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ABSTRACT
Interacting with machines that listen, understand eeact to
human stimuli has been for many years the holyl gréi
scientists across disciplines. In the last threzades scientists
have made great contributions to the training, gtesand
testing of conversational systems. In this papepvesent the
fundamentals of  Spoken Dialog Systems (SDS) from
Automatic Speech Recognition, to Spoken Language
Understanding and to Text-to-Speech Synthesis. &ert on
the spoken dialog system architecture and expetgneithin a
university help-desk application.

Index Terms— Automatic Speech Recognition, Spoken
Language Understanding, Spoken Dialog Systems.

1. INTRODUCTION
Interacting with machines that listen, understand eeact to
human stimuli has been for many years the holyl gréi
scientists across disciplines. First attempts taldbsuch
machines dates back to Kratzenstein's and Von kdenfs
(18" century) mechanical speech synthesizer. Howeteras
not until first programmable computers were inventhat
computer scientists experimented with models ofglage
understanding and human-interaction.
One of the debate in the scientific community haerb
primarily about (not) making anthropomorphic maesin
Should we program the peripheral auditory processif
humans into computers? Should we parse languagedicg
to linguistic theories? Should computers be emalidnlhe
answer to these questions has been different astdapending
on factors such as the knowledge about human sfi@eghage
processing as well as the availability of largeatlases and fast
machines. Last but not least. in the last decadmesof the
scientific contributions have contributed to getetachnology
used by millions of users in commercial applicagion
In this paper we review the fundamental componehtpoken
dialog machines and their theoretical motivation.e W
decompose thespeech and language chairinto its building
blocks. The Automatic Speech Recognizer (ASR) desdte
speech signal into word string hypotheses. The &pok
Language UnderstandingSLU) maps word hypotheses into
semantic interpretations. The Dialog Manager (DiRets as
input the semantic interpretations and instanti@emachine
action. The Natural Language Generadt.G) instantiates a

linguistic realization from the machine actionte last step of
the speech chain, the Text-to-Spee€hRTS) synthesizer
verbalizes the linguistic realization provided hg NLG.
In the next sections we review each component dmd t
modeling framework. We review the internationahsiards for
spoken dialog systems. In the last two sectiorth@paper we
present an application based on state-of-the-ankesp dialog
technology.

2. SPOKEN DIALOG SYSTEMS

2.1 Automatic Speech Recognition
In ASR the goal is to decode the word string thancodedn
the spoken utterance. The modern approach to A&Rfiame
this problem in the noisy channel paradigm. Thekepo
utterance can be viewed as the noisy version ofvtre string
and thus the decoding problem can be posed as:
P(AIW)PW) (1)

P(A)

where W is the decoded word sequencd, is the speech
signal W is the generic word sequence drawn from a

vocabularyV The termP(A|W)is computed by estimating the
acousticmodel, while P(W) is the stochastic language model
(SLM). The denominatorP(A) is not relevant for the
optimization problem in Eq. 1. In modern ASR thesegh
signal A is compressed into acoustic features that are required
to be minimal (wrt number), robust to noise anduisinative

( e.g. wrt to speech sounds). An effective apprdacfeature
extraction is computed through Mel Frequency Cepstr
Coefficient (MFCC) analysis. The core of this prdgee is the
Mel filter bank which is motivated by human spegeinception
experiments [1]. Alternative approaches to featex&action
for ASR both in the frequency and time domain caridund in
[2]. The probabilityP(A|W)is estimated by the acoustic model
which needs to account for how acoustic featuregyanerated
to produce sequence of speech units (e.g. vowels) a
ultimately words. The most successful mathematicadiel to
represent the generation of speech units withirtoahastic
framework is the Hidden Markov Model (HMM). HMMs
define a double stochastic process with a 1) dtatesition
probability matrixA={a;}={P(s | s)} over state pair space and
an 2) output symbol probability distributidd={b}={P(z|s\)}

for each state,sand symbol z in the dictionary of speech units
(e.g. phoneme) [3]. HMMs allow us to define thershaspace

W = argmax P(W | A) = argmax
W W
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of symbol sequences by designing the state topolaggview
of HMMs and alternative models can be found in [4].

In Eq. 1 the termP(W) is computed by estimating the
probability of a generic word sequendé&w,, W, ..W, where

w; /7V andM is the number of words in the spoken utterance.

