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Abstract

Stochastic language models are widely used in spoken language
understanding to recognize and interpret the speech signal: the speech
samples are decoded into word transcriptions by means of acoustic
and syntactic models and then interpreted according to a semantic
model. Both for speech recognition and understanding, search
algorithms use stochastic models to extract the most likely uttered
sentence and its correspondent interpretation. The design of the
language models has to be effective in order to mostly constrain the
search algorithms and has to be efficient to comply with the storage
space limits.

In this work we present the Variable N-gram Stochastic Automaton
(VNSA) language model that provides a unified formalism for
building a wide class of language models. First, this approach allows
for the use of accurate language models for large vocabulary speech
recognition by using the standard search algorithm in the one-pass
Viterbi decoder. Second, the unified formalism is an effective approach
to incorporate different sources of information for computing the
probability of word sequences. Third, the VNSAs are well suited for
those applications where speech and language decoding cascades are
implemented through weighted rational transductions. The VNSAs
have been compared to standard bigram and trigram language models
and their reduced set of parameters does not affect by any means the
performances in terms of perplexity. The design of a stochastic
language model through the VNSA is described and applied to word
and phrase class-based language models. The effectiveness of VNSAs
has been tested within the Air Travel Information System (ATIS) task
to build the language model for the speech recognition and the
language understanding system.  1996 Academic Press Limited

1. Introduction

The noisy channel paradigm is the basis for the classical equation of speech recognition
where a word sequence W=w1, w2, . . . , wN is interpreted as a noisy version of the
speech signal. Within this framework, given a sequence of acoustic measurements O=
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o1, o2, . . . , oM , it has to be found a sequence W such that the a posteriori probability:

P(W |O)=
P(O |W )P(W )

P(O)
(1.1)

is maximum over all possible sequences of words W:

Ŵ=arg max
W

P(O |W )P(W ) (1.2)

where Ŵ is the recognized sequence of words and P(O |W ) is the probability of a set
of acoustic observations for a given sequence of words (Rabiner & Juang, 1993). The
same framework has been applied successfully for machine translation (Brown et al.,
1990) and language understanding (Pieraccini & Levin, 1992) where, given a word
sequence W, the most likely sequence of concepts Ĉ (interpretation) is found by
maximizing the a posteriori probability P(C |W ) over all possible concepts C.

Stochastic language models are generally used for computing the probabilities P(W )
and P(C ) for any possible sequence of symbols (words or concepts). In order to perform
the maximization of the type in Equation (1.2), one of the most successful parsing
algorithms is the Viterbi decoding along with the beam search (Rabiner & Juang, 1993).
Despite the advantage of being a time-synchronous search, only very simple word
boundary constraints (e.g. word pair or bigram) have been exploited into such a
decoding schema. A second approach is the stack decoding algorithm: it has the
attractive property of being a best first search through a linguistic hypothesis tree and
a search for the optimal word string rather than the optimal state sequence (as in the
Viterbi algorithm) can be performed. However, the problems arising in calculating
heuristic functions to prune all word string hypotheses make this algorithm difficult to
use for speech recognition application (Bahl, Jelinek & Mercer, 1983). More recently,
multi-step rescoring procedures have been designed to handle language models of
increasing complexity (Soong, 1990; Austin, Schwartz & Placeway, 1991). In this case,
first a one-pass Viterbi decoding is performed with a coarse language model (e.g.
bigram) and a pruned lattice of word hypotheses is obtained: then, more accurate
language models can be adopted to parse the n-best hypotheses. The problem with this
approach is that several pruning stages can affect the search for the best word sequence
while the best strategy would be to apply in a time-synchronous fashion the best
available language model in a one-step decoding process.

The main motivation for our work is to be able to handle accurate language models
in a one-step procedure of the maximization process in Equation (1.2) so that we can
maximize the number of constraints and increase the accuracy. In order to achieve this
goal we provide algorithms to design stochastic finite state automata that are both
effective (in terms of performance) and efficient (in terms of parameter number) for all
applications where a network search is performed (e.g. Viterbi decoder) or speech and
language decoding cascades are implemented through weighted rational transductions
(Pereira, Riley & Sproat, 1994). Furthermore, in this work we show how this unified
formalism is an effective approach to incorporate different sources of information for
computing the probability of word sequences (e.g. word and phrase class-based language
models). Within the framework of the Variable N-gram Stochastic Automatons (VNSAs),
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we design and evaluate class-based language models that outperform (in terms of
perplexity and recognition error rate) the standard n-gram language model.

In the following section we describe the main issues related to the design of a
stochastic language model and we recall the standard approach to n-gram language
modeling. In Section 3 we describe the problem of representing a stochastic language
model through a Stochastic Finite State Automaton. Then, in Section 4 we present our
solution to approximate an n-gram language model through a finite state automaton:
the VNSA. The computation of transition probabilities for these stochastic automata
is detailed in Section 4.2. In Section 5 we study the impact of the VNSA’s non-
determinism on the language perplexity, and the word error rate (WER). Last, but not
least, the design of a word and phrase class-based stochastic language model is presented
in Section 6 and the results in terms of perplexity and WER for a one-pass Viterbi
decoder are reported in Section 7, along with a comparison to the standard n-gram
language models. The complete description of the application of these stochastic
networks into a language understanding system is given in Pieraccini and Levin (1992,
1995).

2. The n-gram language and related issues

Stochastic language models are generally used for computing the probability P(W ) for
any possible sequence of words W=w1, . . . , wN . P(W ) can be written as:

P(W )=\
N

i=1

P(wi |w1, . . . , wi−1) (2.1)

In practice, it is impossible to estimate all the conditional probabilities P(wi |w1, . . . ,
wi−1) for a reasonable sentence length. In the literature, the most established model has
been the n-gram language model (Jelinek & Mercer, 1980). In this case, it it assumed
that the probability of a word wi given the context w1, . . . , wi−1, depends only on the
n previous words. Thus, Equation (2.1) can be rewritten as:

P(W )=\
N

i=1

P(wi |w1, . . . , wi−1)

=P(w1, . . . , wn−1)\
N

i=n

P(wi |wi−n+1, . . . , wi−1) (2.2)

The conditional probabilities of an n-gram model are generally estimated using a
corpus of sentences that reflects the statistics of the language (training set). Under the
Maximum Likelihood paradigm the estimated probabilities are of the form:

P̂ML(wi |w1, . . . , wi−1)=
C(w1, . . . , wi−1, wi)

C(w1, . . . , wi−1)
(2.3)

where C(ck) is the frequency of the event (word tuple) ci in the corpus. In order to
obtain a non-zero probability for any event (w1, . . . , wi−1, wi), we have to take into
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account rare or unseen events and estimate their probability on the basis of the available
samples.1 The most used approach to this problem has been the discounting of ML
estimates. The probability mass of the observed events is discounted so that a probability
mass can be assigned to the unseen events. Namely, the discounted probability P̂(ck)
is computed as a linear combination of the ML estimate:

P̂(ck)=akP̂ML(ck)+bk ak, bkv[0, 1] (2.4)

Different heuristic methods have been proposed and some of them are reported in
Appendix A. As a result of the discounting procedure, a non-zero mass probability, D,
for all unseen events is obtained:

D=1−]
k

P̂(ck) (2.5)

Then the probability, D, has to be redistributed among all unseen events, K0. If we
assume all unseen events are equally likely, the probability estimate of each unseen
event, uk, would be P̂(uk)=D/K0. However, in most cases a uniform distribution over
all unseen events might be too simplistic an approach. Two general procedures for
assigning a probability to each of the unseen events have been proposed in the literature
of speech recognition. The interpolation technique was first used in the past (Jelinek
& Mercer, 1980). The principle behind interpolation is that the probability of a generic
event W (seen or unseen) is a linear combination of the probabilities of all events that
include W: for example, the event represented by the word pair (I WANT) includes the
event (I WANT TO), (I WANT TO GO), etc. In the case of an n-gram language model,
the n-gram probability P̂(wn |w1, . . ., wn−1) is obtained by linear interpolation among
the probabilities of events of lower-order n-gram models:

P̃I(wi |w1, . . . , wi−1)=ki−1P̂ML(wi |w1, . . . , wi−1)
(2.6)

+ki−2P̂ML(wi |w2, . . . , wi−1)+...+k0P̂ML(wi)

where the interpolation parameters k0, . . . , ki−1 are estimated using a corpus of sentences
different from those used for estimating the original n-gram probabilities. However,
the so-called backoff method was proved to be less burdensome as far as the computation
of free parameters, ki, while giving good results (Jelinek & Mercer, 1980; Katz, 1987).
The computation schema inferred by Equation (2.6) uses all probabilities of all events
including W, while the backoff method, outlined by Katz (1987), takes into account
only one observed event, namely the closest to W. In terms of the n-gram language
model, the closest event to the word tuple (wi, . . . , wj ) is the tuple (wi+1, . . . , wj ). Thus,
the backoff algorithm for an n-gram language model can be given in a recursive form:

P̃B(wi |w1, . . . , wi−1)=P̂(wi |w1, . . . , wi−1)

+h(P̂(wi |w1, . . . , wi−1) )a(w1, . . . , wi−1)P̃B(wi |w2, . . . , wi−1) (2.7)

1 In this work, unless otherwise specified, we assume that all the words in the unseen tuple have been
observed in the training corpus.
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where P̂(wi |w1, . . . , wi−1) is a discounted estimate [see Equation (2.4) ]; the h(x) function
is defined by:

h(x)=G1 if x=0
0 otherwise

(2.8)

and the coeffient of a(w1, . . . , wi−1) is a normalizing constant such that:

]
w

P̃(wi=w |w1, . . . , wi−1)=1 (2.9)

where the sum is calculated for all words w observed in the training corpus.
The recursive procedure in Equation (2.7) is very efficient in terms of the required

number of parameters with respect to the schema in Equation (2.6). On the other hand,
the interpolation schema is a suitable approach to smooth the n-gram probability with
other syntactic–semantic constraints (e.g. word classes).

3. Towards a unified representation of an n-gram language model

The purpose of this work is to show how an n-gram language model can be designed
on the basis of a unified formalism, that is the Stochastic Finite State Automaton
(SFSA). In this framework, the probability P̂(W ) is derived as the probability of the
word sequence W recognized by the SFSA and to each word sequences one or more
sequences of states are associated. The motivation to build a stochastic automaton to
realize the language model is twofold:

(1) To make the computation of P(W ) independent of the language model as long as
it can be represented through a stochastic finite state automaton. The probability
P(W ) of the string W (recognized by the automaton) is derived from the probabilities
of the corresponding state sequences.

(2) To improve the efficiency of any search algorithm that is based on a network search
(e.g. Viterbi’s algorithm). In particular, speech recognition is performed by searching
for the word sequence that maximizes a MAP criterion [Equation (1.2) ]. With our
approach, this process is formalized as the search of the “best” path in a network.
Therefore, we can increase the decoder efficiency by compiling into the finite state
network additional constraints (e.g. tree lexicon structured network, network with
crossword constraints, etc.).

The difficulties arising in representing an n-gram language model through a stochastic
finite state network are the following.

(1) The straightforward full network representation, where each probability P(wi |wi−n+1,
. . . , wi−1) is associated to an arc, is not possible, because it requires a number of
arcs proportional to |V |n, where |V | is the number of words in the vocabulary V.

(2) The recursive schema of Equation (2.7) must be adopted in the finite state formalism
to achieve efficient implementation of the backoff mechanism.

Another important issue is the design of word and phrase class-based language models:
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1
(a)

So

Sf

3
(b)

2
(c)

Figure 1. Example of a bigram network.

training algorithms must be designed to incorporate syntactic–semantic knowledge into
a stochastic finite state automaton.

The idea of using a finite state stochastic automaton as a language model for speech
recognition had been proposed by Jelinek (1976) and first applied to the Raleigh
artificial language. More recently, a stochastic automaton network for bigrams has
been applied to learn a grammar for large vocabulary speech recognition (Placeway,
Schwartz, Fung & Nguyen, 1993). In our work, we present a general model for designing
efficient and effective stochastic finite state automata for n-grams (n≥1) and class-
based language models.

In the following paragraphs of this section, we introduce the simple case of the
approximation of a bigram language model, through a finite state automaton. In Section
4.1, a general framework is presented: the VNSA (Riccardi, Bocchieri & Pieraccini,
1995).

3.1. Stochastic automata for bigram language models

Backoff strategies can be implemented in a stochastic finite state network in such a
way that the speech recognizer does not have to handle the estimation formulas
[Equation (2.7) ] directly, but it rather has to perform a search through a network. In
particular, we want to compute the probability P(wi |wi−n+1, . . . , wi−1) based on
P(wi |wi−k+1, . . . , wi−1) (k<n) according to if-then-else conditions like those in Equation
(2.8). Assume we have a bigram network like the one shown in Fig. 1. The states s0

and sf are the initial and final states of the automaton. For the sake of clarity the
transition probabilities are not shown. The vocabulary is composed of three words (a,
b and c) and a state is associated to each word. Let us assume that only the events ab,
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1
(a)

Sf

So

3
(b)

2
(c)

Figure 2. Example of a full bigram network.

ac, bc, cb have been observed and then we can compute the ML estimates P̂ML(b |a),
P̂ML(c |a), P̂ML(b |c) and P̂ML(c |b). Using this network for parsing (recognizing) a sequence
of words will fail when the sequence contains bigrams that were not observed, like in
the sequence aabacb.

