Adaptive Learning: From Supervised to Active Learning of Statistical Models for Natural Language and Speech Processing

Giuseppe Riccardi*
Dilek Hakkani-Tür^
Gokhan Tur♣

* Currently with University of Trento, Italy
^ Currently with ICSI, USA
♣ Currently with SRI, USA
Acknowledgements

Mazin Rahim
Robert Schapire
Narendra Gupta
Jerry Wright
Outline

Learning Dimension:
- Passive vs. Active Learning
- Supervised vs Unsupervised Learning
- Combining Active and Unsupervised Learning

Application Dimension:
- Classification (Text categorization, Part of Speech Tagging, Call Classification,…)
- Automatic Speech Recognition
- Syntactic Parsing
Learning

- **Describe (natural) phenomenon**
 - Apple falling off the tree (XVII century)
 - NASDAQ (XX century)

- **Data collection (Experiment)**
 - Experiments vs Measurements
 - “Do you like candidate X?”
 - “Do you like candidate X or rather Y?”

- **Modeling data (Prediction)**
 - What if I jump off a tree?
 - Is candidate Y going to win the election?
Passive Learning

Typical Class Distribution

- Zipf's Law: $\text{Frequency} \times \text{Rank} = \text{Constant}$
- Sample infrequent examples (tail of the distribution)
Passive Learning

- Typical Learning Curve
 - “no data like more data”

![Graph showing a typical learning curve with a decrease in classification error rate as the number of utterances labeled increases. The x-axis represents the number of utterances labeled (x1000), and the y-axis represents the classification error rate.]
Supervised Learning (the nineties)

Raw Data (fixed set)

Speech Utterances (ASR)
Raw Transcriptions (NLU)

ATIS (0.5 \(10^6\) words)
WSJ (25 \(10^6\) words)
SWBS (3 \(10^6\) words)

Model Evaluation

Learning Algorithm

\(\Phi\)

\(\lambda\)

delay
Supervised Learning
(Present)

Raw Data

Speech Utterances (ASR)
Raw Transcriptions (NLU)
Source Language (MT)

O(10^6 words)/DAY

Random Sampling

R()

Model Evaluation

Φ

λ

Learning Algorithm

delay
Data Driven Learning

- The Eighties: (almost) no data, prior knowledge
- The Nineties: Data Driven Models
 - DARPA projects (ATIS, WSJ)
 - “no data like more data”
- Third Millenium
 - Terabytes of Data (“Data Divide between University and Private Research”)
- Supervised Learning (learning from examples)
 - Small data set
 - Human intervention (labeling or annotation)
 - Delayed Response
Maximum Likelihood (1)

- The General setting
- Data Samples (Measurements) i.i.d.
 - $X = \{x_1, \ldots, x_N\}$
- Underlying probability law $p(X)$ with parameters θ

$$P(X|\theta) = \prod_k p(x_k|\theta)$$

- (log) Likelihood function
Maximum Likelihood (2)

Example: Binary random variable

\[X = \{x_1, x_1 \cdots, x_N \} \]

Training set of data samples

\[L(X, \theta) = P(X | \theta) \]

Likelihood Function

\[\log L(X, \theta) = \log(p^{N_1}(1 - p)^{N_2}) = N_1 \log p + N_2 \log(1 - p) \]

Likelihood Maximization

\[\frac{d \log L(X, \theta)}{d \theta} = 0 \]

\[p = \frac{N_1}{N_1 + N_2} \]
Maximum Likelihood (3)

Example: Language Modeling

\[
P(W) = P(w_1 w_2 \cdots w_N) = \prod_i P(w_i \mid w_1 \cdots w_{i-1}) = \prod_i P(w_i \mid w_{i-n+1} \cdots w_{i-1})
\]
Example: Language Modeling

Data Sparseness Problem
- Large Vocabulary ($|V| \sim 50K$)
- Generalization
 - I would like \{a, to, the, this,..\}
- Zipf’s Law (frequency of n-gram $\propto 1/n$)

Maximum Likelihood (ML) Probability
$$P(w_i | w_{i-n+1}, \ldots, w_{i-1}) = \frac{\# w_1 w_2 \ldots w_i}{\# w_1 w_2 \ldots w_{i-1}}$$

Discounted ML Probability
$$\hat{P}(w_i | w_{i-n+1}, \ldots, w_{i-1}) = \alpha(w_1 w_2 \ldots w_i) P(w_i | w_{i-n+1}, \ldots, w_{i-1})$$
Discriminative Training

- The goal of ASR is to minimize the probability of error. This does not necessarily imply maximizing $P(X \mid \Phi)$.

- Discriminative Training methods are applied to maximize a function that provides better discrimination between classes.

- Automatic Speech Recognition
- Text Classification
Adaptive Learning

Describe (natural) phenomenon
- NASDAQ (Measurements over a month in April)
- $X = X_1, X_2, X_3, \ldots, X_N$
- What if a war is going on?
- $X = X_1(t), X_2(t), X_3(t), \ldots, X_N(t)$
- Time dependent statistics
 - Stationary (e.g. seasonal effects)
 - Bursty (e.g. unforeseen events)

Adaptive Learning
- Prediction is based on current estimates (input) and adapts (output).
- State of the system
Adaptive Learning

Definition
- Adapt fast to changes in feature statistics
- Learn new events
- Minimize supervision

Instead of assuming a fixed and given training data as in the passive learning, the data is dynamic and determined by the learner itself.
Adaptive Learning

Methods for adaptive learning:

- Active learning
- Unsupervised learning
- Combining active and unsupervised learning
Outline

Algorithm Dimension:
- Passive vs. Adaptive Learning
- Active Learning
 - Certainty-based
 - Committee-based
- Unsupervised Learning
- Combining Active and Unsupervised Learning
Active Learning

Raw Data

Q() → Ranking

S() → Selective Sampling

Model Evaluation

Learning Algorithm

Speech Utterances (ASR)
Raw Transcriptions (NLU)
Source Language (MT)

\(\Phi \)

\(\lambda \)

delay
Active Learning
(static)

Sample space T is very large and finite (size N)

Select K_{min} examples from T to label such that $\Delta \Phi$ is maximized on a random test set

- The number of combinations of k examples is very large ($N!/k!(N-k)!$)
- The number of permutations of k examples is very large ($k!$)
Active Learning (dynamic)

- Sample space \mathcal{T} is very large (size N)
- At time t there are $K(t)$ samples available

