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Abstract—In this paper, the speech understanding problem
in the context of a spoken dialogue system is formalized in a
maximum likelihood framework. Off-line adaptation of stochastic
language models that interpolate dialogue state specific and
general application-level language models is proposed. Word
and dialogue-state n-grams are used for building categorical
understanding and dialogue models, respectively. Acoustic confi-
dence scores are incorporated in the understanding formulation.
Problems due to data sparseness and out-of-vocabulary words
are discussed. The performance of the speech recognition and
understanding language models are evaluated with the “Carmen
Sandiego” multimodal computer game corpus. Incorporating
dialogue models reduces relative understanding error rate by
15%-25%, while acoustic confidence scores achieve a further 10 %
error reduction for this computer gaming application.

Index Terms—Acoustic confidence scores, dialogue modeling,
language model adaptation, natural language processing, n-gram
models, speech understanding.

I. INTRODUCTION

ECENT efforts in natural language understanding have

focused on statistically-based approaches. Research is
motivated by the increasing complexity of spoken dialogue
systems, e.g., user-initiated dialogue, multiple actions and
attributes per dialogue turn. Statistical-based approaches have
been made possible by the availability of semantically anno-
tated dialogue speech corpora and have mostly concentrated
on the travel reservation application domain. Typical statistical
understanding systems build statistical models using semantic
labels (prior knowledge) and data-driven approaches. Models
are bootstrapped from a semantically annotated text corpus.
A typical statistical understanding system decodes incoming
utterance in three stages: acoustic decoding, semantic parsing
of recognizer output (rule-based mapping from text to semantic
labels), and context-dependent semantic decoding (statistical
mapping from semantic labels to actions and attributes) [8],
[10]. In this paper, actions are defined as application-specific
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operations that are independent of the human-computer in-
terface, e.g., input and presentation modalities. Attributes are
parameters associated with a specific action; (some of) these
parameters need to be instantiated to perform the action.

Breaking down the understanding problem into semantic
parsing and semantic decoding is appropriate for certain tasks
(e.g., travel reservations) where there are few actions and
many attributes expressed with short low-perplexity phrase
fragments. However, there are many applications, e.g., gaming
[12], call-routing [5], where there are many actions with few
attributes, and actions are often expressed with high-perplexity
phrase fragments. For these applications the emphasis of the
understanding system lays on building statistical mapping
from user-input to actions. The understanding problem thus
becomes mostly a categorical classification problem where the
classes are the application-dependent actions. Once the action
is recognized, the attributes associated with the action can be
identified through semantic parsing.

In this paper, we concentrate on the problem of categorical
classification of actions from speech input. Categorical speech
understanding has received some attention in the literature es-
pecially for the problems of routing telephone calls to the ap-
propriate destinations (“call-routing”) [2], [3], [5], [17] and di-
alog act classification [24]. Call-routing tasks typically involve
no spoken dialogue or a limited clarification subdialog with the
system. A single utterance has to be classified to one of the
routing destinations. In this paper, the problem of categorical
understanding is investigated for user-initiated and mixed-ini-
tiative dialogues. As a result, dialogue context plays an im-
portant role in constraining the possible interpretation of user
input and enhancing classification performance. Using dialogue
models for understanding has also been proposed in [24] and
[25].

The problem of language modeling for dialogue systems is
also investigated in this paper. Various algorithms for adapting
language models to a specific dialogue context has been pro-
posed in the literature [4], [15]-[17], [21], [23]. In this paper, the
effect of a novel language adaptation algorithm is investigated
on categorical speech understanding performance for spoken di-
alogue systems. Finally, a categorical understanding algorithm
that utilizes acoustic confidence scores is proposed and evalu-
ated (see [22] for incorporating acoustic confidence scores in a
call-routing task).

The organization of the paper is as follows. First the dialogue
state formalism is introduced in the context of a user-initiated
dialogue. Next the understanding problem is posed in a max-
imum likelihood framework. In Section IV, the stochastic finite
state machine representation of the language model and the
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novel adaptation algorithm are outlined. The understanding
model is proposed in Section V and issues such as incorporating
acoustic confidence scores and dealing with out of vocabulary
words are discussed. A user (dialogue) model is introduced
in Section VI. The algorithms are applied to a computer
gaming application, the “Carmen Sandiego” task outlined in
Section VII. Word accuracy and understanding accuracy results
are presented in Section VIII. Extensions of user modeling to
mixed-initiative tasks are discussed in Section IX.

