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ABSTRACT 
Interacting with machines that listen, understand and react to 
human stimuli has been for many years the holy grail of 
scientists across disciplines. In the last three decades scientists 
have made great contributions to the training, design and 
testing of conversational systems. In this paper we present the 
fundamentals of  Spoken Dialog Systems (SDS) from 
Automatic Speech Recognition, to Spoken Language 
Understanding and to Text-to-Speech Synthesis. We report on 
the spoken dialog system architecture and experiments within a 
university help-desk application. 
 
Index Terms— Automatic Speech Recognition, Spoken 
Language Understanding, Spoken Dialog Systems. 
 

1. INTRODUCTION 
Interacting with machines that listen, understand and react to 
human stimuli has been for many years the holy grail of 
scientists across disciplines. First attempts to build such 
machines dates back to Kratzenstein’s  and Von Kempelen’s 
(18th century) mechanical speech synthesizer. However, it was 
not until first programmable computers were invented that 
computer scientists experimented with models of language 
understanding and human-interaction. 
One of the debate in the scientific community has been 
primarily about (not) making anthropomorphic machines. 
Should we program the peripheral auditory processing of 
humans into computers? Should we parse language according 
to linguistic theories? Should computers be emotional? The 
answer to these questions has been different at times depending 
on factors such as the knowledge about human speech/language 
processing as well as the availability of large databases and fast 
machines. Last but not least. in the last decade, some of the 
scientific contributions have contributed to generate technology 
used by millions of users in commercial applications. 
In this paper we review the fundamental components of spoken 
dialog machines and their theoretical motivation. We 
decompose the “speech and language chain”  into its building 
blocks. The Automatic Speech Recognizer (ASR) decodes the 
speech signal into word string hypotheses. The Spoken 
Language Understanding (SLU) maps word hypotheses into 
semantic interpretations. The Dialog Manager (DM) takes as 
input the semantic interpretations and instantiates a machine 
action. The Natural Language Generator (NLG) instantiates a 

linguistic realization from the machine action. In the last step of 
the speech chain, the Text-to-Speech (TTS) synthesizer 
verbalizes the linguistic realization provided by the NLG.  
In the next sections we review each component and the 
modeling framework. We review the international standards for 
spoken dialog systems. In the last two sections of the paper we 
present an application based on state-of-the-art spoken dialog 
technology. 

2. SPOKEN DIALOG SYSTEMS 
 

2.1 Automatic Speech Recognition 
In ASR the goal is to decode the word string  that is encoded in 
the spoken utterance. The modern approach to ASR is to frame 
this problem in the noisy channel paradigm. The spoken 
utterance can be viewed as the noisy version of the word string  
and thus the decoding problem can be posed as: 
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where Ŵ  is the decoded word sequence, A  is the speech 

signal, W is the generic word sequence drawn from a 

vocabulary V  The term P(A|W) is computed by estimating the 
acoustic model, while P(W) is the stochastic language model 
(SLM). The denominator P(A) is not relevant for the 
optimization problem in Eq. 1. In modern ASR the speech 
signal A  is compressed into acoustic features that are required 
to be minimal (wrt number), robust to noise and discriminative 
( e.g. wrt to speech sounds). An effective approach to feature 
extraction is computed through Mel Frequency Cepstrum 
Coefficient (MFCC) analysis. The core of this procedure is the 
Mel filter bank which is motivated by human speech perception 
experiments [1]. Alternative approaches to feature extraction 
for ASR both in the frequency and time domain can be found in 
[2]. The probability P(A|W) is estimated by the acoustic model 
which needs to account for how acoustic features are generated 
to produce sequence of speech units (e.g. vowels) and 
ultimately words. The most successful mathematical model to 
represent the generation of speech units within a stochastic 
framework is the Hidden Markov Model (HMM). HMMs 
define a double stochastic process with a 1) state transition 
probability matrix A={aij}={P(sj | si)} over state pair space and 
an 2) output symbol probability distribution B={bk}={P(z|sk)} 
for each state sk and symbol z in the dictionary of speech units 
(e.g. phoneme) [3]. HMMs allow us to define the search space 
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of symbol sequences by designing the state topology. A review 
of HMMs and alternative models can be found in [4]. 
In Eq. 1 the term P(W) is computed by estimating the 
probability of a generic word sequence W=w1, w2, ..wM where 
wi ∈ V and M is the number of words in the spoken utterance. 
In general, we do not know the grammar used by the human 
interacting with computers. There have been many attempts at 
formalizing grammars describing the space of allowed word 
sequences but with limited success in ASR, mostly due to 
coverage and brittleness issues. The most successful approach 
to modelling word sequences is purely statistical. The 
probability P(W) is decomposed into n-gram probabilities: 
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transcription of spoken utterances. Since most of n-tuples 
counts is zero smoothing techniques are used to estimates a 
non-zero probability for all word n-tuples[5].  
 