 At time t, for a given $K(t)$ in \mathcal{T}, compute K_{min} examples from $K(t)$ to label such that $\Delta \Phi$ is maximized on a random test set

- Compute \rightarrow Select from a given \mathcal{T}
- $t=\infty$
Ranking Sample Space (1)

T =\{u_i\}
- Set of all examples

Q(u_i) = j
- Compute confidence scores for each example
 - Probability that example u_i is correctly labeled by the current model \(\lambda \)

Sort

Selective Sampling S()
- S(T) = (1, ... K_{\text{min}})

Label S(T)
Ranking Sample Space (2)
(classification case)
A Simple Binary Classification Example

TASK: Locating a boundary on the unit line (x-axis) interval.
A Simple Binary Classification Example

Uncertainty Region (Version Space)

True decision boundary

Labeled examples
A Simple Binary Classification Example

Uncertainty Region

True decision boundary

Uninformative examples
A Simple Binary Classification Example

New Uncertainty Region

True decision boundary

Newly labeled example

Reduction in Uncertainty Region
Informativeness of Speech Samples
Selecting K_{min} ("less is more")

- Active Learning as optimization problem

![Graph showing Active Learning and Random Sampling](image)
Applications

Classification Tasks:
- Text Categorization
- Call Classification
- Part of Speech Tagging
- Word Segmentation
- Information Extraction

Automatic Speech Recognition
Syntactic/Semantic Parsing
Machine Translation
Outline

Algorithm Dimension:
- Passive vs. Adaptive Learning
- Active Learning
 - Certainty-based
 - Committee-based
- Unsupervised Learning
- Combining Active and Unsupervised Learning
Certainty-based Active Learning for Classification

- Train a base classifier (SVM, Boostexter, etc.)
- While (labelers/data available) do
 - Classify the pool of unlabeled data
 - Sort them according to their informativeness, $I(\Phi)$
 - Select the top k of them
 - Label and add the selected ones to the training data
 - Re-train the classifier
 - Update the pool
Certainty-Based Active Learning for SLU

Unlabeled Data → Sort → Sorted Unlabeled Data → Select → Classifier → Train → Labeled Data

Label
Classification

Definition: The task of assigning objects to 2 or more classes.

Example Task / Unit
- Part-of-Speech Tagging:
 - Word (e.g. going/VBG)
- Topic Classification (Text Categorization):
 - Document
- Call-type Classification:
 - Utterance Transcription (often ASR output)
Classification Methods

- Rule-based approaches
 - Mostly an expert writing rules for the application based on world/app knowledge

- Machine Learning approaches
 - Employing one of the machine learning algorithms (decision tree, naïve bayes, boosting, SVM, etc.) using the application data

- Hybrid approaches
 - Combining rules with data
 - Learning (probabilities of) rules from data
Decision Trees

Classify an object starting from the top node, testing its question, branching to the appropriate node, repeat until it is a leaf.

Training is based on splitting criterion:

- Typically information gain, which computes the reduction in uncertainty.

\[
G(a) = H(t) - (p_L \times H(t_L) + p_R H(t_R))
\]

where \(a\) is the feature, the split is to be decided, \(t_{(R|L)}\) is the distribution of the (right|left) node.
An Example Decision Tree

Text categorization using a binary classifier with unigram features, deciding whether the class is c (Tellme(Balance)), or not

\[W_i = \text{"balance"} \text{?} \]
\[\begin{align*}
100K 	ext{ documents} \\
20K 	ext{ from } c \\
P(c) &= 0.20
\end{align*} \]

\[H_{parent} = 0.722 \]
\[IG = 0.199 \]

\[H_{left} = 0.469 \]
\[10K 	ext{ documents} \\
9K 	ext{ from } c \\
P(c) &= 0.90 \]

\[W_i = \text{"owe"} \text{?} \]
\[\begin{align*}
90K 	ext{ documents} \\
11K 	ext{ from } c \\
P(c) &= 0.12
\end{align*} \]

\[H_{right} = 0.529 \]
\[5K 	ext{ documents} \\
4K 	ext{ from } c \\
P(c) &= 0.80 \]
\[85K 	ext{ documents} \\
7K 	ext{ from } c \\
P(c) &= 0.08 \]
Naïve Bayes

Using the Bayes rule:

\[\hat{c} = \arg \max_{c_i} P(c_i | o) = \arg \max_{c_i} \frac{P(o | c_i) \times P(c_i)}{P(o)} = \arg \max_{c_i} P(o | c_i) \times P(c_i) \]

where \(o \) is the object to be classified.

Assuming conditional independence:

\[P(o | c_i) = P(a_1, ..., a_n | c_i) = \prod_j P(a_j | c_i) \]

where \(a_j \) is a feature for the object \(o \).
An Example Naïve Bayes Classifier

- Text categorization using unigram features (*bag-of-words*)

\[
\arg \max_c P(c \mid \text{sent}) = \arg \max_c P(\text{sent} \mid c) \times P(c)
\]

- Sentence: “balance request”

\[
P(\text{sent} \mid c) = P(\text{word}_1, \ldots, \text{word}_n \mid c) = \prod_j P(\text{word}_j \mid c)
\]

\[
\text{score}_{c, \text{sent}} = P("\text{request}" \mid c) \times P("\text{balance}" \mid c) \times P(c)
\]

\[
P(c \mid \text{sent}) = \frac{\text{score}_{c, \text{sent}}}{\sum_i \text{score}_{c_i, \text{sent}}}
\]
Boosting

- Given the data \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y\)
- Initialize the distribution \(D_1(i) = 1/m\)
- For each iteration \(t=1, \ldots, T\) do
 - Train a base learner, \(h_t\) using distribution \(D_t\).
 - Update where \(Z_t\) is a normalization factor and \(\alpha_t\) is the weight of the base learner, computed using the error rate of that learner.

