
Carlo Ghezzi--SE-Intro (vers. 2000) 1

Software Engineering
Introduction

History
The process

Process and product
Process and product qualities

Carlo Ghezzi--SE-Intro (vers. 2000) 2

Definitions

• Field of computer science dealing with
software systems
– large and complex
– built by teams
– exist in many versions
– last many years
– undergo changes

• Multi-person construction of multi-version
software

Carlo Ghezzi--SE-Intro (vers. 2000) 3

Definitions

• Systematic approach to development,
operation, maintenance, deployment,
retirement of software

• Methodological and managerial discipline
concerning the systematic production and
maintenance of software products that are
developed and maintained within anticipated
and controlled time and cost limits

Carlo Ghezzi--SE-Intro (vers. 2000) 4

Definitions

• Deals with cost-effective solutions to practical
problems by applying scientific knowledge in
building software artifacts in the service of
mankind
– cost-effective
– practical problems
– scientific knowledge
– building things
– service of mankind

Engineering

Carlo Ghezzi--SE-Intro (vers. 2000) 5

Engineering tasks
• Routine design

– solution of familiar problems
– reuse of previous solutions

• Innovative design
– novel solutions for unfamiliar problems

• Software is treated more often as original
than routine
– we do not capture and organize what we know!
– mature engineering disciplines capture, organize

and share design knowledge

Carlo Ghezzi--SE-Intro (vers. 2000) 6

Engineering: evolution
Art: ad-hoc solutions
• intuition
• talented amateur
• invent/reinvent
 (slow transmission of knowledge)

Management +
production techniques

Routine production

Science

Engineering

Carlo Ghezzi--SE-Intro (vers. 2000) 7

The engineering lifecycle

New problems

Ad-hoc solution

Folklore
(partial solutions, heuristics)

Codification
(systematic procedures)

Models&Theory
Improved practice

Carlo Ghezzi--SE-Intro (vers. 2000) 8

Software engineering vs
traditional engineering

• Software engineering still practiced (and
taught) in a non systematic way

• Less stable and organized than traditional
engineering

• Standards for specification of software
designs do not exist yet
– see design of electronic apparatus (amplifier)
– use of design notation and model

• for communication and proof of concept

Carlo Ghezzi--SE-Intro (vers. 2000) 9

Differences and analogies
• Software engineering vs traditional

engineering
• Many points are in common

– But must be careful because deep
differences exist as well!

Carlo Ghezzi--SE-Intro (vers. 2000) 10

Bridge building vs.
software development

• Bridges normally built on-time, on-budget,
and do not fall

• Software is rarely on-time and on-budget

Why?

Carlo Ghezzi--SE-Intro (vers. 2000) 11

Traditional engineering

• Extreme detail of design
• Alternative designs can be validated

through models
• Design is frozen and contractor has

almost no flexibility in changing
specifications

• Standard processes are followed

Carlo Ghezzi--SE-Intro (vers. 2000) 12

Software engineering:
difference1

• Frozen specifications and designs do
not accommodate changes in the
business practices

• Software is a key component of
applications and services that are at the
heart of business

• Continuous change and evolution

Carlo Ghezzi--SE-Intro (vers. 2000) 13

Software engineering:
difference 2

• Bridge design is 3000 years old
• Large body of knowledge: underlying

theories and methods
– We are moving in this direction

• Large body of knowledge: analysis of
failures
– In sw we seldom analyze failures!

Carlo Ghezzi--SE-Intro (vers. 2000) 14

Software engineer:
required skills

• Programming skill not enough
– programmer

• develops a complete program
• works on known specifications
• works individually

– software engineer
• identifies requirements and develops specifications
• designs a component to be combined with other

components, developed, maintained, used by others;
component can become part of several systems

• works in a team

Carlo Ghezzi--SE-Intro (vers. 2000) 15

Required skills

• Software implements a machine that interacts
with the external environment

• Sw engineers must be able to understand and
analyze external environments

• The external environment is where the
requirements can be found

• see later discussion on requirements
engineering

Carlo Ghezzi--SE-Intro (vers. 2000) 16

Examples
• A telephone system

when one picks up the phone, the tone must be
heard within x msec.

