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State of the art data-driven speech and language processing systems require a large amount of

human intervention ranging from data annotation to system prototyping. In the traditional su-
pervised passive approach, the system is trained on a given number of annotated data samples

and evaluated using a separate test set. Then more data is collected arbitrarily, annotated, and

the whole cycle is repeated. In this article, we propose the active approach where the system itself

selects its own training data, evaluates itself and re-trains when necessary. We first employ active
learning which aims to automatically select the examples that are likely to be the most informative

for a given task. We use active learning for both selecting the examples to label and the examples to

re-label in order to correct labeling errors. Furthermore, the system automatically evaluates itself

using active evaluation to keep track of the unexpected events and decides on-demand to label

more examples. The active approach enables dynamic adaptation of spoken language processing

systems to unseen or unexpected events for nonstationary input while reducing the manual an-

notation effort significantly. We have evaluated the active approach with the AT&T spoken dialog

system used for customer care applications. In this article, we present our results for both automatic

speech recognition and spoken language understanding.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Process-
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General Terms: Algorithms, Languages, Performance
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1. INTRODUCTION

State of the art data-driven speech and language processing systems are
trained and tested using large amounts of randomly selected annotated data.
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In such a passive approach, the input channel is assumed to be stationary.
Typical tasks include the part of speech tagging or syntactic parsing using
the Penn Treebank [Marcus et al. 1993], text categorization using the Reuters
documents [Reuters 2004], natural language understanding using the ATIS
data [Price 1990], or speech recognition evaluations using the Switchboard
data [Godfrey et al. 1990]. Such benchmark tests are sometimes repeated an-
nually with newly annotated data.

Although keeping the training and test sets fixed may be a good idea to
compare different approaches, for many data-driven real world applications,
the passive approach has some drawbacks. First, it makes inefficient use of
data. For example, same or very similar examples are generally labeled multi-
ple times in the passive approach. Since annotation is an expensive, laborious
and time consuming process,1 the necessity to manually annotate similar train-
ing examples should be minimized. Second, it restricts the system behavior to
adapt dynamically to nonstationary input channels. This is especially the case
when the system is actually deployed, and needs to be updated in a dynamic
manner.

In the literature, there are both model adaptation algorithms to be
employed by nonstationary systems [Digalakis et al. 1995; Leggetter and Wood-
land 1995a; Federico 1996; Riccardi and Gorin 2000]. Even in the adaptation
approach it is not determined how to track the time-varying statistics and when
to update the parameters.

In this article, we propose an active approach where the system selects its
own training data, re-trains, and evaluates itself when necessary. Human in-
tervention is limited to the labeling of only the selectively sampled data. To this
end, we employ active learning which aims to automatically select the exam-
ples that are likely to be the most informative for a given task. We use active
learning for both selecting the examples to label and determining the misan-
notated ones. By this, we aim at decreasing the number of training examples
to be labeled and checked for errors and inconsistencies. Active learning has
the distinct advantage of efficiently exploiting annotated data and thus reduces
human effort. Moreover, modeling under the active learning paradigm has the
intrinsic capability to adapt to non-stationary events by means of a feedback
mechanism in the training algorithm. The examples that are not selected by
active learning are exploited using semi-supervised learning methods. Further-
more, the system automatically checks the performance using active evaluation
to keep track of the unexpected events and decides on when to label data and
re-train the models.

In our previous work, we have proposed methods for the application
of active and unsupervised learning to both automatic speech recognition
(ASR) [Hakkani-Tür et al. 2002, 2004; Riccardi and Hakkani-Tür 2003, 2005]
and spoken language understanding (SLU) [Tur et al. 2003a, 2003b, 2005; Tur
and Hakkani-Tür 2003]. In this article, we propose combining all these compo-
nents along with a tracking and evaluation mechanism, in a single, complete,
and task-independent framework, namely the active approach.

1In this article, we use the words “annotation” and “labeling” interchangeably.
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Fig. 1. Supervised passive learning.

The organization of this article is as follows: In the next section, we review the
passive approach, then in Section 3, we explain the proposed active approach.
We describe the application of active approach along with corresponding exper-
iments to ASR in Section 4 and to SLU in Section 5.

2. THE PASSIVE APPROACH

In the standard maximum likelihood approach to train the statistical models,
model parameters are estimated so that the training data probability is maxi-
mized [Jelinek 1997]:

θ̂ = argmax
θ

P (X |θ ),

where X = {x1, x2, . . . , xn} is the available training set, xi (i = 1, . . . , n, n = |X |)
is the ith labeled example, and P (X |θ ) is the probability of observing the set
of training examples in X , for a given model parameter set θ . Data is usually
randomly collected, transcribed, and split into a training and a test set. In
maximum likelihood formulation X is fixed and the identical-and-independent-
distribution (i.i.d) assumption is made. The training examples, xi ∈ X , are
drawn at random from the set X , which has been selected a-priori and fixed in
time.2

In Figure 1, we give the architecture of the learning process in the case of pas-
sive supervised learning. In this learning scheme, there is no relation between
the expected error rate and the set of training examples X , for nonstationary
distribution. In other words, if a new set of training examples X ′ is provided,
it is not possible to predict if this set would decrease or increase the error rate
estimated on X . Since training and test sets are sampled randomly from X ,
all examples are considered equally informative for the purpose of learning.
The test set matches the training set, hence the motto “There is no data like
more data” holds for almost any statistical learning algorithm. No example is
disregarded or generated automatically. In a passive supervised approach, no

2Similar arguments can be applied to training algorithms directly minimizing the error rate, such

as in discriminative classifiers (e.g., Boosting [Schapire and Singer 2000]). These algorithms are

not designed to adaptively select the training examples.
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unlabeled data is exploited. The data is assumed to be stationary, and all the
examples are assumed to be obtained and labeled at the same time. Typically,
evaluations are made for comparing different models obtained with different
methods but trained on the same given training set.