The output of the final classifier is defined as:

\[
f(x) = \sum_{t=1}^{T} \alpha_t \times h_t(x)
\]

\[
H(x) = \text{sign}(f(x))
\]
Support Vector Machines

Given a set of examples belonging to two different classes, the Support Vector Machine (SVM) tries to separate them with the maximum margin (Vapnik).
Evaluation Metrics

Accuracy = \frac{\text{correctly classified}}{\text{examples}}

Classification Error Rate (CER) = 1 - \text{Accuracy}

Assuming thresholding using the scores

<table>
<thead>
<tr>
<th>Score \geq \text{Threshold} (accept)</th>
<th>decision is correct</th>
<th>decision is incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score < \text{Threshold} (reject)</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Recall = \frac{a}{a + c} = \frac{\text{correct and accepted}}{\text{correct}}

Precision = \frac{a}{a + b} = \frac{\text{correct and accepted}}{\text{accepted}}

F– Measure = \frac{\text{Recall} \times \text{Precision}}{\alpha \times \text{Recall} + (1 - \alpha) \times \text{Precision}}

False– Rejection = \frac{c}{c + d} = \frac{\text{correct and rejected}}{\text{rejected}}

False– Acceptance = \frac{b}{a + b} = \frac{\text{wrong and accepted}}{\text{accepted}}
Error Modeling

- Needs an informativeness measure to sort the candidate unlabeled utterances.
- Use confidence scores output by the learners.
- E.g. for the Naïve Bayes classifier, it is nothing but \(P(c_i \mid o) \)

Alternative usages:

- Confidence of the top scoring class (e.g. \(\max_i P(c_i \mid o) \))
- Difference in the confidences of top two scoring classes
- \(\text{KL}(P(C \mid X) \parallel P(C)) \)
Selected Bibliography for Certainty-Based Active Learning

- Lewis and Catlett, ICML’94 (Text Categorization)
- Cohn et al., ML’94 (Text Categorization)
- Thompson et al., ICML’99 (Parsing and Info. Ext.)
- Schohn and Cohn, ICML’00 (Text Categorization)
- Hwa, EMNLP/VLC’00 (Parsing)
- Hakkani-Tür et al., ICASSP’02 (ASR)
- Tang et al., ACL’02 (Parsing)
- Sassano, ACL’02 (Japanese Word Segmentation)
- Tur et al., ICASSP’03 (Call Classification)
Text Categorization

\- *Lewis and Catlett ICML ’94*

\- AP articles, 10 classes

\- **Classifier: Decision Trees**

\- Used a simple probabilistic classifier for sample selection

\- Reduced the amount of human-labeled data needed by a factor of 10.
Parsing

(Hwa, EMNLP/VLC, 2000)

Criterion: Tree Entropy (TE)

- Parse the sentence, s
 - i.e. get multiple parse trees, $v \in V$, with confidences, $p(v)$
- Compute $TE(s) = -\sum_{v \in V} p(v) \log p(v)$
- Pick the sentences with high TE values

Decreased the amount of training data needed to achieve the same performance by 36%
Human-Machine Spoken Dialog

Voice reply to customer

Customer voice request

Text-to-Speech Synthesis

TTS

Words

“What language would you like?”

Language Generation

LG

Data

Automatic Speech Recognition

ASR

Words

“I want to hear your female voice”

Spoken Language Understanding

SLU

Meaning

“Info Demo”

Dialogue Management

DM

Action

“Determine the language”

“Customer voice request”

“Voice reply to customer”

“Words”

“Data”

“ASR”

“SLU”

“DM”

“LG”

“TTS”
Conversational Speech

How May I Help You?

hello [uh] [.clrt] excuse me I I would like I don't understand my bill

Okay. What is your question?

what is my what

I'm sorry, I didn't understand that. How may I help you?

well [eh] I don't understand certain items on my bill like [uh] [.lps] it says summary toll calls [.clrt] excuse me 87 cents now I get listed for toll calls th- [eh] there's [uh] [um] [.lps] there's a whole list of [uh] toll calls that I made why do they put this one separately…
Voice-Enabled Services Complexity

- **Simple ASR:** isolated words, connected digits
 - **Command And Control**
 - (e.g., Simple call Routing; VRCP; Voice dialing)
 - AT&T VRCP

- **Larger vocabulary, defined grammars**
 - **Prompt Constrained Natural Language**
 - (e.g., Travel Reservations, Finance, Directory asst)
 - E*Trade
 - United Airlines

- **Very large vocabulary, NL, DM, TTS**
 - **Free-form Natural Language Dialogue**
 - (Customer Care, Help Desks, E-Commerce)
 - ACS 0300
 - IRS

Complexity and Functionality

1990 → 2002
Data Driven Learning
(Speech and Language)

- **Input:** Speech Utterance u_i
- **Automatic Speech Recognition**
 - Gaussian Mixture Modeling (HMMs)
 - N-gram estimations ($P(w_i|w_{i-n+1}, \ldots w_{i-1})$)
- **Semantic Associations**
 - $T=\{w_i, c_j\}$
 - Feature Extraction ($#(f_k, c_i)$)
 - (Salient) N-grams \rightarrow Bayes, Boosting, SVM Classifiers
- **Output:** Model λ
 - Speech recognition: $\lambda_{\text{ASR}}: u \rightarrow w$
 - Semantic Associations: $\lambda_{\text{NL}}: w \rightarrow c$
Corpus Statistics

![Graph 1: Vocabulary size vs. number of sentences](image1)

![Graph 2: Relative Frequency vs. sentence length](image2)

