Software Engineering

Introduction
History
The process
Process and product
Process and product qualities

Carlo Ghezzi--SE-Intro (vers. 2000)

Definitions

e Field of computer science dealing with
software systems
— large and complex
— built by teams
— exist in many versions
— last many years
— undergo changes

e Multi-person construction of multi-version
software

Carlo Ghezzi--SE-Intro (vers. 2000)

Definitions

e Systematic approach to development,
operation, maintenance, deployment,
retirement of software

e Methodological and managerial discipline
concerning the systematic production and
maintenance of software products that are
developed and maintained within anticipated
and controlled time and cost limits

Carlo Ghezzi--SE-Intro (vers. 2000)

Definitions

e Deals with cost-effective solutions to practical
problems by applying scientific knowledge in
building software artifacts in the service of
mankind
— cost-effective
— practical problems -
— scientific knowledge Engineering
— building things
— service of mankind

Carlo Ghezzi--SE-Intro (vers. 2000)

Engineering tasks

e Routine design
— solution of familiar problems
— reuse of previous solutions

e Innovative design
— novel solutions for unfamiliar problems

e Software is treated more often as original
than routine
— we do not capture and organize what we know!

— mature engineering disciplines capture, organize
and share design knowledge

Carlo Ghezzi--SE-Intro (vers. 2000)

Engineering: evolution

Art: ad-hoc solutions
* Intuition
* talented amateur
e Invent/reinvent
(slow transmission of knowledge)

Management +
production techniques

‘ Routine production

Engineering

Science

Carlo Ghezzi--SE-Intro (vers. 2000) 6

The engineering lifecycle

Ad-hoc solution

\ Folklore

(partial solutions, heuristics)

New problems
Codification
(systematlc procedures)

Improved practice

T Models&Theory

Carlo Ghezzi--SE-Intro (vers. 2000)

Software engineering vs
traditional engineering

e Software engineering still practiced (and
taught) in a non systematic way

e |ess stable and organized than traditional
engineering

e Standards for specification of software
designs do not exist yet
— see design of electronic apparatus (amplifier)

— use of design notation and model
e for communication and proof of concept

Carlo Ghezzi--SE-Intro (vers. 2000)

Differences and analogies

e Software engineering vs traditional
engineering

e Many points are in common

— But must be careful because deep
differences exist as well!

Carlo Ghezzi--SE-Intro (vers. 2000)

Bridge building vs.
software development

e Bridges normally built on-time, on-budget,
and do not fall

e Software is rarely on-time and on-budget

Why?

Carlo Ghezzi--SE-Intro (vers. 2000)

10

Traditional engineering

e Extreme detail of design

o Alternative designs can be validated
through models

e Design is frozen and contractor has
almost no flexibility in changing
specifications

e Standard processes are followed

Carlo Ghezzi--SE-Intro (vers. 2000)

11

Software engineering:
differencel

e Frozen specifications and designs do
not accommodate changes in the
business practices

e Software is a key component of
applications and services that are at the
heart of business

e Continuous change and evolution

Carlo Ghezzi--SE-Intro (vers. 2000) 12

Software engineering:
difference 2

e Bridge design is 3000 years old

e Large body of knowledge: underlying
theories and methods

— We are moving in this direction

e Large body of knowledge: analysis of
failures

— In sw we seldom analyze failures!

Carlo Ghezzi--SE-Intro (vers. 2000)

13

Software engineer:
required skills

e Programming skill not enough

— programmer
e develops a complete program
e works on known specifications
e works individually

— software engineer
e identifies requirements and develops specifications

e designs a component to be combined with other
components, developed, maintained, used by others;
component can become part of several systems

e works in a team

Carlo Ghezzi--SE-Intro (vers. 2000)

14

Required skills

Software implements a machine that interacts
with the external environment

Sw engineers must be able to understand and
analyze external environments

The external environment is where the
requirements can be found

see later discussion on requirements
engineering

Carlo Ghezzi--SE-Intro (vers. 2000) 15

Examples

e A telephone system
when one picks up the phone, the tone must be
heard within x msec.

From requirements and knowledge of the
environment one derives a specification of

the application
e Other examples:
—traffic control systems
—health control systems
—banking systems

Carlo Ghezzi--SE-Intro (vers. 2000)

16

Domain knowledge

e Plays a fundamental role in sw
development

e To develop a flight control system, one
must understand how an aircraft works

e Software developed based on wrong
domain assumption can generate
disasters

Carlo Ghezzi--SE-Intro (vers. 2000)

17

Skills

Technical

Project management

Cognitive

Enterprise organization
Interaction with different cultures
Domain knowledge

The qguality of human resources is of primary
Importance

Carlo Ghezzi--SE-Intro (vers. 2000)