3. THE ACTIVE APPROACH

Passive approach delegates the burden of estimating good models to the es-
timation techniques. In contrast, active approach emphasizes the role of the
input selection for the purpose of decreasing the expected error rate over time,
hence adapting to the changes in the incoming data. The training and test sets
are not fixed a-priori. We also do not assume that they are stationary. This
means, the training set is not given, instead formed dynamically from a stream
of incoming data using a buffering mechanism. The distribution of this data
is also allowed to vary in time. Training set is not sampled randomly from X .
Active learning ensures the selection of the most informative examples. Test set
is randomly selected to track the dynamic system performance, and to compare
re-trained models with the already trained model. The models are updated reg-
ularly and automatically. Active evaluation keeps track of the performance and
controls active and semi-supervised learning. There is no human involved in
this process, except for labeling the selected data.

In the following sections, we present each of the components of the active
approach:

—Active Learning for Labeling decides on the examples to be labeled and sends
them to human labelers.

—Active Learning for Labeling Error Correction ensures the consistency and
correctness of the manual labels by selecting the potentially problematic
examples to re-label.

—Semi-Supervised Learning exploits the unlabeled examples to get a better
performance.

—Active Evaluation evaluates the model automatically. The evaluation results
are not only used for deciding the amount of data to label manually, and
when to replace the existing model with a new model, but also for detecting
the anomalies in the data, model, or the task itself.

Figure 2 presents a very high level description of the active approach. First
a small amount of randomly selected data is labeled manually. This is used to
train the core model to bootstrap. Then the system can begin buffering data from
the incoming stream. A portion is then set aside for active evaluation. We then
employ active learning for labeling using the remaining data to determine ex-
amples to add to the training data. Active learning for labeling error correction
is used to select the problematic examples which are then checked manually.
A new model is trained using this extended training set and the unlabeled
examples using semi-supervised learning. Then active evaluation decides on
deployment of the newly built model using the evaluation results on the test set.

One can tailor the proposed active approach for specific needs. For example,
it is possible to exploit the test sets from previous iterations during training.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.
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Fig. 2. The high-level algorithm of the active approach.

This approach is general enough to handle any task which includes model train-
ing and provides an incoming continuous data stream. In that sense, spoken
language understanding or automatic speech recognition are just two exam-
ple tasks for which the active approach can be used. As seen, in an active
approach, active learning for labeling and active evaluation are the essential
components, whereas active learning for labeling error correction and semi-
supervised learning are employed for a shorter cycle time and to get better
models with high-quality labeling.

3.1 Background

3.1.1 Active Learning. Previous work in active learning has concentrated
on two approaches: committee-based methods and certainty-based methods.
In the committee-based methods, a distinct set of learners is created using a
small set of annotated examples. The unannotated instances whose outputs
differ the most when presented to different learners are given to the labelers
for annotation. Seung et al. [1992] have introduced this approach calling it
query by committee. Freund et al. [1997] have provided an extensive analysis of
this algorithm for neural networks. Liere and Tadepalli [1997] have employed
committee-based active learning for text categorization and have obtained 2–
30 fold reduction in the need of human labeled data depending on the size of
labeled data. Argamon-Engelson and Dagan [1999] have formalized this algo-
rithm for probabilistic classifiers introducing the metric vote entropy to compute
the disagreement of the committee members. They have demonstrated its use
for the task of part-of-speech tagging.

In the certainty-based methods, an initial system is trained using a small
set of annotated examples. Then, the system examines and labels the unan-
notated examples and determines the certainties of its predictions on them.
The examples with the lowest certainties are then presented to the labelers for
annotation.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.
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Cohn et al. [1994] have introduced certainty-based active learning for clas-
sification based on an earlier work on artificial membership queries [Angluin
1988]. Lewis and Catlett [1994] have used selective sampling for text catego-
rization and have obtained 10-fold reduction in the need of labeled data using
decision trees. Active learning has previously been applied to support-vector
machines [Schohn and Cohn 2000; Tong and Koller 2001]. For language pro-
cessing, certainty-based methods have been used for natural language pars-
ing [Thompson et al. 1999; Tang et al. 2002; Baldridge and Osborne 2003]
and information extraction [Thompson et al. 1999] and word segmentation
[Sassano 2002]. One drawback with certainty-based methods is that it is hard
to distinguish an informative example from an outlier. On the other hand, in
order to train multiple classifiers required by committee-based active learning,
one may divide the training data or feature set into multiple parts, and this
may result in many weak classifiers instead of a single strong one.

In our previous work, we have presented certainty-based active learning
methods for ASR [Hakkani-Tür et al. 2002] and SLU [Tur et al. 2003b]. In
those studies, the goal was reducing the amount of labeled data needed to
obtain better models in shorter time frames.

3.1.2 Semi-Supervised Learning. Compared to active learning, semi-
supervised learning is a much more studied subject in machine learning and
speech recognition literature. In speech recognition, it has been studied under
the subject of unsupervised adaptation. Two well-known methods are maxi-
mum a-posteriori (MAP) and maximum likelihood logistic regression (MLLR)
adaptation [Huang et al. 2001; Leggetter and Woodland 1995b; Bacchiani and
Roark 2003]. Iyer et al. [2002] have proposed using ASR output of utterances,
instead of their transcriptions, for training the ASR language models, without
loss in performance. In our previous work [Hakkani-Tür et al. 2004], for the
task of human-machine spoken dialog processing, we have evaluated multiple
semi-supervised learning strategies.

