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Abstract

English. Concept tagging is a type of
structured learning needed for natural lan-
guage understanding (NLU) systems. In
this task, meaning labels from a domain
ontology are assigned to word sequences.
In this paper, we review the algorithms
developed over the last twenty five years.
We perform a comparative evaluation of
generative, discriminative and deep learn-
ing methods on two public datasets. We
report on the statistical variability perfor-
mance measurements. The third contribu-
tion is the release of a repository of the
algorithms, datasets and recipes for NLU
evaluation.

Italiano. L’annotazione automatica dei
concetti è un tipo di apprendimento
strutturato necessario per i sistemi di
comprensione del linguaggio naturale
(NLU). In questo processo le etichette di
un’ontologia di dominio sono assegnate
a sequenze di parole. In questo articolo
esaminiamo gli algoritmi sviluppati negli
ultimi venticinque anni. Eseguiamo una
valutazione comparativa dei metodi di ap-
prendimento generativo, discriminatorio e
approfondito su due set di dati pubblici. Il
secondo contributo é un’analisi della vari-
abilitá delle misure di valutazione. Il terzo
contributo è il rilascio di un archivio degli
algoritmi, dei sets di dati e delle ricette per
la valutazione dell’NLU.

1 Introduction

The NLU component of a conversational system
requires an automatic extraction of concept tags,
dialogue acts, domain labels and entities. In
this paper we describe and review the algorithm

development of the concept tagging (a.k.a. slot
filling or entity extraction) task. It aims at com-
puting a sequence of concept units, C = c1..cM ,
from a sequence of words in natural language,
W = w1..wN . The task can be seen as a struc-
tured learning problem where words are the input
and concepts are the output labels. In other words,
the objective is to map a sentence (utterance) “I
want to go from Boston to Atlanta on Monday” to
the sequence of domain labels “null null null

null null fromloc.city null toloc.city

null depart date.day name”, that would allow
to identify, for instance that Boston is a departure
city . Difficulties may arise from different factors,
such as the variable token span of concepts, the
long-distance word dependencies, a large and
ever changing vocabulary, or subtle semantic
implications that might be hard to capture at
a surface level or without some prior context
knowledge.

Since the early nineties (Pieraccini and Levin,
1992), the task has been designed as a core compo-
nent of the natural language understanding process
in domain-limited conversational systems. Over
the years, algorithms have been developed for gen-
erative, discriminative and, more recently, for deep
learning frameworks. In this paper, we provide a
comprehensive review of the algorithms, their pa-
rameters and their respective state-of-the-art per-
formances. We discuss the relative advantages and
differences amongst algorithms in terms of perfor-
mances and statistical variability and the optimal
parameter settings. Last but not least, we have de-
signed and provided a repository of the data, al-
gorithms, implementations and parameter settings
on two public datasets. The GitHub repository1 is
intended as a reference both for practitioners and
for algorithm development researchers.

With the conversational AI gaining popularity,
the area of NLU is too vast to mention all relevant

1www.github.com/fruttasecca/concept-tagging-with-neural-networks



or even recent studies. Moreover the objective
of this paper is to benchmark an important sub-
task of NLU, concept tagging used by advanced
conversational systems. We benchmark genera-
tive, discriminative and deep learning approaches
to NLU, the work is in-line with the works of
(Raymond and Riccardi, 2007; Mesnil et al., 2015;
Bechet and Raymond, 2018). Unlike previously
mentioned comparative performance analysis, in
this paper, we benchmark deep learning architec-
tures and compare them to a generative and tradi-
tional discriminative algorithms. To the best of our
knowledge, this is the first comprehensive compar-
ison of concept tagging algorithms at this scale on
public datasets and shared algorithm implementa-
tions (and their parameter settings).

2 Algorithms

Among the algorithms considered for benchmark-
ing, we include a representative from the gen-
erative class, the weighted finite state transduc-
ers (WFSTs), and two discriminative algorithms:
Support Vector Machines (SVMs), Conditional
Random Fields (CRFs), and a set of base neural
networks architectures and their combinations.