II. DIALOGUE FLOW MODEL

In this section, a formal representation of the dialogue flow
of a general human-machine interaction with multimodal input
and output is introduced. A user-initiated finite-state dialogue
structure is assumed which is typical for gaming applications.
The central notion of the dialogue flow model is the state S; at
turn ¢ that is defined in terms of user input and system output. If
W3 is the user input (e.g., speech transcription) to the applica-
tion and P is the output in response to input W, then a typical
transaction is

...Wt_l—>Pt_1'—>Wt—>Pt'—>Wt+1—>Pt+1... (1)
N————— N—— N———
Si—1 Sy Stt1

where W — P transitions are determined by the understanding
system and dialogue manager, P — W transitions are deter-
mined by the user, and S; is the dialogue state at dialogue turn ¢.
A total of K dialogue states are available {sp, k =1,..., K}.
In practice, a dialogue state can be associated with no action,
e.g., extraneous speech input, or with multiple actions. For sim-
plicity we assume that only one action is allowed per dialogue
turn and thus dialogue action and dialogue state are used in-
terchangeably in this paper (generalization of this framework
to multiple actions per dialogue state is straightforward; see
Section IX).

Given the equivalence between action and dialogue state, we
define 7, k = 1,..., K to be the set of all user inputs that
trigger state si. User input class Zj will be referred hence-
forth as a dialogue state class. Note that Z; contain semanti-
cally equivalent utterances W since they all trigger the same
action sg. The understanding problem is formulated here as de-
termining the dialogue state S; given user input W;. This is
equivalent to the categorical classification of W} in one of the
K classes {Z }. For spoken dialogue systems, at dialogue turn
t, only the sequence of acoustic vectors O; is observable, while
the input speech transcription W; and the dialogue state S; are
hidden variables.! Thus the understanding problem in the con-
text of a spoken dialogue system, involves a joint search over
the W;, S; state space.

Let us also define a prompt-based (or output-based) class Ay,
as the set of all user inputs that come as a response to a system
output from Oy, i.e., Ay = {W; : AP,_1 € Ok, P11 — Wi},
Note the difference between Ay and 7, = {W, : 3P, €
Ok, W; — P.}. One can guarantee that 7;, contains semanti-
cally equivalent utterances (since they all trigger the same ac-
tion sy,) but the same is not necessarily true for .Ay.. Finally, note
that the classification of user input into dialogue state class 7,

IFor other input modalities, e.g., mouse and keyboard, user input W is di-
rectly observable.

requires solving the understanding problem, while mapping the
user’s input into the prompt based classes Ay, is done automat-
ically by the system (S;_1 is known at time t). As a result A
can be used in an unsupervised language adaptation scheme as
proposed in Section IV-A.

III. CATEGORICAL UNDERSTANDING PROBLEM

As discussed in Section II the understanding problem is
defined here as determining the dialogue state? S, given the
speech input O;. The maximum likelihood (ML) approach
to this problem is based on maximizing the joint posterior
probability?

én%[)g P(St7Wt|Ot751 ---St—l) (2)
where S; is the dialogue state, W, is the user input (mapped to a
sequence of words) and O is the acoustic observation sequence
at dialogue turn ¢. This ML problem is equivalent to

éll%l)/( P(Ot|Wt)P(Wt|Sl . St)P(St|Sl e St—l) (3)

under the simplistic* assumption that the acoustic ob-
servations are independent of the dialogue state, i.e.,
P(O|WS1...5:) =~ P(O:|W,). Equation (3) suggests
that acoustic decoding and understanding should be investi-
gated as a single problem. Moreover, dialogue state-dependent
language models and understanding models could potentially
be merged into a single model that computes P(W;|Sy ... St).
In practice, instead of jointly maximizing (3) with respect to W,
and S; it is typical to first maximize the posterior probability
with respect to W; and then with respect to Sy, i.e.,

Wt = argI%E}XP(OJWf)P(WJSl . St—l) (4)

Sy = argInSaXP(Wt|Sl . S)P(Se|S1...Si—1) (5

where P(Wi|S1...5) was approximated by
P(W|Sy...S:—1) in the first equation since S; is un-
known at decoding time. The two step likelihood maximization
although suboptimal is often used in practice because it
decomposes the general understanding problem into two
simpler, well-studied problems: standard acoustic decoding
and understanding from transcription. Indeed, W, is the
solution to the decoding problem, i.e., maximizing the product
of the acoustic and language likelihood scores,’ while S is the
solution to the understanding problem given a transcription
W4, ie., maximizing the product of the understanding and
dialogue likelihood scores.

In practice, the probabilities in (4), (5) are estimated based on
(imperfect) acoustic A4, language Ay, understanding Ay and
dialogue Ap models. Confidence scores can be attached to the
various information streams (acoustic, language, understanding

2Recognizing the attributes associated with a dialogue state is an equally im-
portant part of the understanding problem, however, it is often trivially solved
by rule-based parsing of the recognizer output.

3Similar results are obtained when starting from the ML formulation
maxg, P(S:|Wy,0,,S1...5,_1) as shown in [26].

4Acoustics and specifically prosody carry significant semantic information
[24].