In the machine learning literature, many semi-supervised learning algo-
rithms have been proposed: Blum and Mitchell [1998] have proposed an ap-
proach, called Co-Training. For using Co-Training, the features in the prob-
lem domain should naturally divide into two sets. Then, the examples which
are classified with high confidence scores with one view can be added to the
training data of the other views. For example, for web page classification, one
view can be the text in them and another view can be the text in the hyper-
links pointing to those web pages. For the same task, Nigam et al. [2000] have
used an algorithm for learning from labeled and unlabeled documents based
on the combination of the Expectation Maximization (EM) algorithm and a
Naive Bayes classifier. Similar to the MAP adaptation in ASR, they first es-
timate the parameters of the Naive Bayes classifier, �̂, from a small amount
of labeled examples. Then, this model is used to get the posterior probabilities
P�̂(c j |di) for each class c j given the example di. Next a new model is trained
using both the manually and machine labeled data. These steps are iterated
until the model performance converges. Nigam and Ghani [2000] have then
combined Co-Training and EM, coming up with the Co-EM algorithm, which is
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the probabilistic version of Co-Training. Ghani [2002] has later combined the
Co-EM algorithm with Error-Correcting Output Coding (ECOC), to exploit the
unlabeled data, in addition to the labeled data.

In our previous work, we have presented semi-supervised learning ap-
proaches for improving call classification accuracy using unlabeled data with a
MAP-like adaptation technique [Tur and Hakkani-Tür 2003].

3.1.3 Combining Active and Semi-Supervised Learning. Combining ac-
tive and semi-supervised learning has been first introduced by McCallum and
Nigam [1998]. They combined the committee-based active learning algorithm
with an EM-style semi-supervised learning to assign class labels of those exam-
ples that remain unlabeled. For the task of text categorization, using a Bayesian
classifier, they have employed EM for each of the committee members. Muslea
et al. [2002] have extended this idea to use Co-EM as the semi-supervised learn-
ing algorithm. They call this new algorithm Co-EMT, and have shown that ex-
ploiting multiple views for both active and semi-supervised learning is very
effective. Their algorithm makes more sense since once the committee mem-
bers are formed for active learning, it is straightforward to employ Co-Training
or its variant Co-EM.

In our previous work, we have used a combination of active and unsupervised
learning for ASR statistical language modeling [Riccardi and Hakkani-Tür
2003] and SLU [Tur et al. 2005].

3.1.4 Labeling Error Detection. Most of the work related to labeling error
detection deals with the problem as a postprocessing step [Abney et al. 1999;
Eskin 2000; Murata et al. 2002; van Halteren 2000]. These studies aim to de-
tect a relatively small number of errors in the data after the labeling process.
Other studies are either related to making the classifier robust to noisy data
[Kearns 1993, among others] or they briefly mention that they have manually
checked the data and corrected labeling errors [Hendrickx et al. 2002, among
others].

3.2 Active Learning for Labeling

The purpose of active learning for labeling is to reduce the number of training
examples to be labeled by selectively sampling a subset of the unlabeled data.
This is done by inspecting the unlabeled examples, and selecting the most in-
formative ones with respect to a given cost function for a human to label [Cohn
et al. 1994]. In other words, the goal of the active learning algorithm is to select
the examples which will bring the largest improvement on the system perfor-
mance, hence reduce the amount of human labeling effort. Furthermore active
learning provides robustness to changes in the incoming data distribution by
adapting to them.

In Figure 3, we give the general scheme of active learning. The input set, X
of Figure 1, is not shown, because it is assumed that there is a dynamic feed of
unlabeled data, relaxing the stationarity assumption of the passive approach.
Instead, we buffer the examples, X (t), to form the pool that selective sampling
will use.
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Fig. 3. Simplified structure of the Active Approach.

Fig. 4. The certainty-based active learning algorithm.

Figure 4 summarizes the certainty-based active learning algorithm we pro-
pose. This method is independent of the task modeled. The error estimation
is task dependent, and we propose methods for ASR and SLU in Sections 4.1
and 5.1 consecutively. The threshold, th, is mainly determined by the capacity
of the manual labeling effort or by the performance of the current model. In
accordance with the data properties in an active approach, this algorithm as-
sumes a constant stream of incoming data traffic instead of a fixed given data
set. At each iteration a new pool, Sall, is provided to the algorithm, which is the
buffered data set. Then the aim of active learning is to come up with a smaller
subset of examples, Sselected, collected from the field for human labeling.

More formally, the selection of training data X̂ ⊂ X is driven by a reward
function, R(X̄ ), which takes into account the total error rate E(X̄ ) and the cost
function of data labeling, f (|X̄ |). X̂ is selected so that the following objective
function is maximized:

R(X̄ ) = [E(X̄ ) − f (|X̄ |)]

X̂ = argmax
X̄ ∈X

{R(X̄ ), 0}

In the case that the maximum value is 0 (i.e., R(X̄ ) ≤ 0), X̂ is the empty set, and
the reward is 0. E(X̄ ) is the total error rate of the examples in X , and accounts
for the benefit (e.g., error minimization) of having data labeled. To estimate

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.
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Fig. 5. An illustration of the estimated error and cost functions.

E(X̄ ) we use the estimator ε(xi) of the error rate for each sample xi ∈ X̄ :

E(X̄ ) ≈
∑
xi∈X̄

ε(xi)

where 0 ≤ ε(xi) ≤ 1. We assume that f is positive ( f (|X̄ |) ≥ 0, ∀X̄ ) and mono-
tonically increasing with the number of examples to be labeled. For practical
purposes, we can assume f (|X |) to be linear in the number of examples:

f (|X |) = g (X ) × |X |
where g (X ) > 0 reflects the cost-benefit ratio of data labeling. If 0 < g (X ) <

ε(xi) the benefit of labeling sample xi is larger than its cost, if g (X ) = ε(xi) cost
and benefit are equal and for g (X ) > ε(xi) the benefit of labeling xi is smaller
than its cost. In general, the factor g (X ) depends on X . Figure 5 illustrates
two cost functions, f1(|X |) and f2(|X |), and E(X ), where the set of examples in
X are sorted according to decreasing estimated error. We assume two different
constants as g (X ) in f1(|X |) and f2(|X |).

Note that the statistics that are drawn are biased and the prior distributions
are not preserved. In the case of maximum likelihood estimation,

θ̂ = argmax
θ

P (X̂ |θ )

the parameters θ̂ will be biased by the active learning selection in order to
minimize the error rate.