A solution is to add all the missing transitions (dashed arcs), as shown in Fig. 2,
and to compute their probabilities according to the backoff estimation technique. The
application of the backoff procedure results in the following estimates.

P̃(a |a)=aaP̂(a) P̃(b |a)=P̂(b |a) P̃(c |a)=P̂(c |a)

P̃(a |b)=abP̂(a) P̃(b |b)=abP̂(b) P̃(c |b)=P̂(c |b) (3.1)

P̃(a |c)=acP̂(a) P̃(b |c)=P̂(b |c) P̃(c |c)=acP̂(c)

where the same notation as in Equation (2.7) is adopted. The full n-gram network (Fig.
2) cannot be realized in practice since the total number of transitions (i.e. Nn

V , where
NV is the size of vocabulary V ) is too large for the implementation of the network in
a real application. With a vocabulary of 1000 words, a trigram language model would
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Figure 3. Example of a bigram network that approximates a full bigram
network.

need to store one billion state transitions. The backoff probabilities defined by Equation
(3.1) can instead be used within the network shown in Fig. 3.

It should be noticed that there is only one transition out of each node (arcs with
associated probability aa, ab and ac) to represent all the missing transitions. All those
transitions are leading to a common null state (i.e. a state that does not recognize any
word) that is represented by the symbol e. The null node is then connected to each
state in the network. The network described in Fig. 3 corresponds to the one proposed
by Placeway et al. (1993) for bigram language modeling.

3.2. Non-determinism in stochastic automata

In the standard n-gram language model (Section 2) a word sequence W is assigned
with a unique set of conditional probabilities P̃(wi |wi−n+1, . . . , wi−1) and the probability
P(W ) is computed through Equation (2.1). When a language model is represented
through a stochastic finite state automaton, an input word sequence W can be accepted
by the automaton through one or more state sequences (paths). In particular, the
automaton that allows for multiple paths is called non-deterministic. For instance, in
the previous example, the sentence abbc can be recognized through the sequences of
states abvbc, avbvbc, abvbvc, etc. Of course, the path that gives the probability
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corresponding to the backoff [Equation (2.7) ] is abvbc. However, when the stochastic
automaton is used within the Viterbi algorithm only the path that maximizes Equation
(1.2) will be chosen. The probability of a sentence W given by the Viterbi algorithm
can be written as:

Pvit(W )=P(W, n̂) (3.2)

where:

n̂=arg max
nvNW

P(W, n ) (3.3)

being NW the set of all sequence of states n that account for the word sequence W. The
probability of W is then:

P(W )=]
nvNW

P(W, n ) (3.4)

If the automaton is deterministic there is only one sequence of states that accounts for
the input words; hence, we can write:

P(W )=Pvit(W ) (3.5)

If the automaton is non-deterministic we generally make the assumption that the
maximum term is prevailing in the sum of Equation (3.4), hence:

P(W )≈Pvit(W ) (3.6)

but we cannot always assume that this hypothesis is true. However, we can compute
the word sequence probability either by means of the forward algorithm (Baum, 1972)
or by using its Viterbi approximation. The difference between the two values we define
to be the degree of the network non-determinism. The comparison of Equations (2.1)
and (3.4) points out the differences between the standard n-gram language model and
the stochastic automaton. In the latter case, the probability P(W ) is defined in terms
of paths and transition probabilities. Both the sequences of states and the transition
probabilities are determined by the model used to build the automaton. In the following
section, we propose our approach to build stochastic automata for language modeling:
the Variable N-gram Stochastic Automaton (VNSA). In Section 7 we evaluate the
goodness of the VNSA as an approximation to the standard n-gram models.

4. The Variable N-gram Stochastic Automaton (VNSA)

The design of a stochastic automaton is described by the state transition function and
the state transition probabilities. Our algorithm defines the state transition function
based on the set of events (word tuples) occurring in the training set T and associates
these events to the states. In Section 4.1 we present the VNSA and the model description
is completed in Section 4.2 with the algorithms used to compute the state transition
probabilities.
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4.1. Definition of the Variable N-gram Stochastic Automaton (VNSA)

A stochastic non-deterministic finite state automaton Q is described by the quintuple
{S, V,F, s0, Sf }, where S is a set of states s, V is a set of words (including the empty
word e), s0 is the initial state and Sf3S is a set of final states. F is a state transition
function that, given a state s and an input word wvV, returns the set of pairs {(tw

k, pw
k)}:

F (s, w)={(tw
k, pw

k)} (k≥1), where pw
k are the transition probabilities of going from state

s to state tw
k, for a given input word w. In particular, the automaton is non-deterministic

since we allow F (s, w) to be a one-to-many mapping. The recognition process of an
input word sequence W=w1, w2, . . . , wN starts with the application of F to the initial
state s0 (instant 0) and input word w1. Then, when in state s at the generic instant i
and given an input sequence word wivV, the automaton will:

(1) apply state transition function to the state s with input word wi(≠e), move to the
corresponding next state (ifF (s, wi)≠0/ ), and read the next word in the input string,
and

(2) apply the state transition function to the state s with the null word e, and move to
the corresponding next state (the current input word is not changed).

In the following, a state reached only through a null word will be called null state.
A VNSA is a non-deterministic stochastic finite state automaton. Each state svS is

associated with an m-tuple observed in the training set, v1, . . . , vm with 0≤m<n (n is
called the order of the automaton). The m-tuple v1, . . . , vm is called the history of the
state s and m is called the history size. In the case m=0 the empty word is associated
to s. The history v1, . . . , vm of a generic state s is considered only for the purpose of
the design and training of the VNSA and it is not used while parsing word sequences.

At the generic instant i, given the current word wi and the current state s with history
v1, . . . , vm, only two types of transition are defined by the state transition function.
Type 1 transition consumes an input word w and moves either to the non-null state
tw

1 with history v1, . . . , vm, w (the history size is increased), or to the non-null state tw
2

with history v2, . . . , vm, w (the history size does not change). Type 2 transition does
not consume any input symbol, and moves to a null state te (with history v2, . . . , vm)
with backoff probability pe: this transition implements the backoff mechanism (the
history size is decreased) and it corresponds to a loss of part of the current state history
in order to represent the next state in the automaton. The transition of type 2 is always
available, while the transition of type 1 may not be. It must be observed that in this
kind of automaton all transitions leading to a non-null state with history v1, . . . , vm

recognize word vm, while transitions leading to a null state always recognize the empty
word e. The predecessor s of a null state with history v1, . . . , vm, has history of the
kind v, v1, . . . , vm (vvV and v≠e). Moreover, only a transition to the null state with
history v1, . . . , vm is needed to decrease by one the history size of the state s with
history v, v1, . . . , vm. As a result, for a state s with history v1, . . . , vm, m transitions to
null states are necessary to lower down to zero the history size.