2.2 Spoken Language Understanding  
ASR engine must have access to prior knowledge about the 
language to be recognized, in order to have good performance. 
If a dictation application or advanced SDS heavily relies on 
probabilistic knowledge to constrain the ASR decoding, such 
as the n-gram probabilities, in SDS it is very effective to pre-
define all the possible formulations that the user might say as 
well as define a mapping between words and their meaning. 
<grammar version="1.0" xml:lang="en-US" 
  xmlns="http://www.w3.org/2001/06/grammar" 
  tag-format="semantics/1.0" root="fromto"> 
 
  <rule id="fromto" scope="public"> 
    from <ruleref uri="#city"/> 
         <tag>out.fromcity=rules.latest();</tag> 
    to <ruleref uri="#city"/> 
       <tag>out.tocity= rules.latest();</tag> 
  </rule> 
  <rule id="city"> 
    <one-of> 
      <item>Brussels<tag>out="BRU"</tag></item> 
      <item>Paris<tag>out="CDG"</tag></item> 
      <item>Rome<tag>out="FCO"</tag></item> 
    </one-of> 
  </rule> 
</grammar> 

Fig. 1. Simple SRGS grammar with SISR script  

The most common kind of speech grammars are Context Free 
one (type 2 of the Chomsky hierarchy [6]) which can be 
integrated in the speech decoding process in a tractable, 
efficient and well performing algorithm. Relevant work has 
been done by World Wide Web Consortium (W3C) in the 
definition of a standard syntax for grammars: SRGS -“Speech 
Recognition Grammar Specification Version 1.0” [7], which is 
largely adopted by the speech engine products. 
A second improvement from W3C has been the definition of a 
standard for semantic interpretation, which is a part of a 
speech grammar devoted to the generation of a semantic result. 
In many architectures the ASR result is a string of recognized 
words or multiple results (e.g. N-bests/lattices). SISR, which 

stands for “Semantic Interpretation for Speech Recognition 
Specification Version 1.0” [8], offers two alternative ways to 
encode semantic interpretation, the first is called literal 
semantics, which allows to transliterate a recognized word for 
instance to return a single value for alternative pronunciation 
(“coke” for “coca cola”). 
In alternative SISR 1.0 allows script semantics, which is based 
on ECMAScript/JavaScript (ECMA-327, the computationally 
constraint version of ECMA-262). With script semantics the 
ASR engine can return complex semantic results, apply 
validations to increase or reduce the reliability of the 
recognized result, or encode the result to be suitable for the 
speech application. The grammar in Figure 1 includes SISR 
script semantics inside <tag> element, so that for “from Rome 
to Paris” returns the following ECMAScript object 
{fromcity: "FCO",tocity: "CDG"}. While CFG 
formalism is powerful in SLU we aim at understanding 
conversational speech, where we need to be apply robust 
parsing techniques for mapping words to concepts [9]. 
 
  2.3 Dialog Manager (DM)  
The dialog manager implements the control algorithm that 
takes the semantic interpretation hypotheses from SLU and 
computes which action the machine should take. For example if 
the SLU has hypothesized  a user request for flight status, the 
DM might generate a machine request for which flight. The 
DM controls the type of actions ( linguistic vs non-linguistic), 
timing of actions (when to perform them) as well as their 
sequences (strategies). In most DMs the underlying 
assumptions, is that the machine is expected to help the user 
perform a pre-defined task (e.g. travel information and 
planning). Task complexity has a direct impact on the 
complexity of the DM control algorithm. The simplest 
approach to DM is to encode the control via a set of rules or 
finite state automata [10]. While the latter approach is simple 
as well as limited, more recently there have been promising 
approaches to stochastic modelling of DM control [11]. 