3.3 Active Learning for Labeling Error Correction

Labeling is an error-prone process due to various reasons, such as human factors
or imperfect description of classes. Thus, usually more than one pass of labeling
is required in order to check and fix the labeling errors and inconsistencies.

As another application of active learning, we aim to minimize the number
of examples to be checked again by automatically selecting the ones that are
likely to be erroneous or inconsistent with the previously labeled examples.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.
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Fig. 6. The algorithm of the active learning for labeling error correction.

Figure 6 presents our approach. Inspired by certainty-based active learning,
we leave out the ones that the classifier agrees with the labeler’s decision with
high confidence but select the examples that the classifier is confident about
but disagree with the first labeler’s decision. The disagreement between the
classifier output and manual label for one example can be computed using
multiple ways. One is using the Kullback–Leibler (K L) divergence (or relative
entropy) for classification tasks:

KL(P ‖ Q) =
∑
i∈L

pi × log
(

pi

qi

)
,

where L is the set of all classes, qi is the posterior probability of the ith class
obtained from the classifier. Since the first pass labels do not provide a proba-
bility distribution, we handled it as follows: we set pi to 1 if that class is labeled
and 0 otherwise. This method requires that the classifier returns a confidence
between 0 and 1 for each of the labels, i ∈ L, where L is the set of all calltypes,
for a given utterance, U . Indeed this is the case for most statistical classifiers.

Although this method may be used for postprocessing the already labeled
data, we consider it as part of the labeling process. In our previous work we have
also proposed an alternative method for checking the labeling errors, which does
not require a given model [Tur et al. 2003b]. In that method, the motivation is
that the examples in the training data which are not classified correctly with a
model trained with the very same data are more probably the labeling errors.

3.4 Semi-Supervised Learning

The examples that are not selected by active learning can be exploited using
semi-supervised learning methods. This combination has various distinct ad-
vantages:

—It is possible to get a better performance by exploiting unlabeled data as
described in Section 3.1.

—Active learning alone is not sufficient to track the new distributions in the
incoming data stream. For the case of classification, active learning may
ignore the easily classified examples although they might indicate a very
different class distribution.

—Semi-supervised learning may help restoring the distributions perturbed by
active learning. For the case of classification, one can assume that the easily
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classified examples, which are not selected by active learning, belong to more
frequent classes.

For ASR, after applying active learning to intelligently select and then tran-
scribe a small fraction of the data that is most informative, we use the rest
of the data that is not yet transcribed in semi-supervised learning. More for-
mally, we compute the initial language model parameters, θ , using selectively
sampled and transcribed data, Wt . Then using θ , we recognize the unselected,
hence untranscribed data to get Ŵu:

Ŵu = argmax
W

Pθ (W ) × P (X u|W )

where P (X u|W ) is the acoustic observation probability computed using a given
acoustic model. Then we compute the updated language model parameters, θ̂ ,
by combining Wt and Ŵu.

The n-gram counts CAL−UL(wn
1) from human transcribed (via Active Learn-

ing) and ASR transcribed speech utterances are computed in the following way,
for each word sequence wn

1 :

CAL−UL
(
wn

1

) = CAL
(
wn

1

) + CUL
(
wn

1

)
(1)

where CAL(wn
1) is the n-gram count computed from the manually transcribed

data, Wt , and CUL(wn
1) is the n-gram count computed from the ASR output Ŵu.

To compute CUL(wn
1), for each word wi in Ŵu we estimate the probability of

being correctly decoded ci (= 1 − ei, where ei is the error probability), that is its
confidence score. The bidimensional channel is then represented as a sequence
of n-tuples of symbol pairs (wn

1 , cn
1) = (w1, c1)(w2, c2), . . . , (wn, cn). The n-gram

counts in presence of noise can be computed by marginalizing the joint channel
counts:

CUL
(
wn

1

) =
∑

x∈Ŵu

cxδwn
1
(x), (2)

where cx is the confidence score for the n-tuple x in the noisy spoken utterance
transcriptions Ŵu and δwn

1
(x) is the indicator function for the n-tuple wn

1 . The
confidence score of the n-tuple wn

1 can be computed by geometric or arithmetic
means or max and min over the n-tuple of word confidence scores cn

1. In this
article, we take the simplest approach and compute cwn

1
= 1. Other ways of

computing cn
1 are tested in Riccardi and Hakkani-Tür [2003] and Gretter and

Riccardi [2001]. The acoustic models can be trained by using all the data in a
similar fashion [Zavaliagkos and Colthurst 1998].

In our previous work, we have presented semi-supervised learning ap-
proaches for exploiting unlabeled data for call classification [Tur and Hakkani-
Tür 2003]. We proposed a novel approach for Boosting. Boosting aims to combine
“weak” base classifiers to come up with a “strong” classifier. This is an iterative
algorithm, and in each iteration, a weak classifier is learned so as to minimize
the training error. More formally, the algorithm (for the simplified binary (+1
and −1) classification case) is as follows:

—Given the training data from the instance space X : (x1, y1), . . . , (xm, ym)
where xi ∈ X and yi ∈ −1, +1

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.
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—Initialize the distribution D1(i) = 1/m
—For each iteration t = 1, . . . , T do

—Train a base learner, ht , using distribution Dt .
—Update Dt+1(i) = Dt(i)exp(−αt yiht(xi))/Zt

where Zt is a normalization factor and αt is the weight of the base learner.

—Then the output of the final classifier is defined as:
H(x) = sign( f (x)) where f (x) = ∑T

t=1 αtht(x)

This algorithm can be seen as a procedure for finding a linear combination
of of base classifiers which attempts to minimize a loss function, which in this
case is: ∑

i

exp(− yi f (xi))

A more detailed explanation and analysis of this algorithm can be found in
Schapire [2001].