SNote that the language score is conditioned on the dialogue state history, i.e.,
the language models used are dialogue-state dependent [21].
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and dialogue) based on the “quality” of the corresponding
model. These confidences are typically used to compute expo-
nential weights that adjust the dynamic range of the information
sources. These weights v, vz, Yu, YD, are task-dependent
and can be time-varying, e.g., acoustic confidence scores can
be computed at the word level and used to weight the language
and understanding model probabilities.¢ Thus, we can rewrite
the understanding problem as

W, = arg11€$XP(0t|Wt,/\A)“P(Wt|St_1,/\L)7L 6)

S, = argn}qaxP(WJSt?)\U)%'P(St|5t,1,)\D)"“) (7

provided that”

P(Wt|S1 e St_]_,)\L) :P(Wt|St_]_,)\L)
P(Wt|51 e St7 AU) :.P(I/Vt|5t7 /\U)
P(St|51 .. -St—l7)\D) :P(St|5t—17/\D)~

The decoding problem of (6) is discussed in the next sec-
tion. Specifically a novel way of computing P(W}|S;—1, AL)
is proposed, i.e., training state-dependent and state-adapted lan-
guage models, and compared with state-independent language
models P(W;|AL). We then address the understanding problem
and propose simple Markovian models for the understanding
Ay and dialogue Ap models. Furthermore, the incorporation
of acoustic confidence scores in the exponential stream weights
YU, Yp is discussed.

IV. LANGUAGE MODELING

Our approach to language modeling is based on the Variable
Ngram Stochastic Automaton (VNSA) representation and
learning algorithms first introduced in [19], [20]. The VNSA
is a nondeterministic stochastic automaton that allows for
parsing any possible sequence of words drawn from a given
vocabulary V. In its simplest implementation the state ¢ in
the Stochastic Finite State Machine (SFSM) encapsulates the
lexical (word sequence) history of a word sequence. Each state
recognizes a symbol w; € V. The probability of going from
state ¢;—1 to ¢; (and recognize the symbol associated to ¢;)
is the state transition probability, P(g;|¢;—1). Stochastic finite
state machines represent in a compact way the probability
distribution over all possible word sequences. The probability
of a word sequence W can be associated to a state sequence
&y = q1,....qn and to the probability P(&;,). For a non-
deterministic finite state machine the probability of W is then
given by P(W) = 37, P(&}). Moreover, by appropriately
defining the state space to incorporate lexical and extra lex-
ical information, the VNSA formalism can generate a wide
class of probability distribution (i.e., standard word n-gram,
class-based, phrase-based, etc.) [19].

6The choice of .4 and . is part of the speech recognition decoding problem
and beyond the scope of this paper. Typically vz, /7.4 if referred as the “weight
of the language model” and is determined empirically (see [6]).

7The Markovian assumption for the dialogue state sequence is supported from
the data for the “Carmen Sandiego” task (see Section V). However, one can
argue that in practice P(.|S; ... S;) = P(.|S:) for most dialogue interactions.

A. Language Model Adaptation

In spoken language system design, the state of the dialogue
s is often used as a predictor of the most likely user response.
For example, if in a particular state s the system asks a confir-
mation question (YES-NO) the most likely response will be in
the YES-NO equivalent class. However, to achieve natural dia-
logue flow as in human-human communication the user should
be allowed to move from one state to any state of the dialogue.
To achieve this goal language models that are open in vocabu-
lary for each state sy are built. At the same time the language
models are adapted for each stage of the dialogue based on the
expected users’ responses.

Without loss of generality, we assume that each user’s
response corresponds to a state of the dialogue model (see
Section II). In this case, the entire transaction is associated to a
state sequence and the model is defined in terms of the states
and state transitions. The state sy, is then used as a predictor to
compute the word sequence probability P(wq, wa, ..., wx|sk)

P(wl,w27 N 7wN|sk):HP(wj|w17w27 e, WH—1; Sk>

J

®)
In previous work, the dialogue model has been used to parti-
tion the whole set of utterances spoken in the dialogue sessions
into subsets (first subproblem) and then train standard n-gram
language models (second subproblem) [11], [23]. This way, the
user can only utter words that he has previously spoken in a
specific dialogue state. Such language model design does not
fully support mixed-initiative dialogues. In other related work,
the estimation problem is solved by linear interpolation [23] or
maximum entropy models [15]-[17], speaker back-off models
[1] or MAP training [4]. In this work we take the approach of
training language models for each state s; in such a way that the
user can interact in an open-ended way without any constraint
on the expected action at any point of the negotiation. In order
to boost the expected probability of any event at state s;, we use
the algorithm for stochastic finite state machine adaptation first
proposed in [18], [21].