Weighted Finite State Transducers2 cast con-
cept tagging as a translation problem from words
to concepts (Raymond and Riccardi, 2007), and
usually consist of two components. The first
component transduces words to concepts based
on a score that can be either induced from data
or manually designed; the second component is
a stochastic conceptual language model, which
re-scores concept sequences. The two com-
ponents are composed to perform sequence-to-
sequence translation and infer the best sequence
using Viterbi algorithm.

Support Vector Machines (SVM) are used
within Yamcha tool (Kudo and Matsumoto, 2001)
that performs sequence labeling using forward and
backward moving classifiers. Automatic labels as-
signed to preceding tokens are used as dynamic
features for the current token’s label decision.

Conditional Random Fields (CRF)3 (Lafferty
et al., 2001) is a discriminative model based on a
dependency graph G and a set of features. Each
feature fk has an associated weight λk. Features
are generally hand-crafted and their weights are

2We use OpenFST (http://www.openfst.org) and Open-
GRM (http://www.opengrm.org) libraries.

3We use CRFSUITE (Okazaki, 2007) implementation of
CRFs in out experiments.

learned from the training data. Additionally, we
experiment with word embeddings as additional
features for CRFs (CRF+EMB).

Recurrent Neural Networks (RNN). The first
neural network architecture4 we have considered
is an Elman RNN (Elman, 1990; Übeyli and
Übeyli, 2012). In RNN, a hidden state depends
on the current input and the previous hidden state.
The output (label), on the other hand, depends on
the new hidden state.

Long-Short Term Memory (LSTM) RNNs
(Hochreiter and Schmidhuber, 1997) try to tackle
the vanishing gradient problem by introducing a
more complex mechanisms to address information
propagation and deletion, with the cost of a more
complex model with more parameters to train due
to the system of gates it uses. The memory of
the model is represented by the cell state and the
hidden state, which also represents the output for
the current token. We experimented with a sim-
ple LSTM, an LSTM which receives as input the
word embedding concatenated with character em-
beddings obtained through a convolutional layer
(Józefowicz et al., 2016) (LSTM-CHAR-REP),
and an LSTM with pre-trained embeddings and
dynamic embeddings learned from training data
(LSTM-2CH). In LSTM-2CH two separate LSTM
modules run in parallel and their outputs are con-
catenated for each word. Similar to the rest of the
deep learning models, the output is then fed to a
fully connected layer to map every token to the
concept tag space.

Gated Recurrent Units (GRU) (Cho et al.,
2014) use a reset and an update gate, which are
two vectors of weights that decide what informa-
tion is deleted (or re-scaled) from the current hid-
den state and how it will contribute to the new
hidden state, which is also the output for the cur-
rent input. Compared to the LSTM model, this
allows to train fewer parameters, but introduces a
constraint on memory, since it is also used as an
output.

Convolutional Neural Networks (CONV)
(Majumder et al., 2017; Kim, 2014) consider each
sentence as a matrix of shape (# words in sentence,
size of embedding) for convolution using kernels
of different sizes to pass over the input sequence
token-by-token, bigram by bigram and trigram by
trigram. The result of convolution is used as a

4All neural architectures are implemented within the Py-
Torch framework (https://pytorch.org)



starting hidden memory for a GRU RNN. GRU
RNN is used on embedded tokens and starts with
the information on the sequence at a global level.

FC-INIT is similar to CONV. The difference is
in the pre-elaboration of the hidden state, which is
done by fully connected layers elaborating on the
whole sequence.

ENCODER architecture (Cho et al., 2014)
casts the problem as a sequence-to-sequence trans-
lation and consists of two GRU RNNs. Encoder,
the first GRU RNN, encodes the input sequence
to a fixed vector (the hidden state). Decoder, an-
other GRU RNN, uses the output of the encoder as
a starting hidden state. At each step, the decoder
receives the label predicted at the previous step as
an input, starting with a special token.

