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Abstract— In the surgical setting, team members constantly 

deal with a high-demand operative environment that requires 

simultaneously processing a large amount of information. In 

certain situations, high demands imposed by surgical tasks and 

other sources may exceed team member’s cognitive capacity, 

leading to cognitive overload which may place patient safety at 

risk. In the present study, we describe a novel approach to 

integrate an objective measure of team member’s cognitive load 

with procedural, behavioral and contextual data from real-life 

cardiac surgeries. We used heart rate variability analysis, 

capturing data simultaneously from multiple team members 

(surgeon, anesthesiologist and perfusionist) in a real-time and 

unobtrusive manner. Using audio-video recordings, behavioral 

coding and a hierarchical surgical process model, we integrated 

multiple data sources to create an interactive surgical dashboard, 

enabling the analysis of the cognitive load imposed by specific 

steps, substeps and/or tasks. The described approach enables us 

to detect cognitive load fluctuations over time, under specific 

conditions (e.g. emergencies, teaching) and in situations that are 

prone to errors. This in-depth understanding of the relationship 

between cognitive load, task demands and error occurrence is 

essential for the development of cognitive support systems to 

recognize and mitigate errors during complex surgical care in the 

operating room.  

Keywords— cognitive load; cardiac surgery; heart rate 

variability; process model 

I. INTRODUCTION 

Recent estimates rank medical errors as the third leading 
cause of death in the U.S. [1-2]. Fifty to 65% of the adverse 
events and errors experienced by hospitalized patients are 
attributed to surgical care and more than half of these events 
are preventable. Understanding and managing conditions 
leading to errors is critical to reduce preventable patient harm 
in the operating room (OR) [3]. 

Complex procedural care (e.g. surgery, interventional 
radiology and interventional cardiology) is a high-consequence 
team-based sociotechnical system with critical requirements 
for communication and coordination. Contemporary 
sociotechnical systems research has moved away from the 
individual as the unit of cognitive analysis, and a new focus on 
the activity system (a group of human actors, their tools and 
environment) has been proposed; this framework has been 
referred to as “distributed cognition” [4-6]. In fact, great effort 
has been devoted in the past years to assess intraoperative 
performance of surgical teams and to pinpoint the many factors 
that may either improve, or impair the quality of surgical care 
[7]. In the surgical setting, team members constantly deal with 
a high-demand operative environment that requires 
simultaneously processing a large amount of information. In 
certain situations, high demands imposed by surgical tasks and 
other sources, such as distractions, interruptions and concurrent 
activities (e.g. teaching, answering pagers and telephones), 
may exceed team member’s cognitive capacity, leading to a 
potentially risky state known as cognitive overload. A growing 
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body of evidence has found that this state impairs human 
performance during surgical tasks, especially those involving 
complex procedural care [8, 9].   

Despite the wide variety of methods that have been used to 
assess cognitive load in various fields (e.g. medicine, 
education, aviation and sports), most of them involve 
subjective and self-report instruments administered post-hoc. 
Consequently, tools like NASA-TLX are not adequate to 
support measures of intraoperative cognitive load fluctuations 
in real-time [10]. In addition, even when real-time methods are 
used (e.g. electrocardiography, electroencephalography), most 
studies to date have investigated only the average cognitive 
load measure during the entire procedure, not providing a path 
to understanding the relationship between certain cognitive 
load levels and specific tasks (e.g. tasks lasting few minutes), 
unexpected events (e.g. emergencies, errors) or contexts (e.g. 
teaching, interruptions). In a recent systematic review of 
literature carried out by our group, we found that heart rate 
variability (HRV) analysis is an objective and unobtrusive 
method capable of capturing reliable metrics of cognitive load 
in surgery [10]. In addition, preliminary studies of surgeons 
performing real-life cardiac surgeries have shown that HRV is 
strongly correlated with surgeons’ SURG-TLX (Surgical Task 
Load Index) score which is a self-report questionnaire based on 
the widely used NASA-TLX (NASA Task Load Index) [11]. 
Both sympathetic and parasympathetic branches of the 
autonomic nervous system are involved in the regulation of 
heart rate and interbeat intervals. Recent research focusing on 
the neurovisceral integration theory have demonstrated that 
executive, emotional and cognitive control functions are 
regulated by brain systems also involved in the regulation of 
the autonomic system, and some cognitive processes, such as 
working memory utilization can be assessed by measuring the 
heart rate variability [12]. Among several parameters generated 
by HRV analysis, the low frequency/high frequency ratio 
(LF/HF ratio) appears to present the strongest correlation with 
cognitive load [13]. 