The set of all user’s observed responses at a specific stage ¢
of the dialogue is split into training 7, (7;()Z; = 0 for each
i # j), development (Bj) and test (&) sets. A context inde-
pendent Variable Ngram Stochastic Automaton A7 is estimated
on the training set 7 = |J, 7. While, A7 has full coverage
over all possible word sequences W at any state sy, it does not
provide a selective model for a given dialogue state prediction.
Thus, we build the adapted language models A}, as to maximize
the stochastic separation from the generic model A”". The model

% 1s thus computed as the solution of the log likelihood maxi-
mization problem

A, = argmaxlog P (Bx|A;) )
AQ

where the model \;! is estimated as a linear interpolation of the
language model AT and a state dependent model \. The tran-
sition probabilities for the model A;! are computed as follows:

P (gjlg5-1) = arPT(g;]gj-1) + (1 — ar) Pe(g5]gj-1). (10)

For each set 7, we run Viterbi training starting from the generic
model A7 and estimate the transition probabilities of the SFSM
M. In order to account for unseen transitions we smooth the
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transition probabilities with the standard discounting techniques
discussed in [19]. The solution to (9) with respect to the param-
eters oy, cannot be given in an explicit form. Hence, we use a
greedy algorithm over the development sets 5, to find the local
optimum over a finite number of «;, values. In general there may
not be enough data to have sufficient statistics from the training
sets 7. In these cases we replace the Viterbi training estimates
Pr(gjlgj—1) with prior distributions.

V. UNDERSTANDING MODEL

A typical statistical approach to the problem of estimating
P(W,|St, Av) involves constructing a model Lj, from each one
of the state classes 7, k = 1, ..., K. The understanding model
is then defined as Ay = {Ly,k =1,..., K} and

P(Wt|St:8k//\U) :P(Wt|Lk) (11)
For spoken dialogue systems, user input W, is a text string and
7 is a set of transcribed sentences. A Markovian model for
T} is the variable n-gram stochastic automaton [19]. Recall that
n-grams have been used extensively for language modeling and
well-established learning algorithms exist in the literature. If Ly,
is the n-gram statistical model trained from Z; and the input
utterance W, = wyws ... wy, Wy € I then the computation
of the word sequence probability is done as follows:

PWi|Ly) = ] P(wn|ws .. .wn_1, Li). (12)

In many cases, the training corpus has small amounts of data
which leads to poor estimates of P(Wy|Ly). Techniques for
dealing with sparse training data can be borrowed from the lan-
guage modeling literature, e.g., introduction of semantic classes
(such as cities, dates, digits) back-off techniques etc. A formal
evaluation of smoothing techniques in Ay training in terms of
understanding performance remains to be done. Another issue
that stems from data sparseness is the high confusability of ut-
terances that lay on understanding class boundaries. In such
cases, discriminative approaches could be used to train the un-
derstanding models.

A. Out-of-Vocabulary Words

Out-of-vocabulary (OOV) words in the transcribed input
string W; is a common problem for large vocabulary systems.
Moreover, OOV words might appear even when W, is the
output of an automatic speech recognizer because the vocabu-
lary V}, of understanding model Ly, is a subset of the vocabulary
used for recognition. To deal with OOV words a simple garbage
node is introduced in the understanding model finite state
machine with insertion penalty c,,,. Specifically, if the input
utterance W; = wyws ... wy is represented as P, wy, then

P(WilLy) ~ P @ wy| Ly, [(coov)zné(wn@’k)]

n:w, €Vy
(13)
where V, is the vocabulary drawn from the 7}, training set, w,, €
Vi signifies that word wy, is in Vi, §(w,, & Vi) = 1 for out of
vocabulary (OOV) word (else 0) and c,,,, is a task dependent
constant penalty for deletion of OOV words from input W,.

100 T T T

Understanding Accuracy (%)

S0} - - transcribed
— recognized
40 . L .
0 5 10 15 20
OOV Insertion Penalty
Fig. 1. Dialogue state label understanding accuracy (LACC) as a function

of the OOV insertion penalty for two classification tasks (TASK1=‘Carmen
Sandiego’, TASK2="HMIHY") for transcribed and recognized utterances.

To avoid deletions from the input utterances that could have
deleterious effects when computing n-gram probabilities, OOV
words can be modeled explicitly in Ly, by labeling a subset of the
words in the training set of each class as “OOV”. For example
a round-robin (a.k.a. hold-one-out) technique can be used for
the sentences in each training set 73 and words in the held-out
utterances that do not belong in the state’s training dictionary
are labeled as OOV. In practice, we have observed improved
performance when OOV labels are explicitly modeled as in (13)
rather than included in 7, training. Thus for our experiments a
positive OOV insertion penalty c,,,, in computed from held-out
data. Understanding accuracy as a function of ¢,,, is shown in
Fig. 1 for two understanding tasks (see also the results section).

