loudness .

• Voice Quality features (VQ) such as jitter, shimmer,
logarithmic harmonics-to-noise ratio (logHNR).

Additionally, we extract delta and acceleration coefficients
of the above features and then projected onto statistical
functionals used in [36] .
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2) Behavioral Characteristics Features: Apart from
extracting low-level features from raw speech signals, we
also explore the transcriptions. We crafted features that can
capture information regarding the participant’s non-vocal
behavior (NB) along with their turn-taking behaviors (TB)
and participants’ Previous Diagnosed Information (PDI)
features. The non-vocal behavior (|NB| = 3) includes:

• frequency of laughter in participant’s turns;
• percentage of disfluencies in the participant’s turns, which

might indicate hesitations;
• counts of cues that might suggest inconvenience like

whistling, mumbling, whispering or taking deep breaths
among others.

The features that are used to describe the turn-taking
behaviors, (|TB| = 6) are the first and third quartiles and
the median duration of response time (in seconds) of the
participants. Similarly, we also extract statistics for the with-in
speaker silence (pause). The response time represents how
long the participants took to respond to the previous turn of
the agent.

The PDI feature set (|PDI| = 3) contains numerical
representations of the response of the participants to queries
such as having any Post-traumatic Stress Disorder (PTSD),
p
¯
tsd, depression d

¯
ep, even having any military backgrounds

m
¯

b. Each individual feature is encoded into three values
(-1,0,1) where -1 represents the query is not present in the
session, 0 presents a dis-confirmation (e.g ptsd=0 means the
participant responded as “no” to the previous turn query) and
1 presents confirmation of the query.

For the regression task, we study the performance of
acoustic and behavioral characteristic features. For modeling
individual acoustic feature groups and their linear combination
we use support vector machine (SVM) for regression,
implemented in weka [37]. SVMs use Radial Basis Function
(RBF) kernel with γ = 0.01 and C = 1.0.

As for the linear combination of different acoustic feature
groups, we first concatenate all the acoustic feature vectors
– including prosody (P), spectral (S) and voice quality (VQ),
linearly to obtain vector M .

For predictor using behavioral characteristic feature group,
we use Reduced Error Pruning Tree (“REPT”) implemented
in weka [37], which is a fast regression tree learner that uses
information of variance reduction and prunes the tree using
reduced error pruning.

The results are presented in Table II for individual feature
sets and their combination. The results indicate that spectral
features are a good predictor of the total PHQ score, compared
to all other acoustic features. Using behavioral characteristic
features, however, we obtain a decrease in both MAE and
RMSE by a magnitude of 0.63 and 1.20 respectively compared
to all the baselines.

B. Language

Additional to the speech-based features, we explore
text-based representations to predict depression severity
estimates. The widely used representation of a document in

TABLE II: Root mean square error (RMSE) and mean absolute
error (MAE) for depression severity regression using acoustic,
behavioral, lexical, and visual features on the development
set. We also provide the audio and audio-video feature-based
baselines (BL: Audio and BL: Audio-Video) using Random
Forests.

Features RMSE MAE
BL: mean 6.57 5.50
BL: Audio 6.74 5.36
BL: Audio-Video 6.62 5.52

Acoustic Features
Spectral 6.32 4.96
Voice Quality 7.05 5.70
Prosody 7.10 5.75
Merged 6.43 5.40

Behavioral Characteristics Features
Behavioral characteristic 5.54 4.73

Language Features
Lexical: BOOL 6.31 5.17
Lexical: TFIDF 6.78 5.40
Lexical: WE 6.84 5.41

Visual Features
Visual 6.09 4.66

NLP is bag-of-words, where a document is represented by
word occurrences ignoring the order in which they appear.
We experiment both with binary (BOOL) and tf-idf (TFIDF)
weighted representations. While the binary representation
encodes words that are present in the document regardless of
their frequency, tf-idf weighted representation considers both
the frequency of the term (tf ) in a document and the inverse
document frequency (idf ) – which lowers the weight of the
very frequent terms in a collection and increases the weight
of the rare terms with respect to the equations 1-2.

tf − idf(t, d) = tf(t, d) ∗ idf(t) (1)

idf(t) = log
nd

df(d, t)
+ 1 (2)

Where tf(t, d) is the term frequency, nd is the total number
of documents, and df(d, t) is the frequency of documents
containing the term.

Besides bag-of-words representation, we also experiment
with the word embedding representation (WE) [38], where
pre-trained per-word embedding vectors are averaged for a
document. We make use of the SKIPGRAM embedding
vectors pre-trained on GoogleNews with a embedding
dimension 300 and window 10.

Since the provided speech transcripts are of human-machine
conversations, we first extract human turns and convert
them into bag-of-words representation. The transcripts contain
annotations for the speech phenomena such as laughter,
sigh, etc., which were treated as any other token. Thus,
the representation implicitly encodes the presence of these
phenomena in the conversation; and also its frequency, in the
case of tf-idf based representations. For the word embedding
representation, however, this is not the case, as there are no
pre-trained vectors for these.
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The algorithm of our choice for text-based representations
is Support Vector Regression (SVR) with linear kernel,
implemented in scikit-learn [39]. The regression results for
each of the document representations are given in Table II
in terms of RMSE and MAE. As it can be observed, the
only representation that outperforms all the baselines is the
binary bag-of-word representation that yields RMSE=6.31 and
MAE=5.17.