In the present study, we describe a novel approach to 
integrate a real-time and objective measure of cognitive load 
(heart rate variability) with procedural, behavioral and 
contextual data from real-life cardiac surgeries. This approach 
is innovative because it uses a multimodal data source to create 
an interactive dashboard, allowing a comprehensive analysis of 
multiple team members while simultaneously performing high 
complex surgical procedures.  

II. METHODS

We have investigated the cardiac surgery team performing 
two different complex procedures: coronary artery bypass 
grafting (CABG) and aortic valve replacement (AVR). 
Regulatory approvals were obtained by the local Institutional 
Review Board (IRB) of record (IRB#3047), including 
additional protections for employees as vulnerable subjects. 
Both patients and staff signed an IRB approved informed 
consent form and separate authorization for the release of 

information due to audio/video recording of the procedures. 
Patients were approached during the preoperative testing phase 
for informed consent to participate in a research study. Staff 
received protocol training prior to implementation during a 
regularly scheduled staff education in-service. Following the 
training, the majority of staff was consented at that time; other 
staff was consented in the operating room prior to participating 
in research activities. 

A. Capturing Procedural, Contextual, Behavioral and 

Physiological Data in the OR 

1) Surgical Process Modeling. Based on previous research
developed by our group, [14] a precisely-defined surgical 
team process model was used, providing a detailed 
hierarchical view of how the cardiac surgical team members 
perform tasks, and how they coordinate with each other as 
well as with a suite of medical devices such as a 
cardiopulmonary bypass pump (CPB), a lung ventilator, and 
patient monitors. The hierarchical nature of the model 
supports providing a high-level view of team coordination as 
well as decompositions that support arbitrarily detailed 
specification of how process performers carry out their steps. 
These models were elicited, and iteratively improved, by 
interviewing surgical domain experts, by observing process 
performers, by consulting medical literature, and by codifying 
best practices. In general, the cardiac surgery process model 
uses a 4-level hierarchical structure involving four sub(teams): 
surgeon, anesthesiologist, perfusionist and nurse. The cardiac 
procedures were segmented in 3 stages, 13-14 steps, 160-180 
sub-steps, and approximately 200 tasks, depending on the 
procedure type (CABG or AVR). 

2) Patient Reports. In order to capture contextual
information that can impact team members’ cognitive load, we 
gathered data from three different reports in the patient’s 
electronic health record (EHR):  surgical, perfusion and 
anesthesia. Contextual variables were divided in three 
different components: variables related to the patient (age, 
gender, and pre-operative risk - infection, morbidity, and 
mortality); variables related to the surgical team (experience, 
presence of trainees); variables related to the procedure (step, 
type, execution time, degree of concurrency, depth of 
exception handling, bypass duration).   