18

History: initial situation

e Software is art

e Computers used for “computing”
— mathematical problems
— designers = users
— no extended lifetime
e The art of “"programming”
— low level languages
— resource constraints (speed and memory)

Carlo Ghezzi--SE-Intro (vers. 2000)

19

From art to craft

From computing to information management

Requests for new (custom) software explode
— users = designers

— EDP centers and software houses
New high level languages
First large projects and first fiasco's

— time and budget, human cooperation failures
— wrong specifications

Carlo Ghezzi--SE-Intro (vers. 2000)

20

Need for software
engineering

eDevelopment methods and standards
ePlanning and management
eAutomation

o\erifiable quality

eComponentization

From art to industry

Term “software engineering” defined in a NATO conference in
Garmisch, Oct. 1968

Carlo Ghezzi--SE-Intro (vers. 2000)

21

Large systems--critical
systems

eExamples of large systems

— Space shuttle project
e 5.6 million code lines, 22k man year, 1200 Million$

— CityBank teller machine
e 780000 code lines, 150 man year, 13.2 Million$

Critical systems
— failures generate risks or losses (financial, life)

The engineering approach should improve
quality

Carlo Ghezzi--SE-Intro (vers. 2000) 22

$ size of applications

Average development cost for
— Large company
e 2,3 million $
— Medium company
e 1,3 million $
— Small company
¢ 430.000 $

Carlo Ghezzi--SE-Intro (vers. 2000)

23

Relevance

e In 1996 software was the third industrial
sector after car and electronics
— More than 250 billion$ a year spent on application
development
e In the EU the wider field of “information
technology” is viewed as the key strategic
sector

— focused research funding within the 4th and 5th
framework programs

Carlo Ghezzi--SE-Intro (vers. 2000) 24

Needs

e Recent (2000) study by Microsoft with
IDC and Datamonitor

— In the year 2003 in Europe there will be a
deficit of 1.700.000 people in IT

— Requests exceed availability by 33%

Carlo Ghezzi--SE-Intro (vers. 2000)

25

Understand and manage
software lifecycle

LIFECYCLE

— From the problem to the product and its
deployment and evolution until its
retirement

— However: not all software goes through
the complete lifecycle

Carlo Ghezzi--SE-Intro (vers. 2000) 26

Project failures

e Almost 30% of development projects
are canceled before they are
completed!

e About 53% of projects cost 190% of
original estimates
— And hidden costs due to lost
opportunities!!!

— Example: failure to produce reliable
software for baggage handling at Denver
airport cost over 1 million $ per day!

Carlo Ghezzi--SE-Intro (vers. 2000) 27

Software lifecycle models

e In some cases, no reference model:
— code&fix

e The traditional “waterfall” model
— identify phases and activities
— force linear progression from a phase to the next

— no returns (they are harmful)
e better planning and control

— standardize outputs (artifacts) from each phase
software like manufacturing

III

Carlo Ghezzi--SE-Intro (vers. 2000)

28

A waterfall model

Feasibility study
Requirements analysis& <l Phases
specification hlg
COding&U\nit/ test
hases Integration& System test
oW P N

Deplo%lt

Maintenance
Carlo Ghezzi--SE-Intro (vers. 2000) 29

Feasibility study

e Cost/benefits analysis

e Determines whether the project should be
started (e.g., buy vs make), possible
alternatives, needed resources

e Produces a Feasibility Study Document
— Preliminary problem description
— Scenarios describing possible solutions
— Costs and schedule for the different alternatives

Carlo Ghezzi--SE-Intro (vers. 2000)

30

Req. analysis and
specification
Analyze the domain in which the application
takes place

Identify requirements

Derive specifications for the software
— Requires an interaction with the user

— Requires an understanding of the properties of the
domain

Produces a Requirements Analysis and
Specification Document (RASD)

Carlo Ghezzi--SE-Intro (vers. 2000) 31

e The b W's

e who will use the system

Why

e why should it be developed + why will the users use it

What (vs How)

e what will it provide

Where

o where will it be used, on which architecture

When

e when and how long will it be used

Carlo Ghezzi--SE-Intro (vers. 2000)

32

RASD

e Required properties
— Precise
— Complete
— Consistent
e May include
— Preliminary User Manual
— System Test Plan

Carlo Ghezzi--SE-Intro (vers. 2000)

33

Design

e Defines the software architecture
— Components (modules)
— Relations among components
— Interactions among components

e Goal

— Support concurrent development, separate
responsibilities

e Produces the Design Document

Carlo Ghezzi--SE-Intro (vers. 2000) 34

Coding&Unit test

e Each module is implemented using the
chosen programming language

e Each module is tested in isolation by the
module’s developer

e Programs include their documentation

Carlo Ghezzi--SE-Intro (vers. 2000) 35

Integration&System test

Modules are integrated into (sub)systems and
integrated (sub)systems are tested

This phase and the previous may be
integrated in an incremental implementation
scheme