52
Ways to say “question about my bill”

<table>
<thead>
<tr>
<th>Variations</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>question about my bill</td>
<td>105</td>
</tr>
<tr>
<td>question on my bill</td>
<td>63</td>
</tr>
<tr>
<td>calling about my bill</td>
<td>57</td>
</tr>
<tr>
<td>talk to somebody about my bill</td>
<td>43</td>
</tr>
<tr>
<td>talk to someone about my bill</td>
<td>41</td>
</tr>
<tr>
<td>questions about my bill</td>
<td>32</td>
</tr>
<tr>
<td>problem with my bill</td>
<td>30</td>
</tr>
<tr>
<td>speak to someone about my bill</td>
<td>23</td>
</tr>
<tr>
<td>calling about a bill</td>
<td>22</td>
</tr>
<tr>
<td>calling about my phone bill</td>
<td>20</td>
</tr>
<tr>
<td>questions on my bill</td>
<td>16</td>
</tr>
<tr>
<td>question about a bill</td>
<td>16</td>
</tr>
<tr>
<td>talk about my bill</td>
<td>15</td>
</tr>
<tr>
<td>question about my phone bill</td>
<td>11</td>
</tr>
<tr>
<td>question about my billing</td>
<td>11</td>
</tr>
<tr>
<td>discuss my bill</td>
<td>11</td>
</tr>
<tr>
<td>speak with someone about my bill</td>
<td>10</td>
</tr>
<tr>
<td>calling about my billing</td>
<td>10</td>
</tr>
<tr>
<td>problem with my phone bill</td>
<td>9</td>
</tr>
<tr>
<td>calling about my telephone bill</td>
<td>9</td>
</tr>
<tr>
<td>speak to someone in billing</td>
<td>8</td>
</tr>
<tr>
<td>question about the bill</td>
<td>8</td>
</tr>
<tr>
<td>speak to somebody about my bill</td>
<td>7</td>
</tr>
<tr>
<td>speak to a billing</td>
<td>7</td>
</tr>
<tr>
<td>question on my phone bill</td>
<td>7</td>
</tr>
<tr>
<td>calling regarding my bill</td>
<td>7</td>
</tr>
<tr>
<td>calling concerning my bill</td>
<td>7</td>
</tr>
<tr>
<td>talk to somebody in billing</td>
<td>6</td>
</tr>
<tr>
<td>questions about my billing</td>
<td>6</td>
</tr>
<tr>
<td>question on my billing</td>
<td>6</td>
</tr>
<tr>
<td>problem with my billing</td>
<td>6</td>
</tr>
<tr>
<td>information about my bill</td>
<td>6</td>
</tr>
<tr>
<td>calling about my A T and T bill</td>
<td>6</td>
</tr>
<tr>
<td>talk to someone about my phone bill</td>
<td>5</td>
</tr>
<tr>
<td>talk to someone about a bill</td>
<td>5</td>
</tr>
<tr>
<td>talk to somebody about my billing</td>
<td>5</td>
</tr>
<tr>
<td>talk to somebody about a bill</td>
<td>5</td>
</tr>
<tr>
<td>speak to someone in the billing</td>
<td>5</td>
</tr>
<tr>
<td>questions about my billing</td>
<td>5</td>
</tr>
<tr>
<td>question on the bill</td>
<td>5</td>
</tr>
<tr>
<td>question on a bill</td>
<td>5</td>
</tr>
<tr>
<td>question my bill</td>
<td>5</td>
</tr>
<tr>
<td>calling in regards to my bill</td>
<td>5</td>
</tr>
<tr>
<td>calling about the bill</td>
<td>5</td>
</tr>
<tr>
<td>talk to someone about my telephone bill</td>
<td>4</td>
</tr>
<tr>
<td>talk to somebody about my account</td>
<td>4</td>
</tr>
<tr>
<td>talk to billing</td>
<td>4</td>
</tr>
<tr>
<td>speak with someone in billing</td>
<td>4</td>
</tr>
<tr>
<td>question about my telephone bill</td>
<td>4</td>
</tr>
<tr>
<td>information on my bill</td>
<td>4</td>
</tr>
<tr>
<td>calling regarding my statement</td>
<td>4</td>
</tr>
</tbody>
</table>

.............

<table>
<thead>
<tr>
<th>Variations</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk to someo- to someone about my moms telephone bill</td>
<td>1</td>
</tr>
<tr>
<td>question about the new A T and T billing</td>
<td>1</td>
</tr>
<tr>
<td>calling for Bertha Fitz****** about a b- statement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 1083 variations in 1912 matches
Speech Recognition and Understanding Labeling Process

Utterance Transcription

"Tell me my balance for the business and residential account"

Semantic Annotation

Request(Balance(Business)), Request(Balance(Residential))
Basic Formulation of ASR

Given an acoustic observation sequence \(X = X_1, X_2, \ldots, X_n \) and a specified word sequence \(\hat{W} = w_1 w_2 \ldots w_m \), then

\[
\hat{W} = \arg \max_w P(W | X) = \arg \max_w \frac{P(W)P(X | W)}{P(X)} = \arg \max_w P(W)P(X | W)
\]

\(P(X | W) \) is the acoustic model

\(P(W) \) is the language model
ASR - Overview

Given the acoustic observation sequence $A = a_1, a_2, \ldots, a_m$, what is the most probable word sequence $W = w_1, w_2, \ldots, w_n$?

$\hat{W} = \arg \max_w P(W | A)$

$= \arg \max_w \frac{P(A | W)P(W)}{P(A)}$

$= \arg \max_w P(A | W)P(W)$

\[\text{Acoustic Model}\quad \text{Language Model}\]
Feature Extraction

- Extract features from the speech signal that are relevant for recognition.
Acoustic Modeling

$P(A/W)$

To extract sub-word units from the acoustic features.

State-of-the-art systems are based on the use of Hidden Markov Models (HMMs).

For an extensive discussion of HMMs, see Rabiner 1989.
A Very Brief Introduction to HMMs

Markov Models:

- $\Pi(\text{cloudy}) = 0.2$
- $O = \text{cloudy cloudy rainy sunny}$
- $P(O|\text{model}) = 0.2 \times 0.7 \times 0.2 \times 0.5 = 0.014$
Hidden Markov Models

- Observations are probabilistic functions of the states.

- Additional Elements:
 - $B=\{b_i(o_j)\}$, the observation symbol probabilities, for observing o_j at state i.
 - e.g.: $b_1(\text{sunny}) = 0.3$
Observation Evaluation

What is the probability of the observation sequence, O, given the model parameters?

1. Initialization:
 \[\alpha_1(i) = \pi_i b_i(o_1), \quad 1 \leq i \leq N \]

2. Induction:
 \[\alpha_{t+1}(j) = \left(\sum_{i=1}^{N} \alpha_t(i) a_{ij} \right) b_j(o_{t+1}), \quad 1 \leq t \leq T - 1, \quad 1 \leq j \leq N \]

3. Termination:
 \[P(O \mid \Phi) = \sum_{i=1}^{N} \alpha_T(i) \]
Other HMM Problems

- **The Viterbi Algorithm:** What is the most probable state sequence, given the observation sequence, \(O \), and model parameters \(\Phi=(A,B,\Pi) \)?