ATTENTION architecture is similar to EN-
CODER with the addition of an attention mech-
anism (Bahdanau et al., 2014) on the outputs of
the encoder. This allows the network to focus on
a specific parts of the input sequence. The atten-
tion weights are computed with a single fully con-
nected layer that receives as input the embedding
of the current word concatenated to the last hidden
state.

LSTM-CRF (Yao et al., 2014; Zheng et al.,
2015) is an architecture where the LSTM provides
class scores for each token, and the Viterbi algo-
rithm decides on the labels of the sequence at a
global level using bigrams and transition proba-
bilities that are trained with the rest of the pa-
rameters. We also experimented with a variant
that considers character level information (LSTM-
CRF-CHAR-REP).

3 Corpora

The evaluation of algorithms is performed on two
datasets. The Air Travel Information System
(ATIS) dataset consists of sentences from users
querying for information about flights, departure
dates, arrivals, etc. The training set consists of
4,978 sentences, while there are 893 sentences that
constitute the test set. The average length of a sen-
tence is around 11 tokens, and there are a total of
127 unique tags (with IOB prefixes). Moreover,
the large majority of tokens missing an embedding
are either numbers or airport/basis/aircraft codes.
The training set has a total of 18 types missing an
embedding, and the test set has 9.

The second corpus (MOVIES)5 was produced
5
https://github.com/esrel/NL2SparQL4NLU

Model Parameters # Params F1

WFST order 4, kneser ney (7907 states, 842178 arcs) 82.96
order 4, kneser ney (4124 states, 76000 arcs) 93.08

SVM (4, 4) window of tokens, (-

1, 0) of POS tag and pre-

fix. Postfix and lemma of

current word. Previous two

labels.

10364 83.74

(6, 4) window of tokens, (-

1, 0) of prefix and postfix.

Previous two labels .

16361 92.91

CRF (4, 4) window of token, (-

1, 0) of POS tag and prefix.

Postfix and lemma of cur-

rent word. Previous + cur-

rent word conjunction, cur-

rent + next word conjunc-

tion. Bigram model.

1,200K 83.80

(6, 4) window of tokens,

(-1, 0) of prefix. Postfix

of current word. Previous

+ current word conjunction.

Bigram model.

2,201K 93.98

CRF+EMB all above + (4, 4) word

embs + current token char

embeddings

1,390K 85.85

all above + (6, 4) word

embs + current token char

embeddings

3,185K 94.00

Table 1: F1-scores for the WFST, SVM and
CRF (with and without embeddings) algorithms
on the MOVIES (top row) and ATIS (bottom row)
datasets.

from NL2SparQL (Chen et al., 2014) corpus semi-
automatically aligning SPARQL query values to
utterance tokens. The dataset follows the split of
the original corpus having 3,338 sentences (with
1,728 unique tokens) and 1,084 sentences (with
1,039 tokens) in the training and test sets, respec-
tively. The average length of a sentence is 6.50
and the OOV rate is 0.24. There are 43 concept
tags in the dataset. Given the Google embeddings,
once we consider every number as a class number,
we obtain 66 token types without an embedding
for the training set and 26 for the test set.

4 Performance Analysis

One of our first observations is the fact that mod-
els such as WFST, SVM and CRF yield competi-
tive results with simple setups and few hyperpa-
rameters to be tuned. The training of our deep
learning models and the search of their hyperpa-
rameters would have been unfeasible without ded-
icated hardware, while it took a fraction of the ef-
fort for WFST, SVM and CRF. Moreover, adding
word embeddings as features to the CRF allowed
it to outperform most of the deep neural networks.