From requirements and knowledge of the
environment one derives a specification of
the application

• Other examples:
–traffic control systems
–health control systems
–banking systems

Carlo Ghezzi--SE-Intro (vers. 2000) 17

Domain knowledge

• Plays a fundamental role in sw
development

• To develop a flight control system, one
must understand how an aircraft works

• Software developed based on wrong
domain assumption can generate
disasters

Carlo Ghezzi--SE-Intro (vers. 2000) 18

Skills

• Technical
• Project management
• Cognitive
• Enterprise organization
• Interaction with different cultures
• Domain knowledge

The quality of human resources is of primary
importance

Carlo Ghezzi--SE-Intro (vers. 2000) 19

History: initial situation

• Software is art
• Computers used for “computing”

– mathematical problems
– designers = users
– no extended lifetime

• The art of “programming”
– low level languages
– resource constraints (speed and memory)

Carlo Ghezzi--SE-Intro (vers. 2000) 20

From art to craft
• From computing to information management
• Requests for new (custom) software explode

– users ≠ designers
– EDP centers and software houses

• New high level languages
• First large projects and first fiasco's

– time and budget, human cooperation failures
– wrong specifications

Carlo Ghezzi--SE-Intro (vers. 2000) 21

Need for software
engineering

•Development methods and standards
•Planning and management
•Automation
•Verifiable quality
•Componentization
•….

From art to industry
Term “software engineering” defined in a NATO conference in

Garmisch, Oct. 1968

Carlo Ghezzi--SE-Intro (vers. 2000) 22

Large systems--critical
systems

•Examples of large systems
– Space shuttle project

• 5.6 million code lines, 22k man year, 1200 Million$

– CityBank teller machine
• 780000 code lines, 150 man year, 13.2 Million$

•Critical systems
– failures generate risks or losses (financial, life)

The engineering approach should improve
quality

Carlo Ghezzi--SE-Intro (vers. 2000) 23

$ size of applications

Average development cost for
– Large company

• 2,3 million $

– Medium company
• 1,3 million $

– Small company
• 430.000 $

Carlo Ghezzi--SE-Intro (vers. 2000) 24

Relevance

• In 1996 software was the third industrial
sector after car and electronics
– More than 250 billion$ a year spent on application

development

• In the EU the wider field of “information
technology” is viewed as the key strategic
sector
– focused research funding within the 4th and 5th

framework programs

Carlo Ghezzi--SE-Intro (vers. 2000) 25

Needs
• Recent (2000) study by Microsoft with

IDC and Datamonitor
– In the year 2003 in Europe there will be a

deficit of 1.700.000 people in IT
– Requests exceed availability by 33%

Carlo Ghezzi--SE-Intro (vers. 2000) 26

Understand and manage
software lifecycle

LIFECYCLE
– From the problem to the product and its

deployment and evolution until its
retirement

– However: not all software goes through
the complete lifecycle

Carlo Ghezzi--SE-Intro (vers. 2000) 27

Project failures
• Almost 30% of development projects

are canceled before they are
completed!

• About 53% of projects cost 190% of
original estimates
– And hidden costs due to lost

opportunities!!!
– Example: failure to produce reliable

software for baggage handling at Denver
airport cost over 1 million $ per day!

Carlo Ghezzi--SE-Intro (vers. 2000) 28

Software lifecycle models
• In some cases, no reference model:

– code&fix

• The traditional “waterfall” model
– identify phases and activities
– force linear progression from a phase to the next
– no returns (they are harmful)

• better planning and control

– standardize outputs (artifacts) from each phase

software like manufacturing

Carlo Ghezzi--SE-Intro (vers. 2000) 29

A waterfall model
Feasibility study

Requirements analysis&
specification

Design

Coding&Unit test

Integration&System test

Deployment

Maintenance

Carlo Ghezzi--SE-Intro (vers. 2000) 30

Feasibility study

• Cost/benefits analysis
• Determines whether the project should be

started (e.g., buy vs make), possible
alternatives, needed resources

• Produces a Feasibility Study Document
– Preliminary problem description
– Scenarios describing possible solutions
– Costs and schedule for the different alternatives

Carlo Ghezzi--SE-Intro (vers. 2000) 31

Req. analysis and
specification

• Analyze the domain in which the application
takes place

• Identify requirements
• Derive specifications for the software

– Requires an interaction with the user
– Requires an understanding of the properties of the

domain

• Produces a Requirements Analysis and
Specification Document (RASD)

Carlo Ghezzi--SE-Intro (vers. 2000) 32

The 5 W’s
• Who

• who will use the system

• Why
• why should it be developed + why will the users use it

• What (vs How)
• what will it provide

• Where
• where will it be used, on which architecture

• When
• when and how long will it be used

Carlo Ghezzi--SE-Intro (vers. 2000) 33

RASD
• Required properties

– Precise
– Complete
– Consistent

• May include
– Preliminary User Manual
– System Test Plan

Carlo Ghezzi--SE-Intro (vers. 2000) 34

Design

• Defines the software architecture
– Components (modules)
– Relations among components
– Interactions among components

• Goal
– Support concurrent development, separate

responsibilities
• Produces the Design Document

Carlo Ghezzi--SE-Intro (vers. 2000) 35

Coding&Unit test

• Each module is implemented using the
chosen programming language

• Each module is tested in isolation by the
module’s developer

• Programs include their documentation

Carlo Ghezzi--SE-Intro (vers. 2000) 36

Integration&System test

• Modules are integrated into (sub)systems and
integrated (sub)systems are tested