For semi-supervised learning, the idea is to train a model that fits both the
human-labeled and machine-labeled data. For this purpose, we first train an
initial model using some human-labeled data. Then, the boosting algorithm
tries to fit both the machine-labeled data and the prior model using the following
loss function: ∑

i

(ln(1 + exp (− yi f (xi)) + ηKL(P (.|xi) ‖ ρ( f (xi))))

where KL is the Kullback–Leibler divergence between two probability distri-
butions p and q. In our case, p corresponds to the distribution from the prior
model, P (.|xi), and q corresponds to the distribution from the constructed model,
ρ( f (xi)), where ρ(x) is the logistic function 1/(1 + exp(−x)). This term is basi-
cally the distance from the initial model built by human-labeled data and the
new model built with machine-labeled data. The weight η is used to control
the relative importance of these two terms. This weight may be determined
empirically on a held-out set. In order to reduce the noise added because of
the classifier errors, we only exploit those utterances that are classified with a
confidence higher than some threshold.

3.5 Active Evaluation

System performances vary over time for data which exhibits stationary and non-
stationary statistics. Typically, these changes are manually monitored, and if it
becomes significant, a new model is trained with the newly labeled data. Active
evaluation automates this process by controlling the proposed active approach.
More specifically, it has three main goals:

—keeping track of performance of the system with respect to a dynamic test
set,

—deciding on when to label more data, and

—deciding on when to update the models.
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When there is enough labeling capacity to employ active learning all the time,
or there is no active or semi-supervised learning capability in place, active
evaluation can still be used.

We propose using three ways of evaluating the performance throughout the
life-time of an application:

(1) Fixed test set is used to track and compare the performances of the newly
trained models in time.

(2) Variable test set is used to handle the nonstationary data. The fixed test set
is not enough to see the performance drop due to the changes in language
used, class distribution, etc. Therefore, a variable test set is used to compare
the performance of a model in time.

(3) Sliding window is the middle way between fixed and variable test sets. The
idea is to update the test set with the most recent data by removing the
oldest data and keeping most of the test set the same.

Using the performances of these test sets, active evaluation decides on
whether to continue manual labeling or not. If there is a significant deterio-
ration in the performance, this means there is a change in incoming data. Then
active learning is put in place and selectively sampled data is labeled (and re-
labeled). A new model is created and performance is checked using the test sets.
If there is a significant improvement, active learning decides on switching to
this new model.

Active evaluation does not guarantee to avoid performance drops, but it helps
make the system to be more robust to changes in data. Furthermore, it enables
a proper and routine evaluation of the system, which is a very valuable perfor-
mance tracking tool just by itself.

When there is no labeled data available for active evaluation, instead of
the actual error, we propose to use the error estimations that are also used
for active learning. We call this method unsupervised active evaluation. These
estimations can be obtained using the candidate test sets described above. In
our experiments, we have found out that it is possible to get very reliable error
estimations for speech recognition and call classification applications.

4. APPLICATION TO AUTOMATIC SPEECH RECOGNITION

We have applied the proposed active approach to AT&T VoiceTone®3 Spoken
Dialog System (SDS). AT&T SDS aims to identify intents of users, expressed in
natural language, and take actions accordingly, to satisfy their requests [Gorin
et al. 2002]. Two critical components of this system are automatic speech recog-
nizer (ASR) and spoken language understanding (SLU). In AT&T SDS, first the
speaker’s utterance is recognized using an ASR, then the intent of the speaker
is identified from the recognized sequence, using an SLU component.

3VoiceTone® is a service provided by AT&T, whereby AT&T develops, deploys and hosts spoken

dialog applications for enterprise customers.
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Table I. The Training and Test Data is Collected from a Spoken

Dialog System for Pharmaceutical Domain Customer Care

Training Set Test Set

Number of utterances 29,561 5,534

Number of words 299,752 47,684

Vocabulary Size 5,353 words 2,053

Average utterance length 10.14 words 8.62 words

Trigram Perplexity 19.54 26.99

4.1 Error Estimation

In order to estimate the error for ASR, we rely on word confidence scores which
are extracted from the lattice output of ASR. To obtain word confidence scores,
we combine the posterior probabilities of the transitions in the lattice corre-
sponding to the same word, and which occur at around the same time interval.
A detailed explanation of our algorithm and the comparison of its performance
with other approaches is presented in Hakkani-Tür and Riccardi [2003].

We used various approaches to obtain utterance level confidence scores cwn
1

from word confidence scores cwi [Hakkani-Tür et al. 2002], and two of them
resulted in a better performance. One approach is to compute the confidence
score of an utterance as the arithmetic mean of the confidence scores of the
words that it contains:

cwn
1

= 1

n

n∑
i=1

cwi (3)

The second approach is using a voting scheme with a threshold. The threshold
can be determined using a development set. One can use the threshold which
results in the minimum error when determining the correctly recognized words
(sum of the false acceptance rate of misrecognized words and the false rejection
rate of the correctly recognized words). The words with a score less than the
threshold do not have any contribution to the utterance score. The words with
a confidence score greater than the threshold contribute to the utterance score
by 1. The final utterance score is normalized by the utterance length.

cwn
1

= 1

n

n∑
i=1

tr(cwi ), (4)

where

tr(cwi ) =
{

1 if cwi > threshold

0 otherwise

}
. (5)

4.2 Experiments and Results

We made active learning, semi-supervised learning and active evaluation ex-
periments using AT&T VoiceTone® Spoken Dialog System data, collected from
a pharmaceutical domain, with some features given in Table I. The trigram per-
plexity is computed using a trigram language model built from the training set.
For ASR, we expect the labelers’ transcription errors to be insignificant, hence
we have not performed any experiments to check active learning for labeling
error detection.
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Fig. 7. Word accuracy learning curves with randomly and selectively sampled data.

4.2.1 Active Learning for Transcription. In order to show comparisons of
n-gram probability estimation for language modeling and the resulting test set
WER for random and selective sampling, we made some experiments using
AT&T Spoken Dialog System data. In all the experiments, only the language
model is re-trained, and the same acoustic model trained using previously col-
lected telephone speech is used.

