Software Engineering and Wireless Sensor Networks:
Happy Marriage or Consensual Divorce?

Gian Pietro Picco
Department of Information Engineering and Computer Science (DISI)
University of Trento, Italy
gianpietro.picco@unitn.it

ABSTRACT

The development of wireless sensor networks (WSNs) software to-
day is tackled by a code-and-fix process that relies solely on the
primitive constructs provided by the operating system and the skills
of developers. For WSNs to emerge from research labs and make a
true impact on society at large, we need methodologies, techniques,
and abstractions that improve the development process, foster the
designer’s confidence about the WSN behavior, and whose effec-
tiveness is demonstrated in the real world.

How do we achieve these goals? The aforementioned challenges
are germane to the techniques and expertise matured by software
engineering (SE). Unfortunately, the WSN and SE research com-
munities have been mostly impermeable to each other. In this pa-
per we elaborate on this state of affairs, by arguing that a princi-
pled approach to development is inevitable as WSNs become more
and more pervasive, and by identifying and discussing specific ar-
eas where a synergy between the SE and WSN communities could
provide immediate, much-needed results.'

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-based Systems]: Real-time
and embedded systems; D.2 [Software Engineering]

General Terms

Design, Experimentation, Performance, Reliability

Keywords

Wireless sensor networks, software engineering

1. INTRODUCTION & MOTIVATION

Wireless sensor networks (WSN5s) are distributed systems com-
posed of tiny, resource-scarce, often battery-powered devices that

I'This position paper is based on a keynote given by the author, for
which a 1-page abstract appeared in [9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

cooperate to perform distributed monitoring and control over a self-
organized network topology. Due to their miniaturization, auton-
omy, and flexibility, WSNs are a key element in many pervasive
computing scenarios.

Software plays a fundamental role in WSNs. Unlike conven-
tional distributed systems, where the application layer is built atop
a largely immutable, application-agnostic network stack, in WSNs
the latter is i) entirely realized in software, therefore malleable, and
ii) expected to be tailored to the needs of the application.

However, WSN software is also quite complex. The application
and the network protocols must often be co-designed, to satisfy
the end-user needs. To complicate matters, the latter include not
only functional requirements, but also stringent non-functional re-
quirements about lifetime, reliability, and data yield. Meeting these
requirements with resource-limited devices is arguably the defining
challenge of WSNss.

WSN Development Today: Code-and-Fix Reloaded. Given that
software plays a fundamental role in WSNs, and that WSNs have
been around for a decade, one could be led to think that a satis-
factory toolset of methodologies and techniques exists to properly
support developers in meeting the application requirements.

Unfortunately, reality is much less encouraging. Today, the chal-
lenges above are tackled by a code-and-fix development process
that relies solely on the rather primitive constructs provided by the
operating system—if an OS is actually provided, that is—and on
the developer’s skills. One could argue that just like WSN hard-
ware is about as powerful as computers from the *70s, the software
development process remained stuck at about the same time. This
situation hampers reuse and maintenance, because software mod-
ules tend to be highly coupled and very much geared towards the
needs of the application at hand. Moreover, it constitutes a barrier
towards a direct use of this technology by domain experts.

Why is that? There are at least a couple of arguments that can
be brought to the table to try explaining the situation. The first one
is what can be called “community impedance”. In a private, in-
formal conversation about WSN at large, a fellow researcher once
commented to us, somewhat bitterly, “The WSN field has been hi-
Jjacked by the networking guys”. This comment stigmatizes the
large fraction of WSN research that has been devoted to routing
and MAC protocols, therefore neglecting other aspects, including
software development. Nevertheless, while the networking com-
munity is still a major player in the WSN arena, it is also true that
today several other communities have joined the effort, and to some
extent redefined the research agenda. Interestingly, the software en-
gineering one is not among them: we come back to this later.