C. Visual Features

Inspired by [40] and the success reported in [41], we use
the 68 3D facial keypoints and compute geometric features
as follows: for every facial representation, we first remove
the 3D bias (equal to a translation in the Euclidean space
by subtracting the mean value in 3D), then we normalize the
resulting representation so that the average distance to the
center (origin) is equal to 1. Finally, we compute Euclidean
distances between all possible pairs of 3D normalized points
and add them to the normalized representation. This results in
a feature vector of size 2, 482. Consequently, we reduce this
dimension by applying Principal Component Analysis (PCA)
and keeping over 99.5% of variance, resulting in a feature
vector of size 33.

Since we are dealing with video sequences, we propose
to regress depression using models naturally designed for
temporal data. Specifically, we propose the use of Long
Short-Term Memory (LSTM) neural networks [42] for this
task. LSTMs have emerged as an effective and scalable model
for several learning problems related to sequential data, such as
handwriting recognition [43], [44], generation of handwritten
characters [45], language modeling and translation [46], [47],
audio [48] and video [49] signal analysis, acoustic speech
modeling [50] and others. They are successful at capturing
long-term temporal dependencies while being robust against
the optimization problems faced by simple recurrent neural
networks (RNNs).

In order to build our training set, we apply a sliding window
approach to the video sequences, using windows of size W ,
overlapped by O samples. We use the success flag provided
by the dataset creators which models the tracking confidence
for each frame. We adopt a 0-tolerance strategy and discard
all windows for which at least one failed tracking is present.
We do this to exclude the risk of introducing artifacts into the
feature space, that the model might misleadingly exploit for
solving the task. We set the values for W and O empirically
to 60 and 30, respectively. We down-sample the data to 1
second, which makes our windows 1 minute long, with an
overlap of 30 seconds. During testing, we apply the same
windowing scheme and average the window-level predictions
over the length of the test sequence.

Next, we train a double layered LSTM model on regressing
depression at window level on the training set. The model
is composed of two stacked layers of size 16, followed by a
Dense layer with a linear activation function. We use dropout
[51] equal to 0.5 to control over-fitting and batch normalization
[52] to limit internal covariance shift. As loss function, we

use the mean squared error. In order to validate our LSTM
model, we perform a leave-one-sequence-out cross-validation
scheme on the training set. After 100 epochs, our models
achieve an MAE of 4.97 and an RMSE of 6.26, which we find
encouraging. We further retrain the model on the full training
set and monitor the performance on the development partition.

Figure 1 shows the learning plots of the loss function during
training for both training (black) and validation (red) sets.
We observe a monotonic decrease of the loss function on the
training set, while on the validation, the behavior is a typical
decrease, followed by an increase of the same loss. We use
the validation set to early stop the training, thus resulting in a
model (lstm opt) with the best performance on this set. As
can be observed from Table II, our LSTM model manages to
score a promising MAE on the development partition, better
than all baselines, as well as in the last year’s winning paper
[41].

Fig. 1: LSTM learning curves: training set (black) and
development set (red). We note the existence of a turning point
in the validation loss, typically used as a good compromise
between underfitting and overfitting

D. Final evaluation on the test set

In the context of the AVEC challenge, methods are
compared on a specific test set. Results on the test set are
presented in Tab. III. The behavioral characteristic features
extracted from audio transcriptions achieve the lowest errors
on the test partition, which is unsurprising considering the
promising results obtained on the the development set (i.e.
RMSE of 5.54 and MAE of 4.73). The winners [53] of the
AVEC 2017 on depression sub-task have achieved RMSE of
4.99, which is outperformed by our behavioral characteristics
model with RMSE of 4.94.

V. CONCLUSIONS

In this paper we address the depression sub-challenge
problem formulated in AVEC2017, i.e. regressing the total
sum of PHQ-8 depression scores from multi-modal data.
We process different modalities (audio, language, visual)
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TABLE III: Root mean square error (RMSE) and mean
absolute error (MAE) for depression severity regression using
acoustic, behavioral, lexical, and visual features on the AVEC
2017 test set.

RMSE MAE
Spectral features (speech) 6.63 5.08
Behavioral features (speech) 4.94 4.11
Language features (text) 5.83 4.88
Video features 6.72 5.36

accompanying the corpus and developed regression systems
separately. In the audio domain, we find the spectral features
to be most suited for this task, achieving an MAE score of
4.96 on the development set (RMSE = 6.32) while lexical
features score no lower than 5.17 (MAE) and 6.31 (RMSE).
Despite being the worst performing modality in the baseline
manuscript, visual features achieve the smallest errors on the
development set in our experiments. Using a sliding window
approach and temporal modeling, we obtain an MAE of
4.66 (RMSE = 6.09). We also observed that behavioral cues
extracted from transcripts achieve smaller errors (MAE = 4.73,
RMSE = 5.54) compared to audio and language features and
are good predictor of the depression severity scores. When
studied further, we found that previous diagnosed information
cues, participants’ response time to the agent among others
are one of the most informed feature to predict the depression
PHQ-8 scores. This is indeed confirmed by the results obtained
on the test set, where behavioral cues scored the smallest MAE
values among all other feature sets.

In this paper, we have studied each modality individually to
understand its strength in estimating the depression severity.
In future work, we plan investigating how we can combine
individual modalities to improve the overall performance.
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