- **The Baum-Welch Algorithm:** How do we adjust the model parameters \(\Phi=(A,B,\Pi) \), to maximize \(P(O/ \Phi) \), \(O=o_1, \ldots, o_T \)?
Language Modeling

- Probability of word sequences.
- $W = \text{"I wanna fly to Boston"}$

$$P(W) = P(I) \times P(\text{wanna} \mid I) \times \ldots \times P(\text{Boston} \mid I, \text{wanna}, \text{fly}, \text{to})$$

$$= P(I) \times P(\text{wanna} \mid I) \times \ldots \times P(\text{Boston} \mid \text{to})$$

- Maximum likelihood estimates

$$P(\text{Boston}) = \frac{C(\text{Boston})}{N} \quad P(\text{Boston} \mid \text{to}) = \frac{C(\text{to, Boston})}{C(\text{Boston})}$$

- $C(w_i, \ldots, w_j)$ is the number of times word sequence w_i, \ldots, w_j occurs in the training text.
Smoothing

What about the word sequence:
\[W = \text{“I wanna fly to Geneva”} \]
if \(C(\text{to}, \text{Geneva}) = 0 \), as it never occurred in the training set?

Aim: To assign a non-zero probability to previously unseen sequences.

Robustness to unseen data.
Smoothing - Approaches

- **Add One**
 \[P_{\text{smooth}}(w_i) = \frac{C(w_i) + 1}{N + V} \]

- **Interpolation**
 \[P_{\text{smooth}}(w_i | w_{i-1}) = \lambda \times P(w_i | w_{i-1}) + (1 - \lambda) P(w_i) \]

- **Back-off**
 \[P_{\text{smooth}}(w_i | w_{i-1}) = \begin{cases} P(w_i | w_{i-1}), & \text{if } C(w_{i-1}, w_i) > 0 \\ \alpha \times P(w_i), & \text{otherwise} \end{cases} \]
Adaptation

Robustness to mismatched conditions, like variations in the:

- Microphone
- Environment noise
- Speaker
- Topic, etc.

e.g.: Speaker dependent versus speaker independent systems.
Model Adaptation

The General Setting

Training Set

Parameter training

Adaptation Algorithm

Adaptation Data

\(\lambda \)

\(\lambda_I \)

\(\lambda_0 \)
Adaptation Schemes

Example: Language Modeling

- **Interpolated Model**

 \[P(w_i \mid h) = \alpha(h) P_I(w_i \mid h) + (1 - \alpha(h)) P_A(w_i \mid h) \]

- **Cache Language Models**

 \[P_{cache}(w_i \mid w_{i-n+1}...w_{i-1}) = \lambda_c P_s(w_i \mid w_{i-n+1}...w_{i-1}) + (1 - \lambda_c) P_{cache}(w_i \mid w_{i-2}w_{i-1}) \]
Acoustic Model Adaptation

Maximum a Posteriori (MAP)
- Consider also the prior distribution for the parameters of the model.

\[
\hat{\Phi} = \arg \max_{\Phi} P(\Phi | W) = \arg \max_{\Phi} P(W | \Phi) P(\Phi)
\]

- Useful when the adaptation data is limited.

Maximum Likelihood Linear Regression (MLLR)
- A linear transformation of the model parameters are estimated.
Language Model Adaptation

- **Cache-based Language Models**

 \[P(w_i | w_{i-1}) = \lambda \times P_{\text{cache}}(w_i | w_{i-1}) + (1 - \lambda) \times P_{\text{global}}(w_i | w_{i-1}) \]

 - \(P_{\text{cache}}(w_i | w_{i-1}) \) is estimated from a cache, which contains the most recently dictated words.

- **Topic Adaptation**
 - Build topic dependent language models from the topic clusters.
 - Interpolate the topic dependent models.

- **Dialog state dependent language models**
 - Build a state dependent model using the previous responses to the current” prompt.
ASR - Evaluation

Word Error Rate (WER)

\[
WER = \frac{\# \text{Ins} + \# \text{Del} + \# \text{Subs}}{\# \text{Ref. Words}}
\]

REF: i’d like to review my services that i have
HYP: i’d like to have a review the services i have

REF: i’d like to **** * review MY services THAT i have
HYP: i’d like to HAVE A review THE services ***** i have

Word Accuracy (WA)

\[
WA = 1 - WER
\]
ASR Confidence Scores

- Probability of utterance u_i being correctly recognized by current model λ
ASR Confidence Scores

Mark each phone/word/utterance with a score of confidence.

ASR word confidence scores for
- Selective Sampling for Active Learning
- Probability Estimation for Unsupervised Learning
- Selective Sampling for Unsupervised Learning

Word confidence scores and word confusion networks (sausages) for improving
- natural language understanding
- machine translation
- named entity extraction
Likelihood Ratio Tests

- Likelihood ratio (LR) test (Lleida and Rose, 1996)

$$LR(A, \lambda^c, \lambda^a) = \frac{P(A | \lambda^c)}{P(A | \lambda^a)} \begin{cases} H_0 & \frac{H_0}{\tau} \geq \tau \\ H_1 & \frac{H_1}{\tau} < \tau \end{cases}$$

- A: a sequence of feature vectors
- λ^c: target model
- λ^a: alternative model

- Word level confidence scores are obtained by combining LR scores.

- Requires training.
Word Graph Based Approaches

- **Word-Graph-based Approaches**
 - Derived from the lattice output of ASR.
 - No need for training

- **ASR lattices → Sausages (word confusion networks)**
 - (Mangu, *et al.*, 2000)
 - Word posterior probability estimates on the sausages → word confidence scores

- (Hakkani-Tür and Riccardi, 2003)
Hybrid Approaches

- Approaches that use:
 - Acoustic features
 - Word lattice features
 - Linguistically motivated features

 to come up with word confidence scores
 \(\text{(eg}: \text{Zhang and Rudnicky, 2001)} \)

- Requires training.
Algorithm

Lattice:

Pivot:

l_i: labels
c_i: costs
p_i: posterior probabilities
Algorithm

Lattice:

Pivot alignment:

l_i: labels
c_i: costs
p_i: posterior probabilities
Algorithm

Compute the posterior probabilities of all transitions on the lattice

Select a path as a baseline
[random/best/longest path]

For all transitions in the lattice,
Find the most overlapping position (wrt start and ending state times) on the pivot/baseline
If a transition with same label already occurs there, increment its posterior
Otherwise, insert a new transition to the pivot/baseline
Algorithm Details

- Time information is not necessary, but beneficial.
 - Time info is estimated as approximate state location.
- The labels on arcs can be words, phones, semantic tags, etc.
 - E.g. slot confidence scores
- Algorithmic complexity: $O(N\times M)$
 - MEMORY: smaller than word lattices (7% of lattices).
 - TIME: much faster than sausage computation of Mangu et al. (2000), which runs in $O(N^3)$.