B. Incorporating Acoustic Confidence Scores

Acoustic confidence scores can be generated for each de-
coded word in an utterance by combining the likelihood ratio
scores for the acoustic subword units (phones) that make up
that word. The likelihood ratio score for each subword unit is
computed as the ratio of the null (speech recognition) and alter-
nate hypothesis (utterance verification) model score. In [22], the
alternate hypothesis model comprises of an “anti-model” (one
per subword unit) and a generic “background” model. The “anti-
model” for subword unit j is trained from examples of other sub-
word units that are easily confusable with 5. The “background”
model is a single-state hidden Markov model that provides a
broad representation of the feature space. The alternate hypoth-
esis model likelihood is the linear combination of the “anti-
model” and “background” model likelihoods. The acoustic con-
fidence scores AC' are normalized, i.e., AC € [0, 1]. See [22] for
more details on the computation of acoustic confidence scores
and typical normalized acoustic confidence scores histograms
for a call-routing application.

The acoustic confidence scores can be used to scale the dy-
namic range of the understanding model probabilities for each
word in a sentence or equivalently scale the log probabilities.
The argument is that low confidence words should be weighted
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less in the understanding decision. Assuming for simplicity that
there are no OOV words, the understanding model probabilities
can be expressed as

PWilLi)" = [] Plwnlws - .. wn—r, L) 50 (14)

where ¢ is a smoothing constant experimentally determined
from held out data. Note that acoustic confidence scores can
also be incorporated in the language model as stream weights
~r, or explicitly as word tags (see [22]).

VI. DIALOGUE MODEL

In this section, a statistical dialogue model for computing the
dialogue state transition probability, i.e., P(S¢|S1 ... Si—1) is
defined. A simple state n-gram model is used for this purpose.
Note that according to the definition of a dialogue state given in
(1) (user-initiated dialogue) a model of the sequence of states
S1...S; is actually a user model, since the user input fully de-
termines dialogue state transitions.

In practice, we have found that for user-initiated dialogues a
state bigram P(.S;|S;—1) models well the short-time dialogue
state dependencies. For example, for the “Carmen Sandiego”
task (see next section) the n-gram perplexities of the finite state
dialogue model were: state unigram 12.2, state bigram 4.0, state
trigram 3.9, state fourgram 4.0 (total of 15 dialogue states, 6039
dialogue turns for training and 2050 for testing). For more com-
plex tasks, that take multiple turns to complete, longer time de-
pendencies are present and higher order dialogue models might
be needed (see Discussion section).

VII. TASK DESCRIPTION

The algorithms proposed above have been applied to a
gaming application, the “Carmen Sandiego” task. In [9] and
[12], data have been collected and analyzed from 160 children
ages 8-14 using voice to interact with the popular computer
game ‘“Where in the U.S.A. is Carmen Sandiego?” by Brgder-
bund Software. A Wizard of Oz scenario was used in the
collection. This game was selected because of its richness in
dialogue subtasks including: navigation and multiple queries
(talking to cartoon characters on the game screen), database
entry (filling the suspect’s profile), and database search (look up
clues in a geographical database). There were no changes to the
original (keyboard and mouse-based) game except for allowing
the speech input modality and adding spoken clarification and
error messages. A brief description of the game follows.

To successfully complete the game, i.e., arrest the appropriate
suspect, two subtasks had to be completed: 1) determine the
physical characteristics of the suspect and issue an arrest war-
rant and 2) track the suspect’s whereabouts in one of fifty U.S.
states. In order to complete these two tasks the player can talk to
animated characters on the game screen and ask them for clues.
The clues can be correlated with information in a geographical
database. Information can be obtained from the database either
by (single or multiple word) search or by stepping through a
hierarchical database structure. The player needs to create the
suspect’s profile (five features, each with two to five pre-de-
fined attributes) and issue a warrant when all fields are filled.

TABLE 1
TYPICAL USER-SYSTEM INTERACTION IN THE “CARMEN SANDIEGO” TASK

User input/System output Dialogue State

Wi_3: Tell me about the suspect? Si—3: TellmeAbout

P,_3: She is neither long- nor short-legged

Wi_o: Her height is average Si_o: EnterFeature

P,_5: ... [updating suspect’s drawing]

Wi—1: Where did the suspect go? Si—1: WhereDid

P;_;: She is picking peonies in Bloomington

Wy Go to Indiana S;: GoToState

P;: ... [travel theme]

The player has to travel (sequentially) through five U.S. states
tracking the suspect, identify him (using the profile information)
from among the cartoon characters in the screen and arrest him.

Using the dialogue flow notation introduced in Section II, we
have defined 15 dialogue states for this application. For a better
understanding of the semantic description of the dialogue states
see [12]. All collected utterances W, have been manually as-
signed to the correct state s that they trigger according to the
definition of Zj,. The training set consists of 6039 utterances col-
lected from 51 speakers and the test set consists of 2050 utter-
ances from 20 speakers. A typical dialogue between the user
and the system is shown in Table 1. Dialogue state labels are
shown on the right and attributes are underlined. Note that each
user input-output pair is assigned to a dialogue state which is
consistent with the formalism introduced in Section II. Four of
the fifteen states (or actions) have attributes, e.g., in Table I the
“GoToState” dialogue state has “Indiana” as an attribute. The
understanding problem is defined here as determining the di-
alogue state label and attribute(s), e.g., “GoToState” and “In-
diana,” given the recognized user input W,.