4.2.1.1 Random and Selective Sampling Learning Curves. Figure 7 shows
the word accuracy learning curves for random and selective sampling, obtained
using an initial set of 1,000 utterances, randomly selected from the training
set. The initial set is used to order the rest of the data for selective sampling.
We assume that f (|X |) (as decribed in Section 3.2) is linear in the number
of examples, still we have shown the learning curves for all training data for
completeness. To compute the utterance level confidence scores, we have used
the first approach described in Section 4.1. With selective sampling, the low-
est scored utterances are added to the transcribed training set first. We obtain
the peak word accuracy at around 12,000 training utterances, with selective
sampling, which is around 1% better than the word accuracy obtained using
all the available training data. These learning curves are obtained by run-
ning the recognizer at the same beam-width. Therefore, the run-time perfor-
mances may differ, due to the differences between the characteristics of lan-
guage models (such as size, entropy, etc.), as will also be shown in the following
sections.
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Fig. 8. Average relative frequency learning curves for very frequent (e.g., Yes and Prescription)

and infrequent (e.g., Above and Prepare) words in our data.

4.2.1.2 Relative Frequencies. Figure 8 shows the average relative frequency
of 100 most frequent and 100 most infrequent words, as the amount of training
data changes. The most frequent and infrequent words are found using the
transcriptions of all the data, but the most frequent ones are almost the same
as the most frequent words in the initial set. Note that the range and scale of
the average relative frequency in the two subplots for frequent and infrequent
words are very different.

Figure 9 has the relative frequency plots as the amount of training utterances
changes for two very frequent (“Yes” and “Prescription”) and very infrequent
(“Above” and “Prepare”) words for this application.

As can be seen from the two sets of plots, the relative frequencies for the first
1,000 utterances are the same with random and selective sampling, as this is the
randomly selected initial set for active learning. With random sampling, the av-
erage relative frequency of very frequent words converge very quickly, however,
that is not the case for infrequent words. This is more clearly seen in the relative
frequency learning curves of individual words. Another point to note is that,
active learning underestimates the relative frequency of frequent words, and
overestimates the relative frequency of infrequent ones. This is a result of our
selection mechanism, unseen events are not recognized correctly, and so they
get low confidence scores, and therefore are selected by active learning before
they can be detected by random sampling. Moreover, with active learning for la-
beling, the unigram (therefore, also n-gram) relative frequencies seem to be nat-
urally smoother than the n-gram probability estimates from random sampling.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.



An Active Approach to Spoken Language Processing • 17

Fig. 9. Relative frequency learning curves for very frequent and infrequent words.

4.2.1.3 Real Time Speech Recognition. In the experiment in Figure 7, the
beam-width of the recognizer is kept the same for all points. However, the run-
time in each experiment changes as a function of the features of the language
model, while the acoustic model is the same in all of them. Figure 10 shows the
word accuracy versus run-time curves obtained by changing the ASR beam-
width, for random and selective sampling with training sets of 8000, 12000,
16,000 and 22,000 utterances. Every subplot also has the run-time curve (the
dashed curve) for the language model using all the available data (29,561 ut-
terances). With active learning, when using more than 12,000 utterances are
used, the curve does not change significantly4 as we add the rest of the data,
except at very high run-times. With random sampling, the curves improve as
we use more data. According to this figure, for example, if we can run ASR at

4For example, at around 0.15 times real-time run time, the ASR word accuracy for selective sam-

pling with 12,000, 16,000 and 22,000 utterances (bottom 3 plots) is the same as the word accuracy

obtained using all the data. For the run-time in real time values less than 0.3, the difference be-

tween all data and selective curves with more than 12,000 utterances is not significant according

to Z -test at 0.95 confidence interval.
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Fig. 10. Word accuracy versus run-times with random and selective sampling. The curve labeled

all data is the same for all plots and is obtained using all of the available 29,561 utterances.

only 0.1 times real-time, which may be the case for a spoken dialog system,
there is not much point in transcribing more than 8,000 selectively sampled
utterances, as the performance with 8,000 utterances at that point is the same
as the performance obtained using all the data.

4.2.2 Semi-Supervised Learning. Figure 11 presents our results using
semi-supervised learning. As the initial data, we used some data from Switch-
board human-human spoken dialog corpus, and also some data from the web
pages related to the application. We again used an off-the-shelf acoustic model.

To compare selective sampling and random sampling, we again plotted learn-
ing curves as before, the top one (labeled “Selective”) is plotted using the se-
lectively sampled data. In addition to these, we also used the remaining data,
which is untranscribed, to combine active and unsupervised learning.

When we combined randomly sampled transcribed data with the untran-
scribed data, we got the lower solid curve (labeled “Random+UL”), instead of
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Fig. 11. Word accuracy learning curves when adding untranscribed data to randomly and selec-

tively sampled data. The beam-width is kept constant in all these experiments, and the run-time

is 0.15 ∓ 0.015 fold real time.

the lower dashed curve (labeled “Random”) of random sampling. So, with all
data set sizes, we achieved better performance using untranscribed data.

We also added the untranscribed data to the selectively sampled transcribed
data, and obtained the upper solid curve (labeled “Selective+UL”), instead of
upper dashed curve, which was obtained using only transcribed data. When
we did not have much transcribed data, using the ASR output of untranscribed
data helped us significantly, but as we started gathering more transcribed data,
the untranscribed data started hurting the ASR performance. As we go along
the curve, the untranscribed data, added to the selectively sampled data is of
very high quality, as we selectively sample those utterances which have a lot of
errors at the beginning, and leave the ones that are correctly recognized until
the very end.

Therefore, our proposal is combining the two techniques at the beginning of
application development, and then switching to transcribed data, as more data
is collected. In this way, a reasonable performance can be guaranteed at every
phase, even when we do not have any human supervision.