3) Audio and Video Recording. Two GoPro cameras
(HERO4) were placed in the OR at the room corner and 
surgical light head, and configured to record an ultra-wide 
(entire team) and a narrow (surgical field) field of view at 30 
frames per second and 960 pixels of video resolution.  Three 
stereo digital voice recorders (Sony ICD-PX440) captured 
audio at 44.1 KHz/192 Kbps from three team members 
(surgeon, anesthesiologist and perfusionist) via a lapel 
microphone. Video and audio files were recorded in .MP4 and 
.MP3 formats respectively and synchronized during post-
production.  
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4) Heart Rate Variability Analysis (HRV). Our systematic
approach to measure cognitive load involves the use of a heart 
rate sensor (Polar H7 chest strap) to capture beat-to-beat 
intervals from three team members simultaneously in real-
time and unobtrusively. Each of the heart rate sensors 
transmits the interbeat intervals (in milliseconds) via 
Bluetooth connection to a smartphone (iPhone 6) application 
(Elite HRV, version 3.14.6). After the recording was 
completed, raw data from each team member was exported in 
.csv format. The .csv files were used in a HRV analysis 
software (Kubios HRV Standard, version 3.0.2) for calculation 
of time-domain and frequency-domain parameters by using 
time series analysis (Fast Fourier Transform). In the present 
study, we used an ultra-short-term analysis of HRV, [15] 
calculating the LF/HF ratio for each 1 minute of the 
procedure. In Kubios software, a very low artefact correction 
algorithm (threshold = 0.45 seconds) and a smoothness priors 
detrending method (lambda = 500) were used. 

B. Synchronizing Multiple Data Sources 

Audio and video were synchronized in a multimedia editing 
software (Movavi video suite 16) by aligning audio 

waveforms, and the actual time was displayed in the video to 
allow synchronization with the surgical reports. Using a 
spreadsheet (Excel 2016), the entire procedure was coded for 
each 1-second length, from the moment the patient arrives until 
the patient leaves the OR (Fig. 1). For instance, a procedure 
lasting 4 hours generates 14,400 rows. A physician with 
expertise in human factors and behavioral coding observed the 
videos and annotated all components of the process model into 
the spreadsheet. Beside the 4-level hierarchical process model, 
the following intraoperative aspects were also coded: events 
and context. Intraoperative events were defined as any event 
that indicates the start or end of a task (e.g. electrocautery is 
turned on, aorta was cross clamped), or any non-nominal 
events that are not captured in the process model (e.g. errors, 
adverse event, emergency, critical communication). 
Intraoperative context was annotated to capture relevant 
situations that occur during the procedure (e.g. surgeon is 
teaching fellow, fellow is performing task and surgeon 
observing, another person enters the OR to talk to the surgeon). 
In addition, HRV data (LF/HF ratio) from each team member 
(surgeon, anesthesiologist and perfusionist) were integrated 
into the spreadsheet. Fig. 2 illustrates our multimodal approach 
to capture, integrate, synchronize and display data for analysis. 

Fig.  1. Procedural, contextual, behavioral and physiological data synchronization. 

Fig.  2. Novel approach to embed multimodal data into the surgical process model. 
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III. INTERACTIVE ANALYTIC DASHBOARD

The database created in the Excel spreadsheet (format .xlsx) 
was connect to a data analytics software (Tableau Desktop, 
version 10.4). A surgical analytics dashboard integrating 4-
level hierarchical process model (stage, step, substep, task), 
events and contextual information with a 1-second timestamp 
was created (Fig. 3).  

A major innovation of this dashboard is that it is dynamic and 

interactive (see http://www.goo.gl/jqGM2U), allowing the 

analysis of individual procedures or summary measures (mean 

and standard deviation) and confidence intervals across many 

procedures. Cognitive load metrics (LF/HF ratio) can also be 

compared between the surgeon, anesthesiologist and 

perfusionist during the entire surgery or in specific steps/tasks. 

In addition, context variables related to patient characteristics, 

surgical team composition and procedure are displayed in the 

dashboard, allowing an in-depth analysis of the many factors 

impacting on team members’ cognitive load.   

In Fig. 4, we captured an example of interruption (perfusionist 

informs lab result to surgeon - ACT test) during a high 

demanding substep (aortic cannulation), leading the surgeon to 

switch from the primary task (purse-string preparation) to a 

secondary task (discussing the reliability of the lab test 

system), and consequently increasing the cognitive load 

(LF/HF ratio reached 130). 

Fig.  3. Interactive dashboard displaying cognitive load measures of three team members: surgeon (top), anesthesiologist (middle), perfusionist (bottom), 4-
level hierarchical process model, events and contextual information during an AVR procedure. 