Another reason has to do with the role of deployments in current
WSN research. The number of real-world deployments reported in
the literature has increased significantly in the last few years, effec-

Better development practices
simpler programming
increased reuse
easier maintenance

3™ Higher confidence in the WSN
\ correctness
il { o= reliability
N (i performance

Reality check
Tools and techniques must be designed for
and tested in real-world WSN deployments

Figure 1: Needs of wireless sensor networks and challenges for software engineering.

tively demonstrating the depth and breadth of the potential of this
technology. However, too often these deployments are approached
as short-lived experiments yielding just enough results to demon-
strate the feasibility of a technique, rather than as reliable compo-
nents of long-lived, operational systems. In this mindset, driven
more by publication goals more than by real-world needs, building
ad hoc solutions is perfectly acceptable. However, this is clearly
not acceptable in the long run. This situation clearly reduces the
credibility of the field when industrial-strength large investments
are considered outside of a research setting.

Needs and Challenges. For WSNs to emerge from research labs
and become useful in the real world, there is an obvious need for
methodologies, techniques, and abstractions that (Figure 1):

e improve the development process, e.g., by simplifying pro-
gramming, fostering reuse across deployments, and easing
maintenance;

e improve the designer’s confidence about the correctness, re-
liability, and performance of the deployed WSN application;

e are not developed in the abstract, rather take into account the
resource limitations of the target devices and the concrete re-
quirements of real-world applications, e.g., in terms of life-
time and robustness.

How do we achieve these goals? An obvious consideration is
that they are germane to the techniques and expertise matured by
software engineering (SE). Section 2 focuses on some of the core
problems in the field, by concisely describing work already on-
going and opportunities for a contribution by the SE community.
Nevertheless, the latter has been largely missing thus far: Section 3
provides some evidence for this statement and analyzes the current
situation. Finally, Section 4 ends the paper by peering at what can
be the future of a synergy between WSN and SE.

2. CORE OPEN ISSUES

As shown in Figure 1, WSN research today sorely misses sup-
port for the “low phases” of the development process. Indeed, the
high phases (e.g., requirements and architecture specification) are
much less biased by the peculiarities of WSNs: current SE tech-
niques are by and large enough to carry out the job if and when
needed. On the contrary, to allow WSN to make an impact in the
real world, techniques and tools directly supporting developers are
needed. The remainder of this section elaborates on two of the main
open issues in the field: programming abstractions and methods for
verification & validation of WSNs.

2.1 Programming Abstractions for WSNs:
A Solved Problem?

The need for appropriate programming abstractions has been
long-recognized by the WSN community, and several solutions are
available. In a recent survey [7], we referenced 28 systems, which
differ along many language and architecture dimensions, and there-
fore support a big fraction of the spectrum of application require-
ments. One could rightfully think that, given the number and vari-

ety of existing approaches, the issue of providing “good” program-
ming abstractions for WSNss is a solved problem.

Unfortunately, a closer look shows that this is not the case. Of
the 28 systems, only 13 have actually been implemented on WSN
hardware: the others have been evaluated only through simulation.
Moreover, to the best of our knowledge, only one—the TeenyLIME
system [2]—has been used in a real-world deployment.

The (Concrete) Power of Abstraction. Is abstraction really worth
in WSNs, where code size is small and resources scarce? This is a
key question. In the following, we provide an answer biased by our
own experience as part of the research team that developed Teeny-
LIME and built on top of it an entire long-term, real-world deploy-
ment for structural health monitoring of a medieval tower [1].

TeenyLIME [2] is based on the tuple space abstraction, a shared
memory space where different processes read/write data in the form
of tuples. Tuples are shared among nodes within radio range. In ad-
dition to common operations to insert, read, and withdraw tuples,
reactions allow for asynchronous notifications when data of inter-
est appears in the shared tuple space. In addition, several WSN-
specific features are provided, e.g., to keep track of system-level in-
formation about neighbors. TeenyLime provides constructs useful
to develop stand-alone applications as well as system level mech-
anisms, e.g., routing protocols, as demonstrated by our real-world
deployment [1]. TeenyLIME is currently built atop TinyOS, target-
ing the TMote Sky platform.