We have also examined the effects of data selection for unsupervised learning.
For that purpose, instead of adding the ASR output of all the untranscribed data
to our training set, we only added the utterances which are recognized with
lower scores, as higher scored utterances seemed to hurt accuracy in the active
learning experiments. Figure 12 shows the resulting curve (labeled “Selective +
UL with Selective Sampling”) from this experiment as well as the previous
active learning curve (labeled “Selective”) and the combination of active and
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Fig. 12. Word accuracy learning curves with data selection for unsupervised learning.

unsupervised learning curves (labeled “Selective+UL”). As can be seen from the
figure, filtering the high confidence utterances from the ASR output resulted
in a better performance than adding all the untranscribed utterances. Our aim
here is only to show that selective sampling may also be useful for unsupervised
learning. Determination of the threshold for utterance confidence score during
selection remains as the future work.

4.2.3 Active Evaluation. We have evaluated the active evaluation method
for ASR using the same data sets. We combined training and tests sets into a
pool and arranged them in a time order. We separated the first 1K utterances
as the initial training set and trained a model (Fixed Model), and the next 1K
utterances as the initial test set (Fixed Test Set). We used the rest to simulate
the incoming traffic: we assumed that we get 2K utterances every day, the
initial 1K of these are used as the pool to select the utterances to label from,
and the next 1K is used as the test data (Variable Test Set). Out of the 1K pool,
we assumed that we are able to transcribe 500 selectively sampled utterances,
which is added to the previously transcribed model and used to train a new
model every day using active learning (AL model). Figure 13 presents word
accuracy results using these sets and models, where x-axis represents the time.
The word accuracy of the Fixed Test Set with the Fixed Model is constant
in time, and this horizontal line represents the performance with the passive
framework. When we use the Fixed Model to recognize the Variable Test Set,
which changes every day, the word accuracy drops as the properties of the
incoming data may change in time. When we retrain the language model using
the selectively sampled data by active learning, and use it to recognize the Fixed
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Fig. 13. Effect of active evaluation for ASR.

Test Set, the word accuracy improves as expected. When we use the AL Model
to recognize the Variable Test Set, we see that the performance may degrade
as the incoming data changes, but since the AL data is also collected from the
field, the changes in the performance are not as drastic as the changes with the
fixed model.

Transcription of a new test set every day is a costly process. For tracking the
traffic changes, we also tried using average utterance confidence scores instead
of computing the word accuracy. Figure 14 shows the controlled experiments,
where we propose to use the average scores instead of the word accuracy. The top
curve is the word accuracy of the Variable Test Set using the initial Fixed Model,
as in the previous figure. The bottom curve is the average utterance confidence
score for the Variable Test Set using the Fixed Model. Note that to obtain the
utterance confidence scores, we do not need to transcribe the test sets. As can
be seen in the figure, average confidence score can be used to approximately
track the changes in the performance of the language model and signal when
to start transcribing new data and update the model.

5. APPLICATION TO SPOKEN LANGUAGE UNDERSTANDING

In goal-oriented call routing systems like AT&T Spoken Dialog System, intent
determination or SLU is framed as a multi-class multi-label classification prob-
lem [Gorin et al. 2002; Tur et al. 2002; Natarajan et al. 2002; Kuo et al. 2002].
As a call classification example, consider the utterance I would like to know
my account balance, in a customer care application. Assuming that the utter-
ance is recognized correctly, the corresponding intent or the call-type would
be Request(Account Balance) and the action would be learning the account
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Fig. 14. Effect of unsupervised active evaluation for ASR.

number and prompting the balance to the user or routing this call to the Billing
Department.

5.1 Error Estimation

For call classification, we employ state-of-the-art data-driven classifiers,
namely Boosting. Thus, we use the scores associated to call-types for error
estimation for SLU. Actually, many statistical classifiers output some sort of
confidence to each of the classes. So our error estimation is independent of the
classifier used. For example, a simple naive Bayes classifier tries to estimate
the posterior probabilities using the well-known Bayes formula:

P (Ci|W ) = P (W |Ci) × P (Ci)

P (W )
,

where Ci is a call-type and W is the utterance (or ASR 1-best). Then, the confi-
dence (normalized score to [0–1]) of each call-type can be computed as:

P (Ci|W ) = P (W |Ci) × P (Ci)∑
j P (W |Cj ) × P (Cj )

.

In our experiments, we employ the Boostexter [Schapire and Singer 2000]
tool, an implementation of the Boosting family of classifiers [Schapire and
Singer 1999], and used word n-grams (phrases) as features. Boosting combines
“weak” base classifiers to come up with a “strong” classifier [Schapire and Singer
1999]. This is an iterative algorithm, and in each iteration, a weak classifier
is learned so as to minimize the training error. Then, one can define the out-
put of the Boosting classifier, f (x, Ci), for each class (call-type), Ci, for a given
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Table II. Characteristics of Data Collected

from a Spoken Dialog System for

Telecommunications Domain Customer Care

System

Number of utterances 40,551

Average utterance length 8.97 words

Number of call-types 65

Unigram Perplexity 15.95

object, x, as:

f (x, Ci) =
∑

t

αt × ht(x, Ci)

where ht(x, Ci) is score of the weak learner for iteration t and αt is the weight
of it. The confidence of a call-type, Ci, is then given by the logistic formula:

P (Ci = +1|x) = 1

1 + exp(−2 × f (x))

Then it is possible to use these confidence scores for error estimation in the
classification of an utterance in multiple ways. The first approach would be
using the confidence score of just the top scoring call-type:

Confidence(x) = maxi P (Ci = +1|x)

Another approach would be using the Kullback-Leibler distance of the clas-
sifier output distribution, C from the prior distribution, P:

Confidence(x) = KL(C||P)

We used the first approach in our experiments since it is simpler and resulted
in similar performances.

5.2 Experiments and Results

We made the SLU experiments using AT&T Spoken Dialog System data, from
telecommunications domain, with the characteristics presented in Table II. In
this application there are 65 call-types with a unigram perplexity5 of 15.95.
We use top class error rate (TCER) in order to compute the performance of
the classifier. TCER is the fraction of utterances in which the call-type with
maximum probability was not one of the true call-types.