• This phase and the previous may be
integrated in an incremental implementation
scheme

• Complete system test needed to verify overall
properties

• Sometimes we have alpha test and beta test

Carlo Ghezzi--SE-Intro (vers. 2000) 37

Effort distribution

• From 125 projects within HP
– 18% requirements and specification
– 19% design
– 34% coding
– 29% testing

• typical variations of 10%

Carlo Ghezzi--SE-Intro (vers. 2000) 38

Deployment

• The goal is to distribute the application
and manage the different installations
and configurations at the clients’ sites

Carlo Ghezzi--SE-Intro (vers. 2000) 39

Maintenance
• All changes that follow delivery
• Unfortunate term: software does not wear

out
– if a failure occurs, the cause was there

• Often more than 50% of total costs
– Recent survey among EU companies

• 80% of IT budget spent on maintenance

Carlo Ghezzi--SE-Intro (vers. 2000) 40

Maintenance

• It includes different types of change:
correction + evolution
– corrective maintenance ≈ 20%
– adaptive maintenance ≈ 20%
– perfective maintenance ≈ 50%

Carlo Ghezzi--SE-Intro (vers. 2000) 41

Folk data on errors
• Systematic inspection techniques can discover up to 50-

75% of errors
• Modules with complex control flow are likely to contain

more errors
• Often tests cover only about 50% of code
• Delivered code contains 10% of the errors found in

testing
• Early errors are discovered late, and the cost of

removal increases with time
• Eliminating errors from large and mature systems costs

more (4-10 times) than in the case of small and new
systems

• Error removal causes introduction of new errors
• Large systems tend to stabilize to a certain defect level

Carlo Ghezzi--SE-Intro (vers. 2000) 42

Why evolution?
• Context changes (adaptive maintenance)

– EURO vs national currencies

• Requirements change
• New demands caused by introduction of the system
• Recent survey among EU companies indicates that 20%

of user requirements are obsolete after 1 year

• Wrong specifications (rqmts were not
captured correctly or domain poorly
understood)

• Requirements not known in advance

Carlo Ghezzi--SE-Intro (vers. 2000) 43

How to face evolution

• Likely changes must be anticipated
• Software must be designed to

accommodate future changes reliably
and cheaply

This is one of the main goals of
software engineering

Carlo Ghezzi--SE-Intro (vers. 2000) 44

Correction vs evolution

• Distinction can be unclear, because
specifications are often incomplete and
ambiguous

• This causes problems because specs
are often part of a contract between
developer and customer
– early frozen specs can be problematic,

because they are more likely to be wrong

Carlo Ghezzi--SE-Intro (vers. 2000) 45

Software changes
•Good engineering practice

– first modify design, then change implementation
– apply changes consistently in all documents

•Software is very easy to change
– often, under emergency, changes are applied directly

to code
– inconsistent state of project documents

software maintenance is (almost) never
anticipated and planned; this causes disasters

Carlo Ghezzi--SE-Intro (vers. 2000) 46

Waterfall lifecycles
• Many variations exist
• Each organization tends to define “its

own”
• Sample cases

– software developed for personal use
– customer (user) belongs to same

organization
– custom software developed by sw house
– application for the market

Carlo Ghezzi--SE-Intro (vers. 2000) 47

Waterfall can be harmful

• “Waterfall” requires that the domain is
understood and requirements are
known and stable

• This happens in only a few cases
• Recycling cannot be eliminated; it is

part of our problem

Carlo Ghezzi--SE-Intro (vers. 2000) 48

Waterfall is “black box”
informal

requirements

specification

product

process

Carlo Ghezzi--SE-Intro (vers. 2000) 49

Need for transparency
informal

requirements

specification

product

process

• Transparency allows
early check and change
via feedback

• It supports flexibility

Carlo Ghezzi--SE-Intro (vers. 2000) 50

Verification and validation
informal

requirements

specification

product

Validation:
are we doing the
“right” product?

Verification:
are we doing
the product right?

Carlo Ghezzi--SE-Intro (vers. 2000) 51

Flexible processes
• Adapt to changes, in particular in the

requirements and specification
• The idea is to have incremental

processes and be able to get feedback
on increments

• Exist in many forms

Carlo Ghezzi--SE-Intro (vers. 2000) 52

Prototyping

• A prototype is an approximate model of
the application, used to get feedback or
prove some concept

• “What” to prototype depends on what is
critical to assess (e.g., user interface)

• Throw-away vs evolutionary prototype

Carlo Ghezzi--SE-Intro (vers. 2000) 53

Incremental delivery

• Early subset, early delivery, … early
feedback

• Start from critical subsets, on which
feedback is required from customer

Carlo Ghezzi--SE-Intro (vers. 2000) 54

New products and lifecycle

• Incrementality even more important for
new types of product

• Beta versions available for try-out
• The network as a distribution medium

and a showcase

Carlo Ghezzi--SE-Intro (vers. 2000) 55

A meta-model: spiral model
• Cycle among the following activities:

– risk analysis
– development
– validation

• As you cycle, cost increases
– as in a spiral cost

Carlo Ghezzi--SE-Intro (vers. 2000) 56

Lifecycle and activities
• Lifecycles differ mainly in the way and

the order in which activities are
performed

• One does analysis and specification,
design, code, test… also in a flexible
lifecycle

• The way and (in particular) the
sequencing among them differs

Carlo Ghezzi--SE-Intro (vers. 2000) 57

Process and product
• Our goal is to develop software

products
• The process is how we do it
• Both are extremely important, due to

the nature of the software product
• Both have qualities

– in addition, quality of process affects
quality of product

Carlo Ghezzi--SE-Intro (vers. 2000) 58

The software product
• Different from traditional types of

products
– intangible

• difficult to describe and evaluate

– malleable
– human intensive

• does not involve any trivial manufacturing
process

Carlo Ghezzi--SE-Intro (vers. 2000) 59

Quality dimensions

Process vs. Product

Internal vs. External

Internal qualities affect external qualities
Process quality affects product quality

Carlo Ghezzi--SE-Intro (vers. 2000) 60

Correctness

• Software is correct if it satisfies the
specifications

• If specifications are stated formally, since
programs are formal objects, correctness can
be defined formally
– It can be proven as a theorem or disproved by

counterexamples (testing)

• Try to develop “a priori correct” sw
• via suitable process (see later)
• suitable tools (high level languages, reuse)

Carlo Ghezzi--SE-Intro (vers. 2000) 61

The limits of correctness
• It is an absolute (yes/no) quality

– there is no concept of “degree of
correctness”

– there is no concept of severity of deviation

• What if specification are wrong?
– (e.g., they derive from incorrect

requirements or errors in domain
knowledge)

Carlo Ghezzi--SE-Intro (vers. 2000) 62

Reliability, robustness
• Reliability

– informally, user can rely on it
– can be defined mathematically as “probability of

absence of failures for a certain time period”
– if specs are correct, all correct software is reliable,

but not vice-versa (in practice, however, specs can
be incorrect …)

• Robustness
– software behaves “reasonably” even in unforeseen

circumstances (e.g., incorrect input, hardware
failure)

Carlo Ghezzi--SE-Intro (vers. 2000) 63

Performance
• Efficient use of resources

– memory, processing time, communication

• Can be verified
• complexity analysis
• performance evaluation (on a model, via simulation)

• Performance can affect scalability
• a solution that works on a small local network may not

work on a large intranet

• Performance can affect usability (see next)
• Performance may change with technology

Carlo Ghezzi--SE-Intro (vers. 2000) 64

Usability
• Expected users find the system easy to use
• Important: define the expected user

• if the user is an installer, ease of installation is part of
usability

• Other terms: ergonomic, user friendly
• Rather subjective, difficult to evaluate
• Evaluation made less subjective via panels
• Affected mostly by user interface

• e.g., visual vs textual

Carlo Ghezzi--SE-Intro (vers. 2000) 65

Other qualities

• Maintainability
• Reusability

– similar to maintainability, but applies to
components

• Portability
– similar to maintainability (adaptation to different

target environment)

• Interoperability
– coexist and cooperate with other applications

Carlo Ghezzi--SE-Intro (vers. 2000) 66

Process qualities:
productivity

• Productivity
– how can we measure it?

• delivered item by a unity of effort

• Unity of effort
– person month

• WARNING: persons and months cannot be
interchanged

• Delivered item
– lines of code (and variations)
– function points

Carlo Ghezzi--SE-Intro (vers. 2000) 67

Productivity: folk data

• Result of 135 HP projects (excluding
requirements): 350 NCSS/pm
– NCSS: Non Comment Source Statement
– pm: person month

• BUT
– extreme variance among individuals
– extreme variance with group dynamics

• Brooks “law”:
– “Adding people to a late project makes the project late”

Carlo Ghezzi--SE-Intro (vers. 2000) 68

Process qualities: timeliness
• Ability to respond to change requests in

a timely fashion

functionalities

t t t t t0 1 2 3 4

user
needs

actual
system

capabilities

time

Carlo Ghezzi--SE-Intro (vers. 2000) 69

Key SE principles

• Rigor and formality
• Separation of concerns
• Modularity
• Abstraction
• Anticipation of change
• Generality
• Incrementality

Carlo Ghezzi--SE-Intro (vers. 2000) 70

Reference

C. Ghezzi, M. Jazayeri, D. Mandrioli
Fundamentals of Software

Engineering, Prentice Hall, 1991