N: Number of arcs in the lattice

M: Number of arcs on the best/longest/random path.
Evaluation of Confidence Scores

- Test Set: 2,174 utterances (~31K words) form AT&T HMIHY?SM spoken dialog system test data.
- Baseline: Best Path
- Select a threshold, accept as correct recognition if confidence score is bigger than threshold.

False Acceptance Rate (FA)

\[
FA = \frac{\text{# of misrecognized words that are accepted}}{\text{# of words that are accepted}} \times 100\%
\]

False Rejection Rate (FR)

\[
FR = \frac{\text{# of correctly recognized words that are rejected}}{\text{# of words that are rejected}} \times 100\%
\]
False Acceptance vs. False Rejection

- ASR 1-best posteriors
- Augmented ASR 1-best posteriors (using word lattices)
- Pivot alignments using time
- Pivot alignments without time
Percent Correct/Misrecognition

![Graph showing percentage of correct recognitions and misrecognitions vs confidence score bin.](image)
Active Learning for Automatic Speech Recognition

(Hakkani-Tür et al., ICASSP 2002)
(Kamm, Ph.D. Thesis, 2004)
Active Learning for ASR

Goals:
- Reduce the amount of transcribed data needed without reducing accuracy.
- Optimize the performance using a given set of transcribed data.
Algorithm

- **S_t**: Initial transcribed set
- **S_u**: Additional untranscribed set
- **S_k**: Intermediate set to be transcribed

1. Train AM^0 and LM^0
2. Recognize S_u
3. Compute confidences
4. Select Sample
5. Transcribe (Human)
6. $S_i^{i+1} = S_i^i \cup S_k^i$
7. $S_u^{i+1} = S_u^i - S_k^i$
8. Train AM^{i+1} and LM^{i+1}

Convergence Checking

- Converged? Yes/No
 - Yes: Algorithm stops
 - No: Repeat steps 1-8
Utterance Scores

- The algorithm is independent of the way utterance scores are computed, as long as they are good quality.

- We compute utterance scores, using word confidence scores. \(U = w_1, \ldots, w_k \)

 - Mean confidence score
 \[
 c(U) = \frac{1}{k} \sum_{i=1}^{k} c(w_i)
 \]

 - Voting
 \[
 c(U) = \frac{1}{k} \sum_{i=1}^{k} f(c(w_i)) \quad \text{where} \quad f(c(w_i)) = \begin{cases}
 1, & c(w_i) > \text{threshold} \\
 0, & \text{otherwise}
 \end{cases}
 \]
Active Learning Expt(1)

- Data collected from HMIHY^SM field trials
 - ~100K utterances
- All utterance turns (80 prompts)
- Bootstrap data for LM and scoring
 - HM data collection
- Data is pooled and sampled
- No time ordering constraint
Active Learning Expt(1)

- Halve data size requirement for a given Φ
- Improve over asymptotic performance
Active Learning Expt (2)

- AM and LM are retrained
- Only AM is retrained
- Only LM is retrained

Word Accuracy vs. Number of Utterances

- Random
- Selective

>2%
Why does Active Learning work?

- Language modeling:
 - discover new words
 - discover new n-grams

![Graph showing the growth of Trigrams, Bigrams, and Unigrams with increasing number of training utterances. The graph compares random selection and selective sampling.]
Active Learning Expt(3)

- Data is time ordered and time-dependent data bin is used for selective sampling
- Time window for selective sampling
- Data is “forgotten” after n days
- Experiment close to operation modus operandi
Active Learning Expt(3)
Active Learning Expt(1)

- Data collected from TTS Help Desk Trial
 - 8K utterances
 - Average length 5 words
 - Channel distortions (not matched AM)

- All utterance turns
- Bootstrap data for LM and scoring
 - Web-Mail data
- Data is pooled and sampled
- No time ordering constraint
Active Learning Expt(2)
(TTS Help Desk)
Human-Machine Spoken Dialog

- **ASR** (Automatic Speech Recognition)
- **SLU** (Spoken Language Understanding)
- **TTS** (Text-to-Speech Synthesis)
- **LG** (Language Generation)
- **DM** (Dialogue Management)

Customer voice request:
- "I have questions about my bill"

Text-to-Speech Synthesis:
- "OK, what is your question?"

Dialogue Management:
- "Specification"

Spoken Language Understanding:
- "Explain(Bill)"

Automatic Speech Recognition:
- "I have questions about my bill"

Language Generation:
- "OK, what is your question?"

Voice reply to customer:
- Words

Data
- Words
- "I have questions about my bill"

Meaning
- "Explain(Bill)"

Action
- "Specification"
Understanding User Intent

Greeting Prompt: AT&T ... How may I help you?

User: I have questions about my bill

- **Call-type:** Explain(Bill)

Specification Prompt: OK, what is your question?

User: I have a couple of numbers I wanna check out

- **Call-type:** Explain(Bill_UnrecognizedNumber)

Confirmation Prompt: Would you like to look up a number you don’t recognize on your bill?

User: Several of them

- **Call-type:** Yes
Call Classification

- *Tur, Schapire, and Hakkani-Tür, ICASSP’03*
- 56 call types in total (0300)
- Classifier: Boosting
- Fixed pool
Call Classification

- Tur, Hakkani-Tür, and Schapire; ICASSP 2003
- 56 call types in total (0300)
- Classifier: Boosting
- Dynamic Pool (1/4 of the candidate utterances selected at each iteration)
Unbalanced Data Problem
Unbalanced Data Problem

- Active learning changes the prior probabilities significantly.
- Halved the data from 10K to 5K by ignoring the utterances with calltypes occurring more frequent than a certain threshold.

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Test Set Classification Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random 5K</td>
<td>29.12%</td>
</tr>
<tr>
<td>Biased 5K</td>
<td>30.81%</td>
</tr>
</tbody>
</table>

- Biasing distributions hurt the performance!
One Solution

This is not a paradox. If we can find a solution to this problem, active learning may perform better.