In general, we do not know tlggammarused by the human
interacting with computers. There have been matgmgts at
formalizing grammars describing the space of albbweord
sequences but with limited success in ASR, mostlg tb
coverage and brittleness issues. The most sucteggftoach
to modelling word sequences is purely statisticihe
probability P(W) is decomposed integram probabilities:

POW) = [1 P(o [v4--wi-1)= [] PO [nws~wi-1) () WHEre the

function h(w; ---w_;) maps the substringy, W,, ..W4 into an

equivalent class. The most used equivalence clasgidn is
h(wg -+ Wi—1) — (W—n+1-Wi—1) andPW) = [TP(W; |Wi—n41--wi—p). The
I

n-gram probability P(W | wi_,; ---W_4) requires counts offi-
tuples C(W_p.q---W_;W ) estimated from large corpus of

transcription of spoken utterances. Since mostndfiples
counts is zero smoothing techniques are used tmast a
non-zero probability for all word-tuples[5].

2.2 Spoken Language Under standing

ASR engine must have access to prior knowledge tatheu
language to be recognized, in order to have goddmpeance.
If a dictation application or advanced SDS heavélies on
probabilistic knowledge to constrain the ASR denggdisuch
as then-gram probabilities, in SDS it is very effective poe-
define all the possible formulations that the uséght say as
well as define a mapping between words and theaming.

<grammar version="1.0" xm :|ang="en-US"
xm ns="http://ww. w3. org/ 2001/ 06/ gr ammar "
tag-format ="semantics/ 1. 0" root="fronto">

<rule id="fronto" scope="public">
from<ruleref uri="#city"/>
<tag>out.frontity=rules.latest();</tag>
to <ruleref uri="#city"/>
<tag>out.tocity= rules.latest();</tag>
</rul e>
<rule id="city">
<one- of >
<i t en>Br ussel s<t ag>out ="BRU"'</t ag></itenr
<i t enpPari s<t ag>out =" CDG'</t ag></i t en>
<i t enPRone<t ag>out =" FCO' </t ag></i t en>
</ one- of >
</rul e>
</ gr ammar >

Fig. 1. Simple SRGS grammar with SISR script

The most common kind of speech grammars are CoRtext
one (type 2 of the Chomsky hierarchy [6]) which da@
integrated in the speech decoding process in aatrkc
efficient and well performing algorithm. Relevanbrk has
been done by World Wide Web Consortium (W3C) in the
definition of a standard syntax for grammars: SRGpeech
Recognition Grammar Specification Version 1.0” [&hich is
largely adopted by the speech engine products.

A second improvement from W3C has been the dedimitif a
standard forsemantic interpretatignwhich is a part of a
speech grammar devoted to the generation of a semesult.
In many architectures the ASR result is a stringeabgnized
words or multiple results (e.g. N-bests/latticeéS)SR, which

stands for “Semantic Interpretation for Speech Rgitmn
Specification Version 1.0” [8], offers two alterivat ways to
encode semantic interpretation, the first is call@dral
semanticswhich allows to transliterate a recognized ward f
instance to return a single value for alternativenpnciation
(“coke” for “coca cola”).

In alternative SISR 1.0 allowscript semantigswhich is based
on ECMAScript/JavaScript (ECMA-327, the computatithy
constraint version of ECMA-262). With script semestthe
ASR engine can return complex semantic results,lyapp
validations to increase or reduce the reliability the
recognized result, or encode the result to be deitfor the
speech application. The grammar in Figure 1 induBéSR
script semantics insidet ag> element, so that for “from Rome
to Paris” returns the following ECMAScript object
{frontcity: "FCO',tocity: "CDG'}. While CFG
formalism is powerful in SLU we aim at understamdin
conversational speech, where we need to be apgiysto
parsing techniques for mapping words to concegts [9

2.3 Dialog M anager (DM)
The dialog manager implements the control algorittivat
takes the semantic interpretation hypotheses fratd 8nd
computes which action the machine should take ekample if
the SLU has hypothesized a user requestliffiit status the
DM might generate a machine request fdrich flight The
DM controls the type of actions ( linguistic vs Alamguistic),
timing of actions (when to perform them) as well tagir
sequences (strategies). In most DMs the underlying
assumptions, is that the machine is expected fo tnel user
perform a pre-defined task (e.g. travel informatiamd
planning). Task complexity has a direct impact dre t
complexity of the DM control algorithm. The simples
approach to DM is to encode the control via a $eules or
finite state automata [10]. While the latter apptods simple
as well as limited, more recently there have beermjsing
approaches to stochastic modelling of DM contrdl {1

2.4 Natural Language Generation (NLG)

Natural language generation is the process of géingrnatural
language output from DM actions. Other source awWedge
can affect such process ( e.g. flight databas@dL¥5 is the
inverse of SLU with the most notable differencet tie input
is not-linguistic. The NLG algorithm is expectedsiect what-
to-say and how-to-say. Since there are many litiguthoices
for a given input, NLG algorithm decides what i thest
amongst many alternatives. NLG in Spoken Dialogte3ys is
currently limited to selection from predefined et
realization or template filing at best. However text
processing there have been early attempts to desigiplete
NLG systems [10].