The automaton network, defined above, will be referred in the following as the
canonical realization of the VNSA.

In Fig. 4 a portion of a third-order VNSA network is shown. The vocabulary of the
automaton is V={a, b, c, d, e}. For the sake of clarity transition probabilities are not
shown and the symbols activating a transition are on the arcs. Null states have a
rectangular shape and non-null states have a round shape. The history of a state s is
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d

Figure 4. Portion of third-order VNSA network.

shown within parentheses in order to illustrate the relationship between the event in
the training set associated to s and the available transitions. Let us assume that the
automaton is processing symbol d, while the last two symbols read are b and c. The
automaton might be in state 3 or in state 8 since c was the symbol previously processed.
From state 3 the automaton can step into state 4 or into state 5. State 5 is a null state
and state 1 (history ac), 2 (history dc) and 3 (history bc) can decrease the history size
through the same null state 5 with distinct backoff probabilities. Once in state 5 the
automaton can release an additional history symbol by going into null state 6, or
increase the history size by going into state 4, or keep the same history size by stepping
into state 7. From state 8 the automaton can either keep the same history size by going
into state 7 or increase it by stepping into state 4. From the analysis of Fig. 4, it is
clear how the non-determinism of the VNSA has been designed to cope with the need
of efficiency (shared transition to null states) and flexibility (variable length word
contexts).
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4.2. Estimation of probabilities for the VNSA

For each state s (with history v1, . . . , vm) of the VNSA automaton there is a set of
words wvws (w≠e) such that F (s, w)≠0 and F (s, w)={(tw

1 , pw
1 ), (tw

2 , pw
2 )}. For a state s

the following equation holds:

]
wvws

( pw
1+pw

2 )+pe=1 (4.1)

where pw
1 (pw

2 ) is the conditional probability P̂(tw
1 |s)(P̂(tw

2 |s) ) and the word w is the input
symbol (transition of type 1). The probability pe is the probability of decreasing the
history size of state s by one (transition of type 2). The similarity of Equations (4.1)
and (2.5) and the considerations in Section 2 let us compute the probability of loss of
memory, pe (backoff probability), with one of the methods described in Appendix A.
The probability P̂(w |v1, . . . , vm) is redistributed among pw

1 and pw
2 according to an

interpolation schema. In particular, the probability pw
1 (pw

2 ) corresponds to the transition
from the state s to the state tw

1 (tw
2 ) with associated word tuple v1, . . . , vm, w (v2, . . . , vm,

w). Hence, the two transitions from s to tw
1 and tw

2 correspond to the same event in the
training set, that is the word tuple v1, . . . , vm, w, and pw

1 and pw
2 are implicitly defined

by the following estimate:

P̂(w |v1, . . . , vm)=bP̂(w |v1, . . . , vm)+(1−b )P̂(w |v1, . . . , vm)

=P̂(tw
1 |s)+P̂(tw

2 |s) (4.2)

=pw
1+pw

2 (4.3)

The free parameter b is calculated within a cross-validation framework as described in
Section 4.3.

Given the non-determinism of the VNSA, a word sequence W=w1, w2, . . . , wN can
be recognized along multiple state sequence n (path). Each path n corresponds to a
different decomposition of the probability P̂(W ) into n-gram type probabilities. In fact,
each transition probability from a state s to a state t is computed either as an n-gram
type probability [see Equation (4.3) ] or as a backoff probability. Along each single
path, the probability P̂(W, n ) is computed through a variable length n-gram model:

P̂(W, n )=\
i

aibiP̂(wi |wi−ni,n , . . . , wi−1) (4.4)

where ai are backoff probabilities, P̂(wi |wi−ni,n , . . . , wi−1) are discounted probabilities,
bi are defined as in Equation (4.3) and each path n has associated an index sequence
n1,n , . . . , nN,n , Then the probability estimate P̂(W ) can be written as:

P̂(W )=]
nvNW

P̂(W, n )=]
nvNW

\
(s,t)vn

P̂(t |s) (4.5)

where NW is the set of all available paths n to parse the word sequence W and the pair
(s, t) is contained in the state sequence n. While all paths in NW have to be taken into
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account to compute the probability P̂(W ) (see Section 3.2), the Viterbi algorithm selects
the path which gives the best performance in the global maximization of probability
P(W |O) [see Equation (1.2) ]. Equations (4.4) and (4.5) show how the VNSA’s variable
length history paradigm and non-determinism are exploited to both implement the
backoff mechanism to recognize the unseen word sequence in the training set T and
to smooth n-gram probabilities in the spirit of the interpolation schema of Equation
(2.6).

4.3. Estimation of free parameters

The estimation of the backoff probabilities ai can be thought of as the estimation of
free parameters as in the case of the linear discount method: ak=a and bk=0!k in
Equations (2.4) and (2.5). Furthermore, the parameter b in Equation (4.3) is a free
parameter for the transition probabilities of the VNSA automaton network. In both
cases an estimated probability P̂ is decomposed through a convex sum into two terms
P̂1 and P̂2:

P̂=cP̂+(1−c)P̂=P̂1+P̂2 (4.6)

where c (0≤c≤1) is the generic free parameter. For the estimation of the free parameters
we have used a similar version of the cross-validation method as described by Stone
(1974). The performance of a stochastic language model is usually assessed by estimating
its perplexity (Jelinek & Mercer, 1980) which is a function of the estimated entropy of
the language whose source is assumed to be ergodic. The estimated entropy is then
defined as:

Ê=−
1
n

log P̂(w1, . . . , wn) (4.7)

and the perplexity PE is defined as:

PE=2Ê (4.8)

Thus, the computation of the free parameters can be performed by minimizing Ê on a
test set and estimate the n-gram probabilities P̂(wi |wi−n+1, . . . , wi−1) on a training cor-
pus. However, the estimation of the free parameters can be carried out in such a way
that each sample in the corpus T is used to evaluate Ê and for this purpose we have
partitioned the corpus T in N subsets T i such that T=jiT

i and T i
iT j=0/ . The

set T /i=jjriT
j is used to train the stochastic model for a fixed c value and the test

set entropy (cost function) ÊTi(c) is calculated on the held out set T i. In the case of
one free parameter c the test set entropy ÊTi(c) can be written as:

ÊTi(c)=const−
1
n A]

n

i

ci log(c)+log(−aic+bi)B (4.10)

where n is the number of words in the test set and the coefficients ai, bi and ci (v[0, 1])
depend on the estimates P̂(wi |wi−n+1, . . . , wi−1). As a result of setting the first derivative



278 G. Riccardi et al.

of ÊTi(c) to zero in Equation (4.10), a local minimum ÊTi(cm) is guaranteed. This process
is repeated N times, so that each subset T i is employed to estimate c. Then we have
performed the optimization of the parameter c on all the possible held out sets:

copt=arg min
c ]

i

ÊTi(c) (4.11)

The same reasoning can be extended for multiple free parameters ci obeying the
estimation formula [Equation (4.6) ]. This approach has been used for computing the
parameters in the linear discount method (see Appendix A) and for the transition
probabilities in the VNSA automaton.