Model hidden epochs batch
size

lr drop
rate

emb
norm

# of
params

min F1 avg F1 best F1

RNN 200 15 50 0.001 0.30 4 1,264K 81.00 82.55 83.96
400 10 50 0.001 0.25 2 580K 91.80 93.79 95.03

LSTM 200 15 20 0.001 0.70 6 1,505K 82.67 83.76 84.57
200 15 10 0.001 0.50 8 675K 87.82 94.53 95.36

LSTM-CHAR-REP 400 20 20 0.001 0.70 4 2,085K 82.00 84.28 85.41
400 15 10 0.001 0.50 6 1,272K 81.00 94.19 95.39

LSTM-2CH 200 20 15 0.001 0.30 8 1,310K 81.22 82.68 83.76
400 10 100 0.010 0.70 6 1,022K 93.10 94.61 95.38

GRU 200 20 20 0.001 0.50 4 1,424K 76.56 84.29 85.47
100 15 10 0.005 0.50 10 446K 91.53 94.28 95.28

CONV 200 20 20 0.001 0.50 4 2,646K 84.05 85.02 86.17
100 15 10 0.005 0.00 2 625K 91.51 94.22 95.38

FC-INIT 100 30 20 0.001 0.30 4 2,805K 82.22 83.93 84.95
400 15 50 0.010 0.25 4 7,144K 87.39 94.67 95.39

ENCODER 200 30 20 0.001 0.70 4 1,559K 71.25 76.39 79.00
200 25 5 0.001 0.70 6 730K 70.01 78.16 80.85

ATTENTION 200 15 20 0.001 0.30 4 1,712K 71.86 79.77 82.67
200 25 5 0.001 0.25 10 894K 92.47 94.09 94.98

LSTM-CRF 200 10 1 0.001 0.70 6 1,507K 84.75 86.11 87.47
400 15 10 0.001 0.50 6 1,200K 94.39 94.72 95.01

LSTM-CRF-CHAR-REP 200 15 1 0.001 0.70 8 1,555K 85.07 86.08 87.05
200 20 5 0.001 0.50 4 740K 94.45 94.91 95.12

Table 2: All models are bidirectional and have been trained with unfrozen Google embeddings, except
for CONV and LSTM-2CH. Min, average and best F1 scores are obtained training the same model
with the same hyperparameters, but different parameter initializations. Averages are from 50 runs for
MOVIES and 25 for ATIS. For each architecture, the first row reports F1-score for the MOVIES dataset
and the second for ATIS. Hyperparameter search has been done randomly over ranges of values taken
from published work. The number of parameters refers to the network parameters plus the embeddings,
when those are unfrozen. Given a hidden layer size X reported in hidden column, each component in
the bidirectional architecture would have a hidden layer size of X/2. Similarly, each of the two LSTM
components in the LSTM-2CH model would have X/2 as an hidden layer size; and each bidirectional
component would thus have a hidden layer size equal to X/4.

We attribute this to two factors: (1) since these
models, unlike neural networks, do not learn fea-
ture representation from data, they are simpler and
faster to train; and, most importantly, (2) these
models usually perform global optimization over
the label sequence, while neural networks usually
do not. Augmenting neural networks with CRF is
not expensive in terms of parameters. Having a
CRF component on top of an LSTM increments
the number of parameters up to the square of the
tag-set size (about 2,500 for the MOVIES dataset),
and provides the best performing model.

There seems to be no strong correlation between
the number of parameters and the variance of a
model performance with respect to the random ini-
tialization of its parameters. This is surprising,
given the intuition that more parameters can po-
tentially lead to a lower probability of being stuck
in a local minima. The case may be that differ-
ent initializations lead to different training times
required to get to good local minimas.

4.1 Statistical Significance Testing
The best performing algorithms in our experi-
mental settings are LSTM-CRF and LSTM-CRF-
CHAR-REP; however, they are not very far from
CRF+EMB and CRF algorithms. In order to com-
pare the performances in terms of statistical signif-
icance, we perform Welch’s unequal variances t-
test (Welch, 1947), which, compared to more pop-
ular Student’s t-test, does not assume equal vari-
ances. The choice of test is motivated by the ob-
servation that neural architectures generally yield
higher variances than, for instance, CRF.