2.5 Speech Synthesis

The main technique in modern TTS is thmit Selection
concatenation technique [12]. The basic idea iextend the
concatenation units from diphones to wider unitsrfra large
speech database. The result is highly intelligilifel natural
compared with early attempts in the ‘70s. Such ades were
possible also due to increased availability of Qsdwer and
memory.
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The TTS architecture [13] is composed of two maduies:

the Text Analyzerwhose goal is to convert the input text into a

phonetic and prosodic representation; and tBpeech

Synthesizerwhose goal is to find the optimal sequence of

units, then to concatenate them to obtain the sgigthr output.
Text analysis relies on language knowledge, lexdcmd rules;
Speech Synthesis relies on speech processing geasntio find
the optimal sequence of segments and smoothly tama
them. Acoustic databases are designed to providg hi
phonetic/prosodic coverage of the intended languégye
application domain).

One of the research topic is to generate output gitotional
control [14-15]. Loquendo TTS voices are producétth & list
of "expressive cues”, which enable TTS users to/@mltheir
voice prompts. This is a concrete attempt in threation of
expressive synthetic speech. Another important asethe
multilinguality, where the TTS should be able tademultiple

languages, even mixed in the same sentence. A cammo

approach is to record voices from bilingual or by
speakers and allow the TTS engine to select thepepro
language. A more general approach is based on Riwne
Mapping [16], where each word/sentence is tranedrib
according to its language, and then the phonenesnapped
into similar ones according to articulatory featuine the target

language. Phonemes that do not belong to the native

phonological system of the voice must be replagethé most
similar sounds available. Moreover there is incedasterest in
exploting advanced techniques developed for ASB TES,
see [17].

3. SPEECH STANDARDS
Today commercial SDS are based on VoiceXML 2.0[28t
19], released by the W3C Voice Browser (VBWG) ir020
VoiceXML markup describes in a declarative way thalog
interaction, where a VoiceXML platform downloadse th
documents by http from an application server. Tdlisws to
decouple the dialog logic from the platform andréeuse the
web architecture to produce and deploy speech ctjglns.
For these reasons the VoiceXML is today pervasiv® i
commercial speech applications.
A second area of interest for the application obegh
technologies is the multimodal environment, whishpushed
by the increasing presence of mobile devices, kiosind
laptop. In a multimodal applications the DM must dide to
integrate and coordinate different input/output aldigs, such
as speech, gesture, audio, video, etc. To pronatelards for
MMI W3C launched in 2002 the Multimodal Interaction
working group, in [20] the proposals of a Multimbda
architecture and other related standards (EMMA rich
annotation of input and InkML). The first generatiof
standards (VoiceXML 2.0/2.1) is now a pervasivditgaeut a
new generation is under development, such as SCXal
which allows a DM to control different modalitiesdais going
to become the build block of future speech and imolial
applications.

4. SPOKEN DIALOG SYSTEM
In this section we describe the architecture ocEB$ based on
speech grammars and VXML standard platform useduin
lab. In Figure 2 the architecture of the Spokeridgjae System

is supported by the VXML platform. The DM engages tiser
in a conversation to drive the user through thepmetion of its
request. The DM processes the semantic represaniatithe
utterance returned by the VXML platform and quehge t
following resources to generate a machine actibialog

History: the database where the information about past spoke
seroanti

dialog events ( e.g. users’ transcriptions,
interpretations, machine actions etc.) is storelde Domain
Concept Ontology (DCO): A hierarchical description of the
set of domain concepts. Thetion Ontology (AO): A set of
predicates that operate on one or more concepi& Agtion