5.2.1 Active Learning for Labeling. Figure 15 presents our results compar-
ing random and selectively sampled data. The x axis is the amount of manually
labeled data, and the y axis is the TCER on the fixed test set. We set aside first
2000 utterances for testing and give the performances on that fixed test set.
Once all the data is sorted chronologically, active learning selects 500 utter-
ances among 2000 unlabeled ones to manually label, the remaining 1,500 are
ignored. This corresponds to the algorithm presented in Figure 4. Random curve
is obtained using the data as is, without any selection. We have got significant

5Computed from the prior distribution.
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Fig. 15. Effect of selective vs. random sampling for call classification using manual transciptions.

Fig. 16. Effect of selective vs. random sampling for call classification using ASR output.

reduction in the amount of labeled data needed to achieve a given performance.
For instance, achieving a test error of 12% requires around 20,000 examples if
randomly chosen, but only 7,500 actively selected examples, a savings of 62.5%.
In this particular experiment, we use human transcriptions of the utterances.
In order to see the effect of noise introduced by the ASR, we repeat this exper-
iment using the ASR output of the same data. Figure 16 presents our results.
As seen, using both manual and automatic transcriptions, active learning is
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Fig. 17. Effect of active learning to call-type distribution.

as effective. When compared to the previous figure, this time, we do not see
the sharp performance improvement at the beginning, probably because of the
outliers introduced due to ASR mistakes.

Similar to ASR experiments, we have computed the average relative fre-
quencies of 10 most frequent call-types, as the amount of training data changes
throughout the learning curves. Figure 17 presents these results. As seen, there
is a continuous decrease in the relative frequency of the most frequent call-
types, meaning that active learning selects the examples from less represented
call-types more than the ones which are the same as or similar to already known
examples.

5.2.2 Active Learning for Labeling Error Correction. We have evaluated
active learning for labeling error correction method using an application, where
we have kept the first and second pass call-types. The test set includes 1,116
utterances, and we have tried using two training sets, one with the same amount
of (i.e., 1,116) utterances and the other with 10,044 utterances in order to see the
effect of the base model. Figure 18 shows the results of the experiments using
the active learning for labeling error correction method for call classification. It
shows the ratio of labeling errors found with respect to the ratio of utterances
checked, where the ratio of labeling errors found is defined as follows:

The number of erroneously labeled utterances that are found

The number of erroneously labeled utterances

The diagonal dashed line is the baseline where both ratios are equal. This
is the performance you may expect without active learning for labeling er-
ror correction. We have drawn these curves by putting a threshold on the
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Fig. 18. The ratio of labeling errors found with respect to the ratio of utterances checked using

active learning for labeling error correction. The baseline performance, that is, with no active

labeling, is the diagonal, where both ratios should be equal.

KL divergence. The solid one is obtained using a prior classification model
trained using 1,116 utterances and the dashed curve using all 10,044 utter-
ances. For both curves, this method outperforms the baseline of random se-
lection, even using just 1,116 utterances and finds about 90% of the errors
by selecting only half of the data for checking, or finds 75% of the errors by
selecting one third of the utterances for checking. Furthermore, active learn-
ing for labeling error correction performance increases as the prior model gets
better with more data. The percentage of labeling errors found increases from
72% to 83% by using a better prior model when 30% of the utterances are
checked.

5.2.3 Semi-Supervised Learning. Figure 19 depicts the performance em-
ploying semi-supervised learning on top of active learning using the method
described in Section 3.4. This figure is the same as Figure 15, where the bottom-
most curve indicates the performance for exploiting (instead of ignoring) the
1,500 examples which are not selected by active learning at each iteration. We
have observed 0.5–1% reduction in the top class error rate consistently at each
iteration. This means greater amount of savings in human labeling and unsu-
pervised adaptation to new events and distributions. For example, achieving
an error rate of 11.5% requires around 27,000 examples if randomly chosen,
but only 7,500 actively selected and 22,500 unlabeled examples result in the
same performance, a saving of 72.2%.
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Fig. 19. Effect of active learning combined with semi-supervised learning for call classification.

5.2.4 Active Evaluation. In order to evaluate the concept of active eval-
uation we have made experiments similar to ones done for ASR. Figure 20
shows our results for active evaluation. First, we compute the performance of
the call classifier trained with a small number of manually labeled data us-
ing variable test sets chronologically sorted covering 3 months. The top class
error rate oscillates around 20%–22% for a while, then deteriorates through-
out the time range resulting in an error rate of more than 24% (top curve).
When we use a fixed test set, the performance is constant throughout the
figure (the dashed curve). The bottom curve is the lower bound of employ-
ing active learning at every step and computing the performance on the fixed
test set. This is the same active learning curve in Figure 15. The curve in
between is obtained employing active learning and using a variable test set.
Active learning does not guarantee eliminating the deterioration in perfor-
mance during time, but gives more robustness to changes occurring due to
nonstationarity of data as expected. A more realistic scenario would be label-
ing data when there is a significant decrease in performance. This curve gives
a lower bound for that case, since we selectively sample and label data at every
step.

Figure 21 justifies that it is feasible to perform active evaluation in an un-
supervised fashion when there is no labeled data available. The top curve is
the same as the top curve in the previous figure, that is, the performance of the
base model with variable test sets. We have drawn the curve below using the
average confidences of the top scoring call-types for each test set. As seen, there
is a dramatic one to one correspondence with the correct evaluations.
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Fig. 20. Effect of active evaluation for call classification.

Fig. 21. Effect of unsupervised active evaluation for call classification.
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6. CONCLUSIONS

We have shown an active approach where the system itself selects its own
training data, re-trains, evaluates, and deploys itself when necessary. Active
approach does not assume that the data is given or stationary, instead it can
work with an incoming data stream. It can also track the learning rate to ensure
the deployment of best possible model. We have shown experimental results
employing active approach for the ASR and SLU components of the AT&T
Spoken Dialog System. It is possible to tailor the proposed active approach
for specific needs. This approach is general enough to handle any task that
includes model training and provides incoming data stream. In that sense,
ASR and SLU are just two example tasks for which an active approach can be
used.
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