VIII. EXPERIMENTAL RESULTS

In this section, we report results from language adaptation and
speech understanding experiments using various configurations
of language, understanding and dialogue models. Performance
is measured in terms of word accuracy (WACC), dialogue state
label accuracy (LACC) and dialogue state attribute accuracy
(AACC). LACC is defined as the number of correctly classi-
fied state labels over the total number of state labels. Similarly,
AACC is defined as the number of correctly identified state at-
tributes over the total number of attributes. A deterministic map-
ping from words to attributes is used for attribute recognition.
Context independent hidden Markov Models (HMM’s) using
three states and sixteen Gaussians to model each phone were
trained from the acoustic data and used in all the experiments de-
scribed in this paper. The training set consists of 6039 utterances
(30276 words, 102 dialogues) and the test set of 2050 utter-
ances (10258 words, 37 dialogues). In Section VIII-A, the effect
of language adaptation on WACC and LACC is investigated.
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TABLE 1I
WORD ACCURACY (WACC) FOR BASELINE AND ADAPTED LANGUAGE MODELS
recogn. grammar || baseline | state-dependent | state-adapted
bigram 73.9% 74.8% 74.7%
phrase-bigram 76.2% 76.8% 77.0%
TABLE III

DIALOGUE STATE LABEL ACCURACY (LACC) FOR BASELINE AND ADAPTED
LANGUAGE MODELS (A IS A BIGRAM AND A p IS A UNIGRAM MODEL)

recogn. grammar || baseline | state-dependent | state-adapted
bigram 81.4% 83.2% 82.9%
phrase-bigram 84.1% 86.7% 86.1%
correct transc. 93.9%

The best performing language model is selected (state-depen-
dent trigram) and used for speech understanding experiments in
Section VIII-B.

A. Language Adaptation Experiments

VNSA’s were used for language modeling with order N =
1,2,3; specifically, word bigram and trigram, and phrase uni-
gram, bigram and trigram. Finally, word trigrams were trained
from Zj, and used as understanding models Lj,(¢,0, = 10). Re-
sults are reported for speech recognition (labeled “word accu-
racy”), and sentence classification. The baseline system is based
on the context independent language model A7 . Two algorithms
were used for language adaptation. The first one used data only
from 7} to construct prompt-based language models A (re-
ferred to as “state-dependent”). The second algorithm used all
training data to estimate A}, (referred to as “state-adapted”). The
speech recognition results are shown in Table II. In Table II,
we compare the word accuracy for the two adaptation schemes
“state-dependent” and “state-adapted” for a word and phrase
bigram language model. The open-vocabulary model A} gives
3%-10% error rate reduction for the most common dialogue
state classes. Word accuracy has increased due to better prob-
ability estimates (all data is used for adaptation) and better lan-
guage coverage across different states of the dialogue.

In Table III, the speech understanding results are shown
for the same task. The understanding task has been carried
over the pre-defined fifteen dialogue states according to the
model delivered by (13). A word bigram understanding model
and a unigram dialogue model was used in this experiment
(see next section for different understanding and dialogue
model configurations). As shown in Table III, the dialogue
state label accuracy (LACC) improves by about 2% (absolute)
over the baseline when using adapted language models. The
relative understanding error rate reduction is 10%—-15%, which
is significantly larger than the relative word error reduction
(about 5% in Table II). Finally note that LACC for correct
transcription is 93.9% which is significantly better than LACC
for the recognizer output.

B. Understanding Model Experiments

In this section, the performance of the speech understanding
algorithms are evaluated for various understanding and dia-
logue model orders. A state-adapted trigram language models
was used for all experiments reported in this section. The
language model was selected to maximize word accuracy. The
word accuracy (WACC) on the 2050 sentence recognition task®
was 78.0%. Next, results are presented for attribute recognition
(AACCQ), state label understanding (LACC) as a function of
the out of vocabulary penalty (¢, ), model order, and acoustic
confidence scores.

Attribute recognition is performed by mapping words or
combination of words to attributes, e.g., Indiana — state. The
mapping is deterministic and the rules are context-free for
this simple application. Thus the attribute accuracy (AACC)
is directly comparable to word accuracy (WACC). Indeed,
attribute recognition accuracy was at 73%, while WACC was
at 78% when using a state-adapted trigram language model.
Specifically, four states had attributes associated with them;
AACC was: 59% for “Find”, 79% for “GoToState”, 81% for
“Navigate” and 70% for “EnterFeature”. The close relationship
between AACC and WACC scores should be expected because
most attributes are one or two words long (the average word
length of an attribute is 1.4). Note that unlike LACC, AACC
is not affected by the choice of the understanding or dialogue
model.