Constraints (AC) : a set of pre-conditions that are necessary to

activate any of the predicate in the Action Ontgldgrategy

Planner (SP): this modules generates a sequence of actions to

be taken based on the input from AO, AC and Diaigjory.
The DM matches the current semantic interpretagigainst the
DCO and retrieves the possible machine actions fl@mAO.
This set is validated by matching the action camsts present
a given dialog turn. The set of available machiotoas are
then used to build a strategy plan via the SP neodihe key
resource of the DM control is the dialog historyiebhis
instrumental to take decisions in the context afent or past
dialog interactions. A more detailed discussionoaf data-
centric approach to Dialog Management can be fanri@2].
When the DM has selected thestmachine action, the NLG
module is invoked and then its output verbalized thg
platform TTS. In the current implementation the NIsGiriven
by templates or text tables indexed by machineoasti The
DM iterates the previously described steps unéildall reaches
a final state (e.qg., in the case of a routing ajapibn, the call is
transferred to a live agent, an IVR or the call@nds up or the
caller reaches the goal).

Ontology

Action Action g::;zmt
Constraints || Ontology P

7

VXML Page

Strategy I |
e 6
Dialog
Manager

SpeechGrammar/SLM e
J“I ASR h

Fig. 2. Spoken Dialog System Architecture

TTS

Natural Language
Generator

T1

In our architecture we have isolated the data. (Biglog
History, DCO, etc..) from the control (DM) so thdtcan
support multiple DM models ( e.g. rules, finitetstautomata,
stochastic models) and adapt to new in-domain stster
multiple domains(e.g. different DCO).

5. EXPERIMENTS
In this section we describe the experiments we opeéd
within an application domain. The selected domas
university help-desk (The UNITN Help-Desk). Studeaall in
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to ask general information (e.g. date of exams)remuest

services (e.g. sign-up for exams). This is an dngyoesearch

project at University of Trento and in the next tactions we

describe the current functionalities of our SDSteysas well

the spoken corpora we have collected. Currently SIS

supports the following machine sub-tasks:

* Subscribe. the caller selects one of classes from the
database and sign up for classes or mid-terms.

» Cancel. the caller cancels previous subscriptions.

* Information. The caller asks information about classes
(date, time, room, type of exam, ...)

» Operator. The caller asks for a human operator.

During the call, the caller can perform more thaie subtask.

For instance he can first ask information aboutascand then

sign-up for it.

5.1.Help-Desk Dialog Corpus and Task Accuracy
We have collected 200 spoken dialogs in a Wizar@®of
modality. The user calls in the telephony platf@nd the SDS
described in the previous section handles the watil a
human operator ( Wizard ) takes control of the epsation to
complete, if necessary, the call. This protocolvites us a
spoken dialog corpora with a selection of automated
interactions as well as human-humeatovery dialogs. The
ultimate goal is to adapt the SDS and learn froenlthman-
human dialogs.
The ASR and TTS engine and VoxNauta platform were
provided by Loquendo. We wrote the speech gramiased
on the specification described in paragraph 2.2yTdre based
on the phrase-filler structure commonly used fat-§lling
tasks. We have designed the ontologies for the oloomencept
and actions ( DCO and AO ) as well as the strapdgigmer and
DM controller. Current DM controller is rule basédhe of the
research challenges in DM control is the evaluatibase. The
evaluation is in general complex and should take @&Tcount
several aspect of the interaction. Moreover, diawgluation
might require supervision of human annotators ttereine
“what the user actually said or meant” [23]. Thss time-
consuming and expensive. In our evaluation experisnave
examined automatically (no supervision) the coneeqt task
accuracy by collecting dialog history statistidée queried the
dialog history database and retrieved those cosaapactions
that were successfully completed. Success was tddtethen
the user gave positive feedback ( e.g. he/she gapesitive
answer to a confirmation request.). The estimatstl success
rate on the entire set (200 dialogs) is 59% whitthe
percentage of times the task was successfully aeghl The
task required to collect information ( e.g. consdptthe DCO)
and perform and action (e.g. sign-up for a mid-jerim the
unsuccessful dialogs (task not completed) sombeo€bncepts
had been correctly understood. In these cases%28f5the
goal has been correctly understood ( e.g. sigmupnid-term
vs operator request) while 11.5% of unsuccessfubdghave
correctly identified the goal and the target condep.g. the
name of the class).

6. CONCLUSION
We have described the fundamental information mee® of
spoken dialog systems. Current state-of-the-arthematical
models rely on statistical modeling of data fromtoauatic

speech recognition to text-to-speech synthesism&omodel
of concept and domain knowledge is required to detapghe
design of spoken dialog systems.
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