 
  2.4 Natural Language Generation (NLG) 
Natural language generation is the process of generating natural 
language output from DM actions. Other source of knowledge 
can affect such process ( e.g. flight databases ). NLG is the 
inverse of SLU with the most notable difference that the input 
is not-linguistic. The NLG algorithm is expected to select what-
to-say and how-to-say. Since there are many linguistic choices 
for a given input, NLG algorithm decides what is the best 
amongst many alternatives. NLG in Spoken Dialog Systems is 
currently limited to selection from predefined textual 
realization or template filling at best. However in text 
processing there have been early attempts to design complete 
NLG systems [10]. 

 
2.5 Speech Synthesis  

The main technique in modern TTS is the Unit Selection 
concatenation technique [12]. The basic idea is to extend the 
concatenation units from diphones to wider units from a large 
speech database. The result is highly intelligibile and natural 
compared with early attempts in the ‘70s. Such advances were 
possible also due to increased availability of CPU power and 
memory. 
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The TTS architecture [13] is composed of two main modules: 
the Text Analyzer, whose goal is to convert the input text into a 
phonetic and prosodic representation; and the Speech 
Synthesizer, whose goal is to find the optimal sequence of 
units, then to concatenate them to obtain the synthesizer output. 
Text analysis relies on language knowledge, lexicons and rules; 
Speech Synthesis relies on speech processing techniques to find 
the optimal sequence of segments and smoothly concatenate 
them. Acoustic databases are designed to provide high 
phonetic/prosodic coverage of the intended language (or 
application domain). 
One of the research topic is to generate output with emotional 
control [14-15]. Loquendo TTS voices are produced with a list 
of "expressive cues", which enable TTS users to enliven their 
voice prompts. This is a concrete attempt in the direction of 
expressive synthetic speech. Another important area is the 
multilinguality, where the TTS should be able to read multiple 
languages, even mixed in the same sentence. A common 
approach is to record voices from bilingual or polyglot 
speakers and allow the TTS engine to select the proper 
language. A more general approach is based on Phoneme 
Mapping [16], where each word/sentence is transcribed 
according to its language, and then the phonemes are mapped 
into similar ones according to articulatory features in the target 
language. Phonemes that do not belong to the native 
phonological system of the voice must be replaced by the most 
similar sounds available. Moreover there is increased interest in 
exploting advanced techniques developed for ASR into TTS, 
see [17]. 

 
3. SPEECH STANDARDS 

Today commercial SDS are based on VoiceXML 2.0/2.1 [18-
19], released by the W3C Voice Browser (VBWG) in 2004. 
VoiceXML markup describes in a declarative way the dialog 
interaction, where a VoiceXML platform downloads the 
documents by http from an application server. This allows to 
decouple the dialog logic from the platform and to re-use the 
web architecture to produce and deploy speech applications. 
For these reasons the VoiceXML is today pervasive into 
commercial speech applications.  
A second area of interest for the application of speech 
technologies is the multimodal environment, which is pushed 
by the increasing presence of mobile devices, kiosks, and 
laptop. In a multimodal applications the DM must be able to 
integrate and coordinate different input/output modalities, such 
as speech, gesture, audio, video, etc. To promote standards for 
MMI W3C launched in 2002 the Multimodal Interaction 
working group, in [20] the proposals of a Multimodal 
architecture  and other related standards (EMMA for rich 
annotation of input and InkML). The first generation of 
standards (VoiceXML 2.0/2.1) is now a pervasive reality, but a 
new generation is under development, such as SCXML [21] 
which allows a DM to control different modalities and is going 
to become the build block of future speech and multimodal 
applications.  
 

4. SPOKEN DIALOG SYSTEM 
In this section we describe the architecture of an SDS based on 
speech grammars and VXML standard platform used in our 
lab. In Figure 2 the architecture of the Spoken Dialogue System 