Complete system test needed to verify overall
properties

Sometimes we have alpha test and beta test

Carlo Ghezzi--SE-Intro (vers. 2000) 36

Effort distribution

e From 125 projects within HP
— 18% requirements and specification
— 19% design
— 34% coding
—29% testing

e typical variations of 10%

Carlo Ghezzi--SE-Intro (vers. 2000)

37

Deployment

e The goal is to distribute the application
and manage the different installations
and configurations at the clients’ sites

Carlo Ghezzi--SE-Intro (vers. 2000)

38

Maintenance

e All changes that follow delivery

e Unfortunate term: software does not wear
out

— if a failure occurs, the cause was there

e Often more than 50% of total costs

— Recent survey among EU companies
e 80% of IT budget spent on maintenance

Carlo Ghezzi--SE-Intro (vers. 2000) 39

Maintenance

e It includes different types of change:
correction + evolution
— corrective maintenance = 20%
— adaptive maintenance = 20%
— perfective maintenance = 50%

Carlo Ghezzi--SE-Intro (vers. 2000)

40

Folk data on errors

Systematic inspection techniques can discover up to 50-
75% of errors

Modules with complex control flow are likely to contain
more errors

Often tests cover only about 50% of code

Delivered code contains 10% of the errors found in
testing

Early errors are discovered late, and the cost of
removal increases with time

Eliminating errors from large and mature systems costs
more (4-10 times) than in the case of small and new
systems

Error removal causes introduction of new errors
Large systems tend to stabilize to a certain defect level

Carlo Ghezzi--SE-Intro (vers. 2000) 41

Why evolution?

Context changes (adaptive maintenance)
— EURO vs national currencies

Requirements change

e New demands caused by introduction of the system

e Recent survey among EU companies indicates that 20%
of user requirements are obsolete after 1 year

Wrong specifications (rgmts were not
captured correctly or domain poorly
understood)

Requirements not known in advance

Carlo Ghezzi--SE-Intro (vers. 2000) 42

How to face evolution

e Likely changes must be anticipated

e Software must be designed to
accommodate future changes reliably
and cheaply

This is one of the main goals of
software engineering

Carlo Ghezzi--SE-Intro (vers. 2000)

43

Correction vs evolution

e Distinction can be unclear, because
specifications are often incomplete and
ambiguous

e This causes problems because specs
are often part of a contract between
developer and customer

— early frozen specs can be problematic,
because they are more likely to be wrong

Carlo Ghezzi--SE-Intro (vers. 2000) 44

Software changes

e(Good engineering practice
— first modify design, then change implementation
— apply changes consistently in all documents
eSoftware is very easy to change

— often, under emergency, changes are applied directly
to code

— inconsistent state of project documents

software maintenance is (almost) never
anticipated and planned; this causes disasters

Carlo Ghezzi--SE-Intro (vers. 2000) 45

Waterfall lifecycles

e Many variations exist

e Each organization tends to define “its
own”

e Sample cases
— software developed for personal use

— customer (user) belongs to same
organization

— custom software developed by sw house
— application for the market

Carlo Ghezzi--SE-Intro (vers. 2000)

46

Waterfall can be harmful

o “Waterfall” requires that the domain is
understood and requirements are
known and stable

e This happens in only a few cases

e Recycling cannot be eliminated; it is
part of our problem

Carlo Ghezzi--SE-Intro (vers. 2000)

47

Waterfall is "black box"

informal
requirements
specification

process

product
Carlo Ghezzi--{)00)

Need for transparency

informal
requirements
specification

>V
\\/
1
Transparency allows \
o~

"_OO

early check and change ke
via feedback e~
It supports flexibility [
)
product
Carlo Ghezzi--SE-Intro (v 49

Verification and validation

informal
requirements

specification

YV
Valldatlop: \\/
are we doing the D] Verification:
“right” product? ~— are we doing
R
]

‘_OO

h 1ight?
L > the product right

T?

product
Carlo Ghezzi- (.ers. 2000) 50

Flexible processes

e Adapt to changes, in particular in the
requirements and specification

e The idea is to have incremental
processes and be able to get feedback
on increments

e Exist in many forms

Carlo Ghezzi--SE-Intro (vers. 2000) 51

Prototyping

e A prototype is an approximate model of
the application, used to get feedback or
prove some concept

e "What"” to prototype depends on what is
critical to assess (e.g., user interface)

e Throw-away vs evolutionary prototype

Carlo Ghezzi--SE-Intro (vers. 2000) 52

Incremental delivery

o Early subset, early delivery, ... early
feedback

o Start from critical subsets, on which
feedback is required from customer

Carlo Ghezzi--SE-Intro (vers. 2000) 53

New products and lifecycle

e Incrementality even more important for
new types of product

e Beta versions available for try-out

e The network as a distribution medium
and a showcase

Carlo Ghezzi--SE-Intro (vers. 2000) 54

A meta-model: spiral model

e Cycle among the following activities:
— risk analysis
— development
— validation

e As you cycle, cost increases

—as in a spiral @Cm

Carlo Ghezzi--SE-Intro (vers. 2000)