The simple abstractions TeenyLIME provides are meant to re-
place the 1-hop message-based communication provided by nesC
with 1-hop data sharing. The effects of this change in commu-
nication paradigm are many. From a qualitative point of view,
the sharp decoupling provided by data sharing boosts reuse within
and across applications, and leads to code that is inherently less
complex. From a quantitative point of view, the code written by
the developer is significantly more concise. The original Teeny-
LIME paper [2] reports that the KLOC size of a simplified sensor-
actuator HVAC (Humidity, Ventilation, Air Control) application is
25-70% smaller with TeenyLIME than with nesC. These initial find-
ings were confirmed by our real-world deployment [1] where we
observed code reductions between 50% and 80% compared to al-
ternatives in the TinyOS distribution.

A reduction in the size of the source code does not imply only
a (beneficial) reduction of the programmer’s effort in writing the
code itself. It also yields smaller binary code, and therefore allows
one to pack more functionality in the memory-tight WSN nodes.
For instance, in our case we verified that we could not have fit the
(simpler) alternatives provided by TinyOS for data collection, data
dissemination, time synchronization in the 48 KB of code mem-
ory provided by the TMote Sky hardware—this despite the almost
10 KB consumed by TeenyLIME alone.

Therefore, in our experience, WSN programming abstractions
are not a luxury: they are a need, in that they not only simplify
development, but also enable an efficient use of program memory.

Programming Abstractions for whom? When designing a pro-
gramming abstraction, a key requirement is who is the intended

user—an issue that did not receive enough attention thus far. We
argue that two such users exist:

o The “end user”: is generally a scientist, an engineer, or in
any case the domain expert. Her main concern is to have
“good data”, e.g., without noise and accurately timestamped.
For this user, the WSN is a macro-component delivering a
useful service: she does not have good visibility of the WSN
innards. This does not necessarily mean that the end user is
uncomfortable with information technology: on the contrary,
she is often quite skilled with basic IT tools (e.g., databases,
spreadsheets, programming languages).

o The “WSN geek”: is the person that, today, builds the soft-
ware for, and often deploys, the WSN. The main concern
of this user is to have “good yield”, i.e., to funnel as much
data as possible to the collection point, and to do so in the
most efficient manner. This user has complete visibility of
the WSN, as her objective is often to optimize the behavior
of the individual nodes. Finally, this user is skilled at embed-
ded systems programming and protocol design, and can deal
with complex languages and systems, and their interaction.

From these short, informal definitions it appears that the two
users have very different concerns and skills, which must be sup-
ported by different, dedicated abstractions. End users require high-
level abstractions that simplify the configuration of the WSN at
large, possibly allowing one to define its software architecture based
on pre-canned components. WSN geeks need abstractions that,
albeit lower-level, simplify the development of intra- and inter-
node communication and computation. The answer to the question
whether WSNs are going to become commonplace will be deter-
mined by the ability to empower the right user with the right pro-
gramming abstraction, as many have already noted [3, 8].

2.2 Is My WSN Working?

Programming abstractions are important, as they simplify and ra-
tionalize the implementation of WSN software. However, as with
every software artifact, development does not end at implementa-
tion: verification & validation must occur to increase confidence in
the application correctness, and debugging may be necessary to fix
the problems discovered. Contrary to programming abstractions,
these are research areas where few contributions exist and, in con-
trast, where SE techniques have been used for a long time.

Debugging. WSNs complicate debugging significantly. The user
interface of WSN nodes is limited to a few user buttons and LEDs.
These, along with printf statements, are the building-blocks of
state-of-the-art WSN debugging. The problem is further compli-
cated by the fact that i) the resources on WSN nodes are scarce,
therefore instrumentation is generally not viable; ii) the WSN is in-
herently distributed, which complicates the problem of observing
and analyzing traces. A few works tackled the problem with dif-
ferent techniques, e.g., providing a gdb-like system [12] or relying
on an auxiliary “sniffer” network used to check assertions on the
WSN behavior [10]. However, at the time of writing, these works
appear to have been used only for lab development: none has been
reported as used in a real-world deployment.