Fig.  4. 

Inter-
ruption 

during a 

demanding 

task that 

increases 

surgeon’s 

cognitive 

load, likely 

due to task 

switching. 
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IV. DISCUSSION 

In the present study, we have described an innovative 
approach to integrate and analyze distinct types of concurrent 
information generated by multiple data sources during complex 
procedural surgical care. A detailed process model was 
developed to hierarchically decompose CABG and AVR 
procedures into a 4-level process structure. By using heart rate 
variability analysis, we were able to objectively assess the 
cognitive load of three team members, simultaneously, in near 
real-time. The behavioral coding generated by audio-video 
analysis from real-life procedures has allowed us to capture 
unique intraoperative events and contextual information, 
providing an in-depth understanding of the myriad of extrinsic 
factors contributing to cognitive load that likely add to the 
intrinsic demand imposed by procedural tasks. By also 
incorporating contextual variables defining patient 
characteristics, surgical team composition and procedural 
factors this model provides us with additional information to 
investigate the impact of factors such as severity of illness, 
level of provider’s experience and teaching on team 
performance.  

A. Surgical Data Science 

Surgical data science is an emerging discipline with the aim 
of improving safety, quality and effectiveness of surgical care 
by means of data acquisition, modeling and analysis. Core to 
this field is the possibility of overcoming some limitations 
imposed by traditional methodologies (e.g. post event analysis, 
registry data), through the capture of multisource intraoperative 
data in real-time and using advanced analytic methods, such as 
machine learning for predictive analysis [16]. In the last few 
years, an increasing number of studies have intended to 
provide an integrative framework that encompasses data 
capture, synchronization, analysis and application of surgical 
data for quality improvement. Interestingly, some initiatives in 
surgical data science have attempted to assess and provide 
remediation not only for technical aspects of surgical 
performance, but also for non-technical skills, such as 
situational awareness, teamwork and communication [17]. 
Accordantly, our methodological approach to integrate 
multisource data allows an in-depth analysis of cognitive load 
imposed by highly complex procedures. Understanding how 
cognitive load is distributed throughout a complex team, and 
how it fluctuates over time during the course of surgery, will 
allowed us to investigate in an individual and team levels the 
myriad of factors contributing to overload, and consequently 
adverse events and errors in the surgical setting.   

B. Future Directions 

The approach described in this paper can be used to 
develop cognitive aid systems to support teams during complex 
procedural care. As an example, intelligent interruption 
management systems could use real-time and predicted metrics 
of cognitive load to guide the surgical team regarding the 
appropriateness of an interruption based on the cognitive load 
imposed by specific tasks and context. This type of system 
would enhance team situational awareness, since it allows each 
team member to be aware of other’s cognitive state in real-time 
and to choose the most appropriate moment to interrupt 

procedural flow. As alarm management, clinical decision 
support, and closed-loop control algorithms become more 
widely used, these algorithms will need to interact with clinical 
teams. Integrating cognitive load metrics with other contextual 
information will allow algorithms to interact with humans in a 
less intrusive manner. Other real-time measures of cognitive 
load can also be used, such as galvanic skin conductance, pupil 
dilation, electroencephalography and functional near-infrared 
spectroscopy [10]. An advantage of these methods compared to 
HRV is the low latency. While HRV analysis generate 
cognitive load metrics for each 5-minute (short-term analysis) 
or 1-minute (ultra-short-term analysis) timestamp, galvanic 
skin conductance and pupil dilation, for example, can detect 
cognitive changes within few seconds [18, 19]. Future studies 
can attempt to integrate multiple physiological signals into the 
surgical process model.  

V. CONCLUSION 

The unique approach discussed in this paper not only 
allows us to track the cognitive load of multiple team members 
during each surgical stage, step, substep and task, but also 
enables us to detect cognitive load fluctuations either over 
time, under specific conditions and in situations that are prone 
to errors, distractions and interruptions. This in-depth 
understanding can support the development of cognitive-aid 
systems to prevent and mitigate errors during highly complex 
care.  
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