Word unigram, bigram and trigram models were trained for
each of the 15 dialogue state class Z;, and used as understanding
models Lj. The test set perplexity was very different for each
of the understanding models Ly, e.g., for word trigram models
the perplexity ranged from 1.4 to 12.6. State unigram and bi-
grams were used for dialogue modeling. In Fig. 1, LACC for
correct and recognized transcriptions is shown as a function of
Coov for the “Carmen Sandiego” and HMIHY tasks (see [5] for
HMIHY task description and state of the art performance). It
is interesting to note that for both tasks choosing a very large
Coov penalty gives close to best results. However, small OOV
penalty values result to large error rates. The OOV word inser-
tion penalty in (13) was set to c,o, = 10 for the rest of the
experiments in this section.

LACC from correct and recognized transcriptions are shown
in Tables IV and V, respectively, for different understanding
and dialogue model order. The more complex understanding
models (bigram or trigram) perform significantly better (about
10% relative error rate reduction) than the unigram model in
the presence of recognition errors. However, when the correct
transcriptions are used for understanding the simple unigram
model performs almost as well. In both cases, the difference
in performance between bigram and trigram understanding
models is negligible for this task. By incorporating the dialogue
model in the understanding process performance improves
significantly. Overall, an additional 15% relative error rate
reduction is achieved by incorporating a dialogue model (25%
for correct transcriptions). LACC improvements are significant

8The relatively low word accuracy is due to two reasons: the speech data was
collected in a spontaneous child-machine interaction setting and the speakers
were children ages 8—14. For a review of approaches to improving speech recog-
nition accuracy for children speakers see [13] and [14].
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TABLE IV
DIALOGUE STATE LABEL UNDERSTANDING ACCURACY (LACC)
FROM CORRECT TRANSCRIPTIONS

Dialogue Model
Understanding Model | none | unigram | bigram
unigram 91.8% | 93.2% | 94.1%
bigram 92.6% | 93.2% | 94.4%
trigram 92.4% | 93.6% | 94.3%
TABLE V

DIALOGUE LABEL UNDERSTANDING ACCURACY (LACC) FROM
RECOGNIZED TRANSCRIPTIONS (78% WORD ACCURACY,
AL IS A STATE-DEPENDENT TRIGRAM LANGUAGE MODEL)

Dialogue Model
Understanding Model || none | unigram | bigram
unigram 81.5% | 82.6% 84.8%
bigram 84.3% | 84.0% | 86.3%
trigram 84.4% | 84.7% | 86.3%

82,51 1

Understanding Accuracy (%)

0 0.5 1 1.5 2 25 3
UV Smoothing Factor

Fig. 2. Dialogue state label understanding accuracy (LACC) as a function of
the acoustic confidence score smoothing factor c.

both when adding a state unigram model and when upgrading
to a state bigram model.

Finally, in Fig. 2 results are shown when incorporating the
acoustic confidence scores in the understanding model. Specif-
ically, the label understanding accuracy (LACC) is shown as
a function of the smoothing parameter c in (14). Unigram un-
derstanding and dialogue models were used for understanding
and a (dialogue state-independent) bigram language model was

used for recognition. About a 10% relative label understanding
error reduction is achieved when incorporating acoustic confi-
dence scores (LACC: 82.1% for ¢ = 0.2 versus LACC: 80.3%
baseline performance for ¢ = c0). Overall, the results are com-
parable with those obtained with the understanding algorithms
described in [22] for this task.

IX. DISCUSSION

Language Modeling: One interesting observation is that
in our experiments the state-adapted language models outper-
form the state-dependent ones in terms of word accuracy (see
Table III). It should be expected that the WACC improvement
obtained by using state-adapted (versus state-dependent) lan-
guage models depends on the amount of training data. The
trend however is reversed for understanding accuracy, i.e.,
state-dependent language models perform better (see Table V).
It is not clear if this is a general trend or it is specific to this task
and understanding module. At this time the authors know of no
other published results that verify this trend.

Confidence Scores: The proposed method for incorporating
confidence scores into the understanding process has not been
equally successful when using bigram or trigram understanding
models. Alternative formulation for (14) have to be investigated
for higher-order n-gram understanding models. Acoustic con-
fidence scores that are computed both for the current word w,,
and the word history w,,_1 might be more appropriate weights
in the exponent of (14) for a bigram understanding model.

Multiple Tags per Utterance: In Sections II and III, a single
action was associated with each dialogue turn. This assump-
tion is not critical for formulating (3)-(7). However allowing
multiple actions per turn does complicates the solution of the
understanding from transcription problem in (7). Dynamic pro-
graming has to be used to align the optimal sequence of words in
W, (produced by the recognizer) to the (unknown) sequence of
actions. The proposed understanding and dialogue models in a
maximum likelihood framework can be easily applied to Viterbi
decoding. More research is needed to work out the details of in-
tegrating Viterbi decoding in the speech understanding problem
(see [26] for one approach to this problem).