4.4. Structure of the VNSA network

In this section we describe the overall structure of the VNSA network. In Fig. 5 a
portion of the VNSA network is shown. Four network partitions, A, B, C and D, have
been pointed out. They contain states with history size (hs) 2, 1, 1 and 0, respectively.

Section D consists of just one null state with zero history size. Network sections A
and C have non-null states connected directly among them, within the partition. More
precisely, for a state sequence n containing states all belonging to either partition A or
C, in Equation (4.4) we have that ni=n (n=2 or 1) and ai=1·0!i.

Partition B contains only null states not connected among them but to states belonging
to partitions A and C. In particular, for a state sequence n containing a state in B, in
Equation (4.4) we have an index i such that 0<ai<1·0 and ni<ni−1. The transition
probability from a non-null state in A to a null state in B is the backoff probability pe.

In the most general case, from a non-null state with history size hs (hs≠0) it can be
reached a state with history size of either hs+1 (e.g. from a state in C to one in A), hs
(e.g. a transition within partition A or C ) or hs−1 (e.g. from a state in A to one in
B). As a whole, the automaton from a non-null state with history length hs≥1 can
reach a null state with zero history size without processing any new input symbol. On
the other hand, the history size can only be increased by one at each new input word.

The number of parameters of the canonical VNSA network depends linearly on the
training data size. The number of states and transitions in section C (MC and TC) is a
function of the number of different words and pairs, respectively, observed in the
training data. The number of states and transitions in partition A (MA and TA) depends
on the number of pairs and triples, respectively. In general, if a partition contains states
with history size hs, then the partition has a number of states and transitions depending
on the number of hs-tuples and hs+1-tuples, respectively.

4.5. Heuristic state minimization of the canonical VNSA network

In this section we deal with the issue of reducing the total number of parameters (states
and transitions) needed to build the canonical VNSA network. The sensitiveness of the
VNSA canonical network performance, with respect to the state reduction procedure,
is evaluated in terms of perplexity and, more significantly, in terms of word error rate.
The principle used to prune states in the VNSA network is based on thresholding the
number of occurrences of the word contexts corresponding to each state. The algorithm
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Figure 5. Overall structure of the VNSA network.

modifies the canonical VNSA network realization and decreases the number of states
from Mi to Mf and the transitions from Ti to Tf until a given reduction rate s=s(Mf/
Mi, Tf/Ti) is achieved. The following pseudo code describes the pruning procedure.

(1) i=1

(2) Search for the states having a corresponding word context occurring i times.
(3) Redistribute the transition probabilities of the predecessors of these states and

delete them.

(4) if the reduction rate is greater than s
• then increment i by one and go to 2.
• otherwise algorithm ends.



280 G. Riccardi et al.

S2

S1

S

SP(S  S1)^

P(S2 S )^
P(S S1)^

S2

S1

S

S
P(S S1) + P(S  S1)^

Before deletion

After deletion

^

P(S S ) + P(S2 S )^ ^

P(S S )^

Figure 6. Probability distribution schema in the state pruning algorithm.

The key step of the algorithm is the redistribution of the probabilities and we describe
that in Fig. 6. Let us suppose that the state s has to be deleted from the network. If
one of the preceding states is a non-null state s1, then the transition probability P̂(s |s1)
is added to the backoff probability P̂(se |s1), as pointed out in Fig. 6. If the preceding
state is a null state, se, the transition probability P̂(s |se) is added either to the probability
of going into non-null state s2 (if it is available, as in Fig. 6) or to the backoff probability
of state se (not shown in Fig. 6).

This heuristic state minimization has given good results and for a 50% reduction of
the VNSA’s parameter number, we have obtained only a 0·1% increase of the word
error rate. More details on the size and perplexity of the networks are given in Section
7. As a final remark, it is worthwhile noting that the cross-validation framework
described in Section 4.3 can also be applied to minimize the perplexity for a given
reduction rate s.

5. Relationship between perplexity, word error rate and non-determinism

We have performed experiments to investigate the relationship between the perplexity,
the word error rate of the speech recognizer and the non-determinism introduced by
the VNSA automata. To this purpose, the VNSA network approximating a bigram
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Figure 7. (a) Test set perplexity (Viterbi and Forward computation) and (b)
word error rate (WER) vs. discount parameter a.

language model (see Fig. 3) has been used. The training set consists of 20 844 sentences
from the ATIS corpus2 corresponding to a total of 208 103 words. The test set (i.e.
ATIS official December 1994 test set) consisted of 981 sentences corresponding to 10 081
words. The size of the vocabulary is NV=1530 words. The transition probabilities were
computed with the uniform linear method (see Appendix A) which allows for continuous
variation of the test perplexity. In particular, it has been shown in Section 4.3 that a
local minimum is guaranteed. The continuous variation of the parameter a corresponds
to a continuous variation of the language model performance (i.e. in terms of perplexity).
The speech recognizer used in all experiments presented in this work is the one
designed for the 1994 ATIS evaluation and it is described by Bocchieri, Riccardi and
Anantharaman (1995).

Fig. 7(a) shows the perplexity behavior for different values of the discounting

2 The Air Travel Information System (ATIS) corpus is a set of questions about flight information, fares,
etc. The speech database is spontaneous and it is collected through a Wizard-of-Oz paradigm.
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parameter a. In order to compute the probability P̂(w1, . . . , wn) in Equation (4.7) we
have used the Viterbi approximation [Equation (3.6) ] and the forward algorithm. The
difference between the two values (degree of non-determinism) increases as the value
of a is increased (see Section 3.2). Besides, in the interval centered around the local
minimum point amin for small variations of the parameter a we have that PEzPE(amin)
[see Equation (4.10)]. In Fig. 7(b) the graph of the word error rate is plotted. The same
behavior of the perplexity curves of Fig. 7(a) is found in the WER plot in Fig. 7(b)
and in particular for a given value of the perplexity, the WER value is lower where the
degree of non-determinism is higher (right side of the curve). From these experiments
we have seen that, even though non-determinism in VNSAs is paid in terms of
computational load for the Viterbi decoding, it is critical to achieve the lowest error
rates as well as to make the system less sensitive to variation of the language model
performance.