The performances are compared on 10-fold
cross-validation outputs on the training set for
both ATIS and MOVIES datasets. Due to the
higher variance of neural network architectures,
a better way to test would be to perform many
runs with different random initializations for each
fold, and take the average of these results; how-
ever, such a procedure is computationally very de-
manding.
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MOVIES
CRF

CRF-EMB *
LSTM-CRF *

LSTM-CRF-CHAR-REP *
ATIS
CRF

CRF-EMB
LSTM-CRF *

LSTM-CRF-CHAR-REP * *

Table 3: Results of statistical significance test-
ing using Welch’s t-test for MOVIES and ATIS
datasets. Algorithms on rows with statistically sig-
nificant differences in performance with p < 0.05
in comparison to the algorithms on columns are
marked with ‘*’.

The results of the statistical significance testing
are reported in Table 3. For the MOVIES dataset,
all the compared models (CRF-EMB, LSTM-
CRF, LSTM-CRF-CHAR-REP) significantly out-
perform the CRF model with p < 0.05. How-
ever, these models do not yield statistically signif-
icant differences among themselves. Specifically,
using embeddings with CRF (i.e. CRF-EMB) pro-
duces statistically significant differences in perfor-
mance on top of CRF. Using CRF with LSTM,
even though produces better average F1 than CRF-
EMB, the gain is not statistically significant, irre-
spective of the type of embeddings used.

For the ATIS dataset, on the other hand, use
of embeddings with CRF does not yield sta-
tistically significant differences with respect to
plain CRF. Neural architectures (LSTM-CRF and
LSTM-CRF-CHAR-REP), on the other hand, do
produce statistically significant difference in per-
formance in comparison to CRF. Moreover, un-
like for MOVIES dataset, the use of character em-
beddings in LSTM-CRF architecture significantly
outperforms the CRF-EMB model.

4.2 Error Analysis
Both MOVIES and ATIS datasets have imbal-
anced distribution of concept labels. The imbal-
anced distribution of labels is known to affect
the performance of the minority classes. Conse-
quently, we correlate the distribution of labels in
the training set to the percent of their mis-labeling
in the test set (by any model). As expected, the
mis-labeling chance is inversely correlated to the
percentage of instances the label has in the train-
ing set (e.g. given that a label amounts to less that
1.0% of a dataset, it usually has a mis-labeling
chance greater than 10.0%). For both data sets,
the Kendall rank correlation coefficients (Kendall,
1938) are approximately 0.6.

Independent of the distribution, there are certain
concepts that are mis-labels more often. For ex-
ample, this is the case for producer, person, and
director name in MOVIES, and city name, state
name, and airport name in ATIS. It is not sur-
prising given that these concepts share the values
(e.g. the same person may be an actor, director,
producer, etc.) and frequently lexical contexts.

Moreover, supporting the observations in
(Bechet and Raymond, 2018) for ATIS, some er-
rors stem from inconsistent labeling. For instance,
in the MOVIES dataset, “classic cars” is mapped
to “O O”, but “are there any documentaries on
classic cars” appears as “O O O B-movie.genre

O B-movie.subject I-movie.subject”.

5 Conclusion

One of the main outcomes of our experiments is
that sequence-level optimization is key to achieve
the best performance. Moreover, augmenting any
neural architecture with a CRF layer on top has
a very low cost in terms of parameters and a
very good return in terms of performance. Our
best performing models (in terms of average F1)
are LSTM-CRF and LSTM-CRF-CHAR-REP. In
general we may say that adding a sequence level
control to different type of NN architectures leads
to very good model performances. Another im-
portant observation is the variance of performance
of NN models with respect to initialization pa-
rameters. Consequently, we strongly believe that
this variability should be taken into consideration
and reported (with the lowest and highest perfor-
mances) to improve the reliability and replicability
of the published results.
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