Lewis and Catlett, ICML’94 suggested:

- Changing priors while training
- Making false-positives more costly than false-negatives (C4.5 supports this)
Outline

- **Algorithm Dimension:**
 - Passive vs. Adaptive Learning
 - Active Learning
 - Certainty-based
 - Committee-based
 - Unsupervised Learning
 - Combining Active and Unsupervised Learning
Committee-based Active Learning

- Train multiple classifiers using initial training data
- While (labelers/data available) do
 - Label the data in the pool using all classifiers
 - Sort them according to **disagreement** between classifiers
 - Select the top k of them.
 - Label and add the selected ones to the training data
 - Re-train the classifier
 - Update the pool
Committee-Based Active Learning

Unlabeled Data → Classify → Classify → Sort → Sorted Unlabeled Data

Labeled Data → Classifier1 → Classifier2 → Label

Select
Selected Bibliography for Committee-Based Active Learning

- Seung, Opper, Sompolinsky COLT’92
- Freund, Seung, Shamir, Tishby ML’97
- Liere and Tadepalli AAAI’97 (Text Categorization)
- Engelson and Dagan JAIR’99 (POS Tagging)
- Tur, Schapire, and Hakkani-Tür ICASSP’03 (Call Classification)
- Osborne and Baldridge, EMNLP’03, NAACL’04 (Parsing)
Part of Speech Tagging

- **Engelson and Dagan JAIR’99**
- Part-of-speech tagging using HMMs
- Degree of disagreement for sample \(w \):
 normalized entropy of committee classifications

\[
D(w) = - \frac{1}{\log \min(k, |C|)} \sum_c \frac{V(c, w)}{k} \log \frac{V(c, w)}{k}
\]

- Reduced the amount of human-labeled data needed by a factor of 4 using 10 committee members.
Call Classification

Tur, Schapire, and Hakkani-Tür, ICASSP’03

56 call types in total

Fixed pool

2 committee members using 2 different classifiers: SVM and Boosting
Parsing (HPSG)

(OSborne and Baldridge, EMNLP’03, NAACL’04)

A committee of parsers is trained using different and independent feature sets:

- Configurational (e.g. parent, grandparent, sibling relationships)
- n-gram (n-grams over tree nodes)
- Conglomerate (features from phrase structures)

Cost of manual annotation is not equal to the number of utterances hand-labeled, but is proportional to the number of disambiguation decisions the labelers have to make.

73% reduction in the cost of annotation.
Outline

Algorithm Dimension:
- Passive vs. Adaptive Learning
- Active Learning
 - Certainty-based
 - Committee-based
- Unsupervised Learning
- Combining Active and Unsupervised Learning
Unsupervised Learning

Goal: to exploit the unlabeled utterances
- to train better models
- to train in a shorter time frame
- to adapt fast to changes
Selected Bibliography for Unsupervised Learning

- Blum and Mitchell, COLT’98
- Nigam and Ghani, ICML’98
- Joachims, ICML’99
- Nigam, McCallum, Thron, and Mitchell, ML’00
- Nigam and Ghani, CIKM’00
- Ghani, ICML’02
- Tur and Hakkani-Tür, ES’03
- ...
Using EM

- Nigam, McCallum, Thron, and Mitchell, ML’00
- Train a classifier using human-labeled data (call this prior model: Π)
- Add unlabeled utterances:
 - Classify the unlabeled utterances with Π (Estimation)
 - Add this machine-labeled data to the human-labeled data in a weighted manner and re-train the classifier (Maximization)
 - Iterate until model parameters converges
- 3-fold reduction in labeled data needed
Unsupervised Learning

- Human Labeled Data → Train → Classifier
- Re-Train → Machine Labeled Data → Classify
- Classifier
- Unlabeled Data
Co-Training

\textbf{Blum and Mitchell, COLT’98}

Assume there are multiple views for classification
e.g. Task: Web-page classification
1. Words in the web-page
2. Words in the hyperlinks pointing to that web page

1. Train multiple models using each view
2. Classify unlabeled data
3. Enlarge training set of the other using each classifier’s predictions
4. Goto Step 1

Halved the classification error rate

Nigam and Ghani later extended this to Co-EM so that it uses probabilistic labels (CIKM’00)
Unsupervised Learning for ASR

Goal: Exploit untranscribed data to improve performance.

Use of the error signal to exploit the untranscribed data.

Use of extra information, such as TV captions.

Combining active and unsupervised learning.
Previous Approaches

- **AM**
 - TV captions (Kemp and Waibel, 1998, 1999).
 - Accurate portions of the ASR output (Zavaliagkos and Colthurst, 1998).
 - ASR output (Lamel et al., 2002).

- **LM**
 - Word confidence scores to extract the portions that are recognized correctly (Gretter and Riccardi, 2001).
 - ASR output (Stolcke, 2002).
 - ASR word lattices with posteriors (Roark and Bacchiani, 2003).

- Riccardi and Hakkani-Tür (Eurospeech, 2003).
Unsupervised Learning

\[C(w_i, w_{i+1}, w_{i+2}) = F(C(\hat{w}_i, \hat{w}_{i+1}, \hat{w}_{i+2}), c) \]

Speech Transcriptions
\[\hat{w}_1, \ldots, \hat{w}_n \]

Error Signal
\[c_1, \ldots, c_n \]

Model Training (AM/LM)

\(\lambda \)
Unsupervised Learning for ASR

- Estimate probabilities from ASR output.
Results on 0300 Data

- **Initial Set**: random 1K H-M utterances (11K words)
- **Additional Set**: 27K H-M utterances
- **Test Set**: 1000 H-M utterances (~11K words)

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Word Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Set</td>
<td>59.1%</td>
</tr>
<tr>
<td>ASR output of Additional Set</td>
<td>61.5%</td>
</tr>
<tr>
<td>ASR output of Additional Set, with confidence scores</td>
<td>62.1%</td>
</tr>
</tbody>
</table>
Experiments with 0300 Data

- Initial Set: 8K H-H utterances
- Additional Set: 28K H-M utterances (~320K words)
- Test Set: 1000 H-M utterances (~11K words)
Results on 0300 Data

Random Sampling vs Unsupervised and Active Learning (HH error bootstrap)

Test Set Word Accuracy vs Training data size

- Active Learning
- Active and Unsupervised Learning
Results on 0300 Data
Results on TTS Help Desk Data

- **Initial Set**: Web and e-mail data (~40 K words)
- **Additional Set**: 7,629 H-M utterances (~33K words)
- **Test Set**: 2,160 H-M utterances (~9.2K words)

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Word Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Set</td>
<td>42.2%</td>
</tr>
<tr>
<td>Initial Set + ASR output of Additional Set</td>
<td>50.6%</td>
</tr>
<tr>
<td>Initial Set + Additional Set</td>
<td>61.8%</td>
</tr>
</tbody>
</table>
Results on TTS Help Desk Data