6. Word and selected-phrase classes

6.1. Benefit of using word and selected-phrase classes

The generalization capability of the language model can be greatly achieved by
integrating semantic–syntactic knowledge to estimate the word sequence probabilities.
In particular, in this paragraph we discuss the use of word classes (e.g. city={BOSTON,
CHICAGO, . . .}, number={ONE, TWO, . . .}) and selected-phrase classes (e.g. I WOULD
LIKE TO, WHAT KIND OF, . . .). The use of word and selected-phrase classes are intended
here as a coarse but effective linguistic and statistical classification of the word sequences
in the training corpus. As a result, this leads to a language model which integrates
high-level knowledge into the speech recognition processes. There are four main reasons
why word classes and selected-phrases should be helpful. First, in a stochastic framework,
the probability estimates are more robust against data sparseness. Secondly, syntactic–
semantic knowledge can be shared among language models pertaining to the training
corpora of similar tasks. For instance, word (e.g. city, number, airport, etc.) and selected-
phrase classes (e.g. request phrase, specification phrases, etc.) are common to any
application involving those concepts. Thirdly, class-based language models are efficient
in terms of memory storage. Last, but not least, the speech recognition process benefits
(in terms of accuracy) from the use of word classes and selected-phrases (Bocchieri,
Riccardi & Anantharamus , 1995).

6.2. Application to the VNSA automaton

The use of the word and selected-phrase classes within the VNSA paradigm is quite
straightforward. The training corpus is tagged with word and selected-phrase class
labels so that each word or word sequence is replaced with the corresponding label.
Then a VNSA automaton is built on the basis of the labeled training set. At this stage,
the automaton is able to recognize all possible sequences of class labels. The computation
of the estimate P̂(W ) can be obtained after the expansion of each word and selected-
phrase label (see Appendix B for details on the probability computation). As a result
the application of the word classes and selected-phrases to the VNSA paradigm involves
four steps as follows:
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Figure 8. An example of word class automaton.

(TYPE)

So Sf

(TYPES)
(WHICH)

(WHAT) (OF)

(KIND)

Figure 9. An example of phrase class automaton.

• Lexical Analysis: the sequence of words in the training corpus is tagged with the
word and selected-phrase class labels. In Figs 8 and 9 are shown an example of word
and phrase class automaton used to label the training corpus.

• Stochastic Modeling: a VNSA automaton is built out of the filtered training set.
• Expansion: all along the VNSA network obtained in the previous step, each label

(corresponding to a word or phrase class) has to be expanded into an automaton as
shown in Figs 8 and 9. Label expansion is performed in all states of the network
obtained in the previous step.

• Word and Selected-Phrase Class Automata Training: in this final step all the transition
probabilities inside the automata of the types shown in Figs 8 and 9 have to be
estimated. As first assumption, a uniform distribution can be adopted for each state.
However, Viterbi training has given better results in terms of perplexity and WER.

While estimating probabilities at the last step of the procedure, each class (word or
selected-phrase class) might contain elements unseen in the training set: in this case,
we use discount methods (see Appendix A) to compute the probability of a word wi

(not observed in the training set) given a word or a selected-phrase class Di.
In the literature, algorithms for automatic clustering of words have been studied

(Brown et al., 1992; Kneser & Ney, 1993; Pereira, Tishby & Lee, 1993), as well as for
automatic computation of selected-phrases (Magermann & Marcus, 1990; Giachin,
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T I. Test set perplexity comparison between
Katz’s model and the VNSA

Model order

2 3

VNSA 18·95 14·91
Katz 19·09 14·72

T II. Test set perplexity for the add-c method

VNSA order

Set type 2 3 4 5

T 18·95 14·91 13·92 14·01
T∗ 17·44 12·17 12·24 12·40
Tf 12·38 9·05 8·78 8·87

1995). As far as the application to the ATIS domain, we have built the word classes
by hand (13) and we scored the whole set of selected-phrases in the ATIS training
corpus based on the mutual information measure (Fano, 1961). Then we have identified
18 selected-phrase classes. As a whole, a total number of 31 classes have been used to
design the class-based language models for the ATIS 1994 evaluation (Riccardi, Bocchieri
& Pieraccini, 1995) and for the experiments presented in the next section.

7. Language model performances

One of our goals is to adopt the VNSA stochastic network as an approximation of the
well-known n-gram language model into a one-pass Viterbi decoder. In order to compare
the two language models we used the Katz bigram and trigram language model (Katz,
1987) and we evaluated the test perplexity on the ATIS data provided by the ARPA
agency for the ATIS 1994 evaluation. From Table I we can draw the conclusion that
the VNSA networks are equivalent in terms of perplexity to the n-gram model. In the
following sections we present a performance analysis for different estimation methods
and for increasing model orders. We also show that the VNSAs benefit from the
integration of syntactic–semantic knowledge and it improves both the prediction power
(perplexity) of the language model and the word accuracy of the speech recognition.
We conclude this section with results from the heuristic minimization algorithm presented
in Section 4.5 and with the WER scores for different VNSA models.

7.1. Test set perplexity for different probability estimation methods

The results presented below are given for two different types of test set, T and Tf .
The first one, T, has been designed for the ATIS 1994 evaluation (the same used in
Table I) and the second one, Tf , is a filtered version of the first one. Precisely, the
second type of training set is obtained as in the first step of the procedure presented
in Section 6.2, by tagging T with the word and selected-phrase class labels. Tables II,
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T III. Test set perplexity for the add-1 method

VNSA order

Set type 2 3 4 5

T 21·12 18·95 21·19 23·08
Tf 13·39 11·16 11·72 12·36

T IV. Test set perplexity for the sub-1 method

VNSA order

Set type 2 3 4 5

T 19·45 15·62 15·92 16·34
Tf 12·37 9·53 9·49 9·66

T V. Test set perplexity for the uniform linear method

VNSA order

2 3 4
Set type (aopt=0·08) (aopt=0·2) (aopt=0·3)