Dialogue Model—System Initiative: The dialogue flow
model introduced in Section II is motivated by a spoken dia-
logue system where the user has control of the conversation
(user-initiative). For system-initiated dialogue, all actions are
determined by the dialogue manager based on user input. In
addition, user input is assumed to be a direct reply to the
system’s requests. Thus, the appropriate dialogue flow model
for fully system initiated dialogue maps (system response, user
input) pairs to actions as follows:

---Wt—l —>Ft_1i—)Wt—>Fti—>Wt+1j—>Pt+1....

Stt41

15)

Si_1,

The sequence of actions ...S;_14, St ¢y1 ... are determined
by the system’s dialogue manager. Therefore for system-ini-
tiative dialogues the speech understanding problem degener-
ates to simple attribute recognition and is of little interest. In
general, the system and the user share dialogue initiative. Next
we discuss a generalization of the proposed framework to such
mixed-initiative systems.
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Dialogue Model—Mixed Initiative: A brief commentary
on the order and nature of the dialogue model introduced in
Section II follows. The “Carmen Sandiego” task consists of
two main subtasks: filling the profile information and iden-
tifying the suspects where-abouts. A few tens of dialogue
turns are necessary for completing each of these tasks. Such
long-term dependencies between dialogue states could be cap-
tured by high-order dialogue models. However, as discussed
in Section II, almost no reduction in perplexity is achieved
by using a trigram (versus bigram) dialogue model. This is
possibly due to inadequate amount of training date, variation
in the sequence of actions required to complete each task,
and task interleaving (working on both tasks in parallel, see
[12]). It is possible that a more elaborate dialogue model can
capture long-term dependencies more efficiently and achieve
significant reduction in perplexity.

It was discussed in Section II, that for user-initiated dialogue
the dialogue model is identical to a stereo-typical user model,
i.e., a model predicting the user intentions based on current di-
alogue state information. However, for many spoken dialogue
applications the system has most or all of the dialogue initiative.
It is important to note, that even for cases of mixed initiative the
proposed dialogue model can improve understanding accuracy.
However, a generalization of the dialogue model is needed to
capture the fact that the user and the system share initiative. As
a result of mixed initiative user input W, and system output P;
do not necessarily belong to the same dialogue state and the di-
alogue flow has to be generalized to

...Wt_1—>Pt_1l—) Wt — Pt I—>Wt+1—)Pt+1...
N—— —— N~~~ N~~~ N—— N——

st sy s sy st

w
S t4+1 t4+1

(16)
where user input W; and system output P, utterances are classi-
fied to S}V, S} actions, respectively. The dialogue model now
computes the probability of user input W; belonging to action
SV given that P, ;| belongs to ST | and W, 1 to S}V, i.e.,
P(SV|SE |, 87 ). The increased complexity of the dialogue
model is the price that has to be paid for having mixed-initiative
dialogue. For cases where the dialogue manager is a set of de-
terministic rules that map from S} to S a second-order model
P(SV|S/V,) should still provide adequate dialogue modeling.

Note that the main goal for introducing the dialogue flow for-
malism and the statistical dialogue models is to improve under-
standing performance. A statistical dialogue model based on
(16) might also be useful for dialogue management. Most prac-
tical dialogue management modules consist of a set of deter-
ministic rules and are very different from the simple statistical
models proposed above. Having noted the differences between a
stereotypical user model and the dialogue management module
it should also be said that a good dialogue manager should try
and closely follow the intentions of a typical user. Therefore the
user model P(S}V|S}¥,) should also be incorporated in the dia-
logue manager. However, this is beyond the scope of this paper.?

9Such a unified framework is independently proposed and quantitatively ex-
plored in [26].

X. CONCLUSION

A categorical classification approach was introduced for
the problem of speech understanding in dialogue systems. A
maximum-likelihood formulation of this problem was proposed
in (3) as a two-dimensional decoding problem. The formulation
suggests a unifying approach to language and understanding
modeling. State-dependent and state-adapted language models
were shown to significantly improve the speech recognition
and understanding performance. Language adaptation was
used to alleviate the problems of data sparseness for stochastic
language modeling in the presence of data fragmentation.
Language modeling techniques were successfully applied to
the problem of training categorical understanding models and
shown to provide results similar to fragment-based under-
standing models for certain tasks. Significant improvement in
understanding accuracy was achieved by incorporating dia-
logue models and acoustic confidence scores in the statistical
formulation of the understanding problem. Overall, relative
speech understanding was improved by 5%-15% by using
language model adaptation, 15%—-25% from dialogue modeling
and by 10% from incorporating acoustic confidence scores.
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