is supported by the VXML platform. The DM engages the user 
in a conversation to drive the user through the completion of its 
request. The DM processes the semantic representation of the 
utterance returned by the VXML platform and query the 
following resources to generate a machine action. Dialog 
History: the database where the information about past spoken 
dialog events ( e.g. users’ transcriptions, semantic 
interpretations, machine actions etc.) is stored. The Domain 
Concept Ontology (DCO): A hierarchical description of the 
set of domain concepts. The Action Ontology (AO): A set of 
predicates that operate on one or more concepts.  The Action 
Constraints (AC) : a set of pre-conditions that are necessary to 
activate any of the predicate in the Action Ontology. Strategy 
Planner (SP): this modules generates a sequence of actions to 
be taken based on the input from AO, AC and Dialog History. 
The DM matches the current semantic interpretation against the 
DCO and retrieves the possible machine actions from the AO. 
This set is validated by matching the action constraints present 
a given dialog turn. The set of available machine actions are 
then used to build a strategy plan via the SP module. The key 
resource of the DM control is the dialog history which is 
instrumental to take decisions in the context of current or past 
dialog interactions. A more detailed discussion of our data-
centric approach to Dialog Management can be found in [22]. 
When the DM has selected the best machine action, the NLG 
module is invoked and then its output verbalized by the 
platform TTS. In the current implementation the NLG is driven 
by templates or text tables indexed by machine actions. The 
DM iterates the previously described steps until the call reaches 
a final state (e.g., in the case of a routing application, the call is 
transferred to a live agent, an IVR or the caller hangs up or the 
caller reaches the goal). 
 

 
Fig. 2. Spoken Dialog System Architecture 
 
 In our architecture we have isolated the data (e.g. Dialog 
History, DCO, etc..) from the control (DM) so that it can  
support multiple DM models ( e.g. rules, finite state automata, 
stochastic models) and adapt to new in-domain contexts or 
multiple domains  (e.g. different DCO).  
 

5. EXPERIMENTS 
In this section we describe the experiments we performed 
within an application domain. The selected domain is 
university help-desk (The UNITN Help-Desk). Students call in 
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to ask general information (e.g. date of exams) or request 
services (e.g. sign-up for exams). This is an on-going research 
project at University of Trento and in the next two sections we 
describe the current functionalities of our SDS system as well 
the spoken corpora we have collected. Currently our SDS 
supports the following machine sub-tasks: 
• Subscribe. the caller selects one of classes from the  

database and sign up for classes or mid-terms. 
• Cancel. the caller cancels previous subscriptions. 
• Information. The caller asks information about classes 

(date, time, room, type of exam, ...) 
• Operator. The caller asks for a human operator. 
During the call, the caller can perform more than one subtask. 
For instance he can first ask information about a class and then 
sign-up for it. 
 
5.1.Help-Desk Dialog Corpus and Task Accuracy 
We have collected 200 spoken dialogs in a Wizard-Of-Oz 
modality. The user calls in the telephony platform and the SDS 
described in the previous section handles the call until  a 
human operator ( Wizard ) takes control of the conversation to 
complete, if necessary, the call. This protocol provides us a 
spoken dialog corpora with a selection of automated 
interactions as well as human-human recovery dialogs. The 
ultimate goal is to adapt the SDS and learn from the human-
human  dialogs.  
The ASR and TTS engine and VoxNauta platform were 
provided by Loquendo. We wrote the speech grammars based 
on the specification described in paragraph 2.2. They are based 
on the phrase-filler structure commonly used for slot-filling 
tasks. We have designed the ontologies for the domain concept 
and actions ( DCO and AO ) as well as the strategy planner and 
DM controller. Current DM controller is rule based. One of the 
research challenges in DM control is the evaluation phase. The 
evaluation is in general complex and should take into account 
several aspect of the interaction. Moreover, dialog evaluation 
might require supervision of human annotators to determine 
“what the user actually said or meant” [23]. This is time-
consuming and expensive. In our evaluation experiments we 
examined automatically (no supervision) the concept and task 
accuracy by collecting  dialog history statistics. We queried the 
dialog history database and retrieved those concepts or actions 
that were successfully completed. Success was detected when 
the user gave positive feedback ( e.g. he/she gave a positive 
answer to a confirmation request.). The estimated task success 
rate on the entire set (200 dialogs)  is 59% which is the 
percentage of times the task was successfully completed. The 
task required to collect information ( e.g. concepts in the DCO) 
and perform and action (e.g. sign-up for a mid-term). In the 
unsuccessful dialogs (task not completed) some of the concepts 
had been correctly understood. In these cases, 29.5% of the 
goal has been correctly understood ( e.g. sign-up for mid-term 
vs operator request) while 11.5% of unsuccessful dialogs have 
correctly identified the goal and the target concept ( e.g. the 
name of the class). 

6. CONCLUSION 
We have described the fundamental information processes of 
spoken dialog systems. Current state-of-the-art mathematical 
models rely on statistical modeling of data from automatic 

speech recognition to text-to-speech synthesis. Formal model 
of concept and domain knowledge is required to complete the 
design of spoken dialog systems. 
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