T 19·44 14·69 14·51
Tf 12·68 9·37 9·08

III, IV and V report the perplexity scores, respectively, for VNSAs whose transition
probabilities have been estimated through add-c, add-1, sub-1 and uniform linear discount
methods (see Appendix A for details). For the uniform linear method the cross-validation
method was used to optimize the discount value, aopt. From the comparisons of these
results the add-c method outperforms all the others and it is the method that has been
used for application to speech recognition (Bocchieri, Riccardi & Anantharaman, 1995).
Moreover, the transition probabilities estimated with the uniform linear method have
a number of backoff probabilities dependent on the order of the VNSA automaton
and the results in Table V are similar to those in Table II. In particular, this technique
has been adopted for conceptual modeling with VNSA automata (Pieraccini & Levin,
1994). On the second line of Table II the perplexity scores are given for VNSA automata
built when using word classes and selected-phrases (see the procedure described in
Section 6.2). These are the overall best performances achieved with VNSAs and they
support the benefit expected from the use of linguistic knowledge for language modeling.
Moreover, even in terms of WER the class-based language model outperforms the Katz
trigram language model and the canonical VNSA automaton built out of the non-
filtered training data T (Riccardi, Bocchieri & Pieraccini, 1995).
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T VI. Development set perplexity of a third-order VNSA for different
pruning thresholds

tsh

Set type 0 1 2 3 4

T i 16·02 16·17 16·34 16·55 16·79
Ti

f 10·24 10·51 10·68 10·82 10·91

T VII. Development set perplexity of a fourth-order VNSA for
different pruning thresholds

tsh

Set type 0 1 2 3 4

T i 16·13 15·88 16·00 16·12 16·26
Ti

f 10·08 10·10 10·13 10·19 10·26

T VIII. State and transition number for the VNSAs in Table VI

tsh

0 1 2 3 4

State number 19 877 11 842 9 339 8 113 7 388
Transition number 133 562 95 727 82 438 75 386 70 936

7.2. Performance of pruned VNSA networks

The procedure described in Section 4.5 has been applied within the cross-validation
framework. Hence, the training set T(Tf ) has been split in two parts: the training set
T/i(T/i

f ) and the held out part Ti(Ti
f ). The set T/i(T/i

f ) is used for training the VNSA
automaton and Ti(Ti

f ) is used as the development set. Tables VI and VII report the
experiments on a third- and fourth-order VNSA automaton, respectively. For the sake
of clarity, in Tables VI and VII are shown the perplexities over the set Ti(Ti

f ) for one
of the possible pair (T/i,Ti) ( (T/i

f ,Ti
f )).3 The cutoff threshold tsh on the occurrence

number of word contexts varies between 0 (no pruning is applied) and 4. Tables VIII

3 The add-c method has been used to train the VNSA automaton on the set T/i.
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T IX. State and transition number for the VNSAs in Table VII

tsh

0 1 2 3 4

State number 81 538 53 259 46 459 43 401 41 641
Transition number 398 330 275 193 244 296 229 993 221 508
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Figure 10. Word error rate vs. VNSA models.

and IX give the number of parameters for different values of the cutoff threshold tsh.
From Tables VI and VIII it can be seen that for a third-order VNSA automaton, the
perplexity increase is only 3% when the number of parameters is halved. As far as the
accuracy performances, the use of networks with a halved parameter set allows for a
WER increase of only 0·1% with respect to the canonical network realization.

7.3. WER performance as a function of the language model

In Fig. 10 the word error rate score as a function of the type of VNSA model is plotted.
The leftmost WER value refers to the unigram language model used and the word
error rate is 17%. Acceptable WER scores are reached only when bigrams are used.
For the third- and fourth-order VNSA automaton word and phrase classes (as described
in the previous section) were used. No improvement was obtained for the fourth-order
VNSA automaton. As a final remark we point out that the recognition system achieves
quite accurate scores with the second-order VNSA network, while the best system asset
has to be obtained by means of a higher-order language model integrating adequate
linguistic knowledge.



288 G. Riccardi et al.

It is worth noticing that our state-of-the-art speech recognizer has only one scoring
pass in a different way from most systems designed for the 1994 ATIS ARPA evaluation
(Proceedings of the SLT Workshop—Austin, 1995). The effectiveness (in terms of
perplexity performance) and the efficiency (in terms of parameter number) of the
VNSAs has greatly contributed to the one-pass system configuration that is also used
for our real time system.

8. Conclusions

In this work we have presented an approximation of an n-gram stochastic language
model by means of a non-deterministic automaton: the Variable N-gram Stochastic
Automaton (VNSA). The VNSA implements the backoff mechanism of the n-gram
language model without affecting the performance of the speech decoding algorithm
itself (i.e. the backoff is compiled in the network rather than performed at run time).
Moreover, the number of parameters of the VNSA is not an exponential function of
the vocabulary size, but it depends linearly on the number of events (word tuples) in
the training set. Furthermore, the number of parameters (transitions and states) can
be reduced with a heuristic minimization algorithm with a negligible decrease in the
language model performance. As a result, the VNSA networks are a viable approach
to efficiently incorporate the n-gram (n≥1) class-based language model in the standard
Viterbi one-pass search algorithm for state-of-the-art speech recognition and language
understanding.

The authors wish to thank the anonymous reviewers and Allen Gorin whose critical comments
have improved the presentation of this paper.
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Appendix A: discounting techniques

The concept behind discounting techniques can be expressed as follows. Let us assume
we are trying to estimate the probabilities of a set of K events, namely P̂(ck), k=1,
. . . , K. From a given training set, each event can be assigned a frequency count C(ck),
k=1, . . . , K. It is useful to define as nr the number of different events that were observed
exactly r times (r=C(ck) ) and then we have that:

]
R

r=1

rnr=N (A.1)

where R is the frequency count of the most numerous events and N is the total number
of samples in the corpus. All the events with the same count r have a maximum
likelihood estimate, P̂ML(ck):

P̂ML(ck)=
r
N

(A.2)

Since it is not correct to assign a zero probability to the events that were never
observed, a common technique for coping with this problem (called discounting) consists
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of taking part of the probability mass from the observed events and redistributing it
among the unseen and rare events. The most used implicit4 discounting technique is
called the Good–Turing estimation (Good, 1953), and it is defined by the following
formula:5

P̂GT(ck)=
1
N

(r+1)nr+1

nr

=
(r+1)nr+1

rnr

P̂ML(ck)=
r∗
r

P̂ML(ck) (A.3)

In particular, for the unseen events:

P̂GT(unseen events)=
n1

N
(A.4)

The problem arising in the implementation of the Good–Turing estimation of the
probability of unseen events is that, again due to the limited size of the training corpus,
nr can be 0 for some value of r (e.g. we may not have events that were observed exactly
five times, but we may have events observed four and six times). Solutions to this
problem can be found by smoothing the values nr (e.g. by using a median filter) or by
introducing additional constraints in the probability estimation process, like that
suggested by Ney and Essen (1993). Another smoothing procedure for the Good–Turing
estimates has been applied by Katz (1987). In this work, the probability mass for the
unseen events has been collected from the events that have occurred not more than ks

times. As a consequence, the events ci, such that C(ci)>ks, are estimated according to
the ML formula given in Equation (A.2). Therefore, the probability of event ci (C(ci)>0)
is computed through the following formula:

P̂KZ(ck)=GP̂ML(ck)
dKZ

r P̂ML(ck)
if C(ck)≥ks

if 0<C(ck)<ks

(A.5)

where dKZ
r is a discount factor given by (r=C(ck) ):

dKZ
r =

r∗
r
−

(ks+1)nk+1

n1

1−
(ks+1)nk+1

n1

1≤r≤ks (A.6)

where r∗ is defined as in Equation (A.3). A more direct approach to the estimation of
the discount parameters is used in the explicit discounting. With explicit discounting,
the amount of discounting off the probabilities of observed events is explicitly given as
a free parameter. In particular, the following equations hold:

4 In the Good–Turing estimation the portion of the probability mass that is redistributed among the unseen
and rare events is not explicitly defined.