55

Lifecycle and activities

e Lifecycles differ mainly in the way and
the order in which activities are
performed

e One does analysis and specification,
design, code, test... also in a flexible
lifecycle

e The way and (in particular) the
sequencing among them differs

Carlo Ghezzi--SE-Intro (vers. 2000)

56

Process and product

e Our goal is to develop software
products

e The process is how we do it

e Both are extremely important, due to
the nature of the software product

e Both have qualities

— in addition, quality of process affects
quality of product

Carlo Ghezzi--SE-Intro (vers. 2000)

57

The software product

o Different from traditional types of
products
— intangible
o difficult to describe and evaluate
— malleable

— human intensive

e does not involve any trivial manufacturing
process

Carlo Ghezzi--SE-Intro (vers. 2000)

58

Quality dimensions

Process vs. Product

Internal vs. External

Internal qualities affect external qualities
Process quality affects product quality

Carlo Ghezzi--SE-Intro (vers. 2000) 59

Correctness

e Software is correct if it satisfies the
specifications

e If specifications are stated formally, since
programs are formal objects, correctness can
be defined formally

— It can be proven as a theorem or disproved by
counterexamples (testing)

e Try to develop “a priori correct” sw
e via suitable process (see later)
e suitable tools (high level languages, reuse)

Carlo Ghezzi--SE-Intro (vers. 2000) 60

The limits of correctness

o It is an absolute (yes/no) quality

— there is no concept of “degree of
correctness”

— there is no concept of severity of deviation
e What if specification are wrong?

— (e.q., they derive from incorrect
requirements or errors in domain
knowledge)

Carlo Ghezzi--SE-Intro (vers. 2000) 61

Reliability, robustness
o Reliability

— informally, user can rely on it

— can be defined mathematically as “probability of
absence of failures for a certain time period”

— if specs are correct, all correct software is reliable,

but not vice-versa (in practice, however, specs can
pe incorrect ...)

e Robustness

— software behaves “reasonably” even in unforeseen

circumstances (e.g., incorrect input, hardware
failure)

Carlo Ghezzi--SE-Intro (vers. 2000) 62

Performance

Efficient use of resources
— memory, processing time, communication

Can be verified
e complexity analysis
e performance evaluation (on a model, via simulation)

Performance can affect scalability

e a solution that works on a small local network may not
work on a large intranet

Performance can affect usability (see next)
Performance may change with technology

Carlo Ghezzi--SE-Intro (vers. 2000)

63

Usability

Expected users find the system easy to use

Important: define the expected user

e if the user is an installer, ease of installation is part of
usability

Other terms: ergonomic, user friendly
Rather subjective, difficult to evaluate
Evaluation made less subjective via panels

Affected mostly by user interface
e e.g., visual vs textual

Carlo Ghezzi--SE-Intro (vers. 2000)

64

Other qualities

Maintainability

Reusability

— similar to maintainability, but applies to
components

Portability

— similar to maintainability (adaptation to different
target environment)

Interoperability
— coexist and cooperate with other applications

Carlo Ghezzi--SE-Intro (vers. 2000) 65

Process qualities:
productivity

e Productivity
— how can we measure it?
e delivered item by a unity of effort
e Unity of effort

— person month

e WARNING: persons and months cannot be
interchanged

e Delivered item
— lines of code (and variations)
— function points

Carlo Ghezzi--SE-Intro (vers. 2000)

66

Productivity: folk data

e Result of 135 HP projects (excluding
requirements): 350 NCSS/pm
— NCSS: Non Comment Source Statement
— pm: person month

e BUT

— extreme variance among individuals

— extreme variance with group dynamics

e Brooks “law”;
— “Adding people to a late project makes the project late”

Carlo Ghezzi--SE-Intro (vers. 2000) 67

Process qualities: timeliness

e Ability to respond to change requests in
a timely fashion

functionalities

A
user
needs actual
system
capabilities
>
tO 1 O t3 %} time

Carlo Ghezzi--SE-Intro (vers. 2000) 68

Key SE principles

e Rigor and formality

e Separation of concerns
e Modularity

e Abstraction

e Anticipation of change
e Generality

e Incrementality

Carlo Ghezzi--SE-Intro (vers. 2000)

69

Reference

C. Ghezzi, M. Jazayeri, D. Mandrioli

Fundamentals of Software
Engineering, Prentice Hall, 1991

Carlo Ghezzi--SE-Intro (vers. 2000)

70