- Data is time ordered and time-dependent data bin is used for selective sampling
- Time window for selective sampling
- Data is only used for unsupervised learning after n days.
- Experiment close to operation modus operandi
Results on TTS Help Desk Data

![Graph showing word accuracy over number of utterances for different methods: Random, Selective, and Selective+Unsupervised.](image)
Unsupervised Learning in Boosting

- *Tur and Hakkani-Tür, Eurospeech’03*
- Train the Boosting classifier using human-labeled data (call this prior model: Π)
- Augment Π with unlabeled utterances
 - Classify the unlabeled utterances with Π
 - Use the top calltype or calltypes exceeding some threshold as the label of that utterance
 - Augment the classifier using unlabeled data changing the loss function so that it fits both
 - the prior model, Π, and
 - the new unlabeled data
Unsupervised Learning in Boosting

1. Human Labeled Data
2. Train
3. Classifier
4. Machine Labeled Data
5. Classify
6. Unlabeled Data
7. Re-train
8. Classifier
Outline

- Algorithm Dimension:
 - Passive vs. Adaptive Learning
 - Active Learning
 - Certainty-based
 - Committee-based
 - Unsupervised Learning
 - Combining Active and Unsupervised Learning
Combining Active and Unsupervised Learning

- Train a classifier using initial training data
- While (labelers/data available) do
 - Select k samples for labeling using active learning
 - Label and add these selected ones to the training data and re-train the classifier.
 - Exploit the unselected data using unsupervised learning
 - Update the pool.
Combining Active and Unsupervised Learning

Unlabeled Data

Active Learning

yes
Label
no
Unsupervised Learning
Selected Bibliography for Combining Active and Unsupervised Learning

- McCallum and Nigam, ICML’98
- Muslea, Minton, and Knoblock, ICML’02
- Tur, Hakkani-Tür, and Schapire, not appeared yet
Active and Unsupervised Learning for ASR

- S_t: Initial transcribed set
- S_u: Additional untranscribed set
- S_k: Intermediate set to be transcribed

1. Train AM^0 and LM^0
2. Recognize S_u
3. Compute confidences
4. Select Sample
5. Transcribe (Human)
6. $S^{i+1}_t = S^i_t \cup S^i_k$
7. $S^{i+1}_u = S^i_u - S^i_k$
8. Train AM^{i+1} and LM^{i+1}
9. Select Sample
10. WER Converged?
 - Yes
 - No

Converged? Yes

✓✓ ✓✓
Exploiting Untranscribed Data

- \(X \) is transcribed text, \(x \) and \(y \) are n-grams.

\[
C(x) = \sum_{y \in X} \delta_x(y)
\]

- \(X \) is ASR output, where every n-gram \(y \) has a confidence score, \(c(y) \),

\[
C_u(x) = \sum_{y \in X} c(y) \times \delta_x(y)
\]

\[
= \sum_{y \in X} (1 - e(y)) \times \delta_x(y)
\]

\[
= C(x) - \sum_{y \in X} e(y) \times \delta_x(y)
\]
N-gram Confidence Scores

If we represent each n-gram X as x_1, \ldots, x_n, the confidence score of each n-gram can be:

$$c \left(X \right) = \sqrt[n]{\prod_{i=1}^{n} c \left(x_i \right)}$$

$$c \left(X \right) = c \left(x_n \right)$$

$$c \left(X \right) = \min_{x_i} c \left(x_i \right)$$

$$c \left(X \right) = \begin{cases} 1, & \text{if } c(x_i) > \text{threshold}, \quad \forall x_i \\ 0, & \text{otherwise} \end{cases}$$
Active and Unsupervised Learning Expt

- **Initial Transcribed Data:** Data collected from web, and Switchboard corpus.
- **Additional Training Data:** ~30K utterances from the HMIHY?SM
- **Test Data:** 5,171 utterances
Active and Unsupervised Learning Expt

Word Accuracy vs Number of Transcribed Utterances

- Red: random
- Blue: selective
Active and Unsupervised Learning Expt

![Graph showing Word Accuracy vs Number of Transcribed Utterances]

- random
- selective
- random+US
- selective+US

Number of Transcribed Utterances: 10^4
Call Classification

- 56 call types in total
- Dynamic Pool (1/4 of the candidate utterances selected at each iteration)
- Classifier: Boosting
- Combined Certainty-Based Active Learning with Unsupervised Learning
Text Categorization

Muslea, Minton, and Knoblock, ICML ’02

Co-EMT algorithm:
Repeat N times
- Run like Co-EM to get multiple learners
- Run like Committee-Based Active Learning to decide on next data to label

Outperformed both methods applied individually
Unbalanced Data Problem

- Unsupervised Learning changes the priors, too.
- Two issues may cancel each other, because:
 - Active Learning shaves more frequent classes
 - Unsupervised Learning do not favor infrequent classes
- Combining active and unsupervised learning may be a solution to both problems.
UNBALANCED DATA PROBLEM

Frequency vs. Calltypes for different learning methods:
- Random
- After Active Learning
- After Active and Unsupervised Learning
Adaptive Learning in Practice

Speech Dialog Logs

Random Sampling

Active Learning

Selective Sampling

Unsupervised Learning

Selecting Sampling

Annotator

“How May I Help You?” System

Annotated Utterances (Random)

Annotated Utterances (Selective)

Model Training

Deployed Service

Model Evaluation

ASR Model

NLU Model
Selective Sampling of Untranscribed Data

$I(\Phi)$

Interesting Utterances

Overtraining

Noisy Data

Utterance Confidence
Summary

Adaptive Learning for Speech and Language Processing

- Active Learning
 - Minimize human supervision by automatically selecting samples to be labeled
 - Optimize data for performance

- Unsupervised Learning
 - Minimize human supervision by automatically labeling some of the data
 - Improve performance for free (finding unlabeled data is generally not an issue)

- Combining active and unsupervised learning into a single and dynamic framework
Open Research Issues

- Selective Sampling and Ranking algorithms
- Predict model error based on selected samples
- AL as optimization problem
Bibliography

Automatic Speech Recognition and Speech Understanding
- Duda and P. Hart *Pattern Classification and Scene Analysis*. John Wiley & Sons. 1973

Machine Learning

Active Learning (General)
Bibliography

Active Learning with Application to Automatic Speech Recognition

Active Learning with Application to Natural Language Understanding

Unsupervised Learning with Application to Automatic Speech Recognition
Bibliography

Unsupervised Learning with Application to Natural Language Understanding