5 It can be demonstrated (Ney & Essen, 1993) that Equation (A.3) can be derived by applying maximum
likelihood estimation of probabilities under the leave-one-out paradigm.
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P̂(ck)=
(r−dr)

N
(A.7)

where dr is given as a function of r and r=C(ck) as above. The probability mass D
available for redistribution is then:

D=1−]
R

r=1

nrP̂(ck)=1−]
R

r=1

nr(r−dr)
N

=]
R

r=1

nrdr

N
(A.8)

In the so-called linear discounting the discount parameter dr is directly proportional
to r, that is:

dr=arr 0≤a≤1
(A.9)

P̂(ck)=(1−ar)
r
N

r>0

and then:

D=]
R

r=1

ar
rnr

N
(A.10)

A simpler6 way of approaching the discounting problem is referred to as uniform
linear discounting. In this case ar=a!r. Hence, the whole probability mass a is assigned
to all unseen events, namely:

D=P̂(unseen events)=a (A.12)

In the field of text compression some heuristic techniques have been studied in order
to cope with the problem of the unseen events (also addressed as zero frequency problem)
(Bell, Cleary & Witten, 1990; Witten & Bell, 1991). Below, the methods add-1, sub-1
and add−c are described. Let N be the total number of event observations, ck the
generic event and K the number of distinct events. The method add-1 states that the
probability of observing a novel event (P̂(unseen events) ) is given by:

P̂+1(unseen events)=
1

N+1
(A.12)

and the probability of a generic event, ck, with r=C(ck), is:

P̂+1(ck)=
r

N+1
(A.13)

6 In this context simplicity is measured by the number of free parameters whose values have to be estimated
for the implementation of the language model.
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For N large, the method add-1 makes P̂+1(ck) very close to the ML estimate P̂ML(ck)
and it assigns a small probability to the unseen events. Besides, the probability of
observing a novel event is the same as the one of observing an event ck with C(ck)=1.
The method sub-1 makes the assumption that events ck, such that C(ck)=1, have to be
treated as unseen events. This way the counts of all events ck are decreased by one and
the collected probability mass is assigned to the novel event:

P̂−1(unseen events)=
K
N

(A.14)

where K is defined as above. The probability of a generic event ck is:

P̂−1(ck)=
r−1

N
(A.15)

Both P̂+1(ck) and P̂−1(ck) estimates are very close when N is large, but the probability
space in the case of the method sub-1 is differently partitioned. In fact, in the case of
method add-1, the events ck, such that C(ck)=1, are not considered unseen events as in
method sub-1. The third method, add-c, has been thought of as a compromise between
the two methods described above. Hence, for method add−c, the event space is not
modified and events ck, such that C(ck)=1, still have a small probability. Moreover,
the larger the number of distinct events, K, the higher the probability of a novel event.
In particular, the probability of the novel event is:

P̂+c(unseen events)=
K

N+K
(A.16)

and the probability of a generic event ck is:

P̂+c(ck)=
r

N+K
(A.17)

The underlying reasoning of this estimate is that each time one of the K events has
been observed, a novel event has also occurred so that the novel event has been counted
K times.

As a whole, all event estimates presented in this Appendix can be expressed in a
general form:

P̂(ck)=ak P̂ML(ck)+bk (A.18)

where the coefficients ak and bk are derived by inspection of Equations (A.3), (A.7),
(A.9), (A.13), (A.15) and (A.17). Within the framework of VNSAs, for each state s
with history v1, . . . , vn, there is the probability of a novel event (backoff probability)
and a set of probabilities of events cko{word wk with left context v1, . . . , vn}.
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Appendix B: probability estimation with word and selected-phrase classes

The computation of the n-gram type probability, by means of word and selected-phrase
classes, can be viewed as a smoothing procedure which provides a robust estimate of
the word tuples observed in the training data. We examine first the case of word classes
and then that of selected-phrases.

In the case of a word class, different words are mapped into the same set so that,
for example, “BOSTON” and “CHICAGO” belong to the same class city. More
precisely, this is a many-to-one mapping fC :w→Cj , from a word w to a class Cj. If we
associate each word w in the training set with a class Cj , then we can compute the
counts rCj :

rCj=C(Cj )=]
wvCj

C(w) (B.1)

This way the probability estimation of class tuples, (C1, . . . , Ci), benefit from more
robust and reliable frequency counts. The probability of the word tuple (w1, . . . , wi−1)
in terms of the class tuple probability can be computed as by Jelinek (1980) and Brown
et al. (1992):

P̂(wi |w1, . . . , wi−1)=P̂(wi |Ci)P̂(Ci |C1, . . . ,Ci−1) (B.3)

where the generic word wj is such that fC :wj→Cj . In Equation (B.2) the n-gram
probability P̂(wi |w1, . . . , wi−1) is factored in two terms: the term P̂(wi |Ci) is the
probability of word wi given the class Ci, and P̂(Ci |C1, . . . , Ci−1) can be computed by
means of the methods presented in Appendix A.

As for the case of phrase classes, we assume here that the whole set G of such phrases
is given as well as the partition Gi, such that G=jiGi and GiiGj=0/ . To each subset
GivG is associated a many-to-one mapping fG :gk=wi, . . . , wj→Gk. Thus, for each subset
Gk an automaton can be designed in order to recognize all word sequences gk=wi, . . . ,
wj mapped into Gk. These automata are used to map a word sequence W into a phrase
label tuple g1, . . . , gM . If we assume that this is a one-to-one mapping, P̂(W ) can be
computed as follows:

P̂(W )=\
M

k=1

P̂(Gk |G1, . . . ,Gk−1)P̂(gk |Gk) (B.3)

where fG :gk→Gk. As for the word class case, the estimation is performed in two steps.
First, a robust and reliable estimate P̂(Gk |G1, . . . , Gk−1) is obtained and then P̂(gk |Gk)
gives the probability of subsequence wi, . . . , wj, given the phrase set Gk.

As a whole, the same calculation schema for both word class and selected-phrases
is a viable approach for the application of these concepts into VNSA automata for
language modeling.