Support for in-field debugging would be a very valuable asset for
WSN developers, and is possibly the defining challenge for WSN
debugging. Indeed, WSNss are often deployed in high numbers and
in inaccessible places. These need not be military scenarios. As
an example, in one of our projects [11] we are deploying about 90
WSN nodes in a road tunnel, to support energy-efficient lighting.
Although this is a civilian application, access to the tunnel entails

blocking partially or completely the traffic to ensure the safety of
operators, and therefore must be minimized. This also means that it
is often impractical to bring the nodes back to the lab, let apart the
fact that the problem may be created by the real-world environment
and not by the artificial conditions in the lab. Therefore, appropri-
ate support for in-field inspecting the program state and possibly
injecting changes is currently much needed.

Testing. A large SE literature on testing exists, along with a num-
ber of widely-used tools. However, very little of this knowledge
has been transferred to WSNs. For instance, TUnit [6] provides a
unit testing framework that focuses on improving the TinyOS dis-
tribution. Although in principle it could be used by any developer,
its use in deployments has not yet been reported.

Moreover, WSNs pose specific challenges to testing. The pecu-
liarities of WSN languages (e.g., the event-based, split-phase op-
eration of nesC [4]) require adaptation of testing techniques, e.g.,
to assess test coverage and adequacy, or to analyze the code and
automatically suggest tests. Moreover, WSNs are massively dis-
tributed systems, where each node must cooperate with the others.
Tools like TUnit provide a simple answer for a single component
on a single node, but say nothing about the distributed, coordinated
behavior of the entire network. The latter, in turn, is strongly influ-
enced by the environment where it is deployed. How to take real-
istically into account models or traces of the environment in terms
of sensor readings, connectivity changes, or failures? The situation
is paradoxical, in that this requires knowing environmental data,
which is often the very purpose why a WSN is deployed. An incre-
mental development approach, possibly integrated with simulation
environments, may be a viable solution.

Formal Methods. Finally, as WSN applications become com-
monplace and encompass actuators for closing the control loop
in-network, their provably-correct behavior becomes of paramount
importance. SE techniques focusing on automatic verification (e.g.,
model checking) can play a fundamental role in increasing the con-
fidence in the application correctness.

Similar problems have been already addressed in the context of
embedded systems. However, networked embedded systems, as
WSNs are often referred to, pose peculiar requirements in terms
of scale, distribution, dynamicity and resource consumption. At the
same time, however, they bring also opportunities. For instance, the
code on WSN nodes is relatively small if compared to the one usu-
ally targeted by formal verification techniques. Therefore, the im-
pact of state explosion—the enemy of model checking—is some-
what intrinsically reduced. Moreover, as we mentioned previously,
languages and abstractions for programming WSNs are yet to be
consolidated. Therefore, there is still an opportunity to design these
abstractions by targeting not only programmer productivity, but
also ease of automatic verification.

3. A HAPPY MARRIAGE OR
A CONSENSUAL DIVORCE?

The challenges and opportunities listed so far clearly point in the
direction of a fruitful synergy between the SE and WSN research
fields—a happy marriage of different knowledge towards shared
goals. SE is all about being systematic, disciplined, quantifiable,
which is exactly what is needed in the WSN field today. By the
same token, WSN is an eminently system-oriented, engineering-
driven research field, which matches well the “engineering” an-
gle of SE. SE can provide the WSN field with well-established
tools, techniques and methodologies. In turn, their application in
the novel domain of WSNs will enable SE researchers to find new
research challenges and new solutions for old problems.

Unfortunately, the reality is more accurately represented through
the metaphor of a consensual divorce, where the two fields ac-
knowledge their mutual existence but in practice ignore each other.
A symptom of this status quo can be obtained through a quick
search on flagship SE scientific venues, such as ICSE, FSE, IEEE
Trans. on Software Engineering (TSE) and ACM Trans. on Soft-
ware Engineering and Methodology (TOSEM). In the last 4 years,
these venues rogether published only one WSN-related paper, about
testing a very specific aspect of nesC programs [5].

Another symptom we experienced directly. Along with a col-
league, we submitted a tutorial proposal to ICSE’08 based on our
aforementioned survey of WSN programming approaches [7]. The
tutorial was accepted, only to be cancelled right before the confer-
ence because only 1 out of the nearly 900 attendees signed up for it.
‘We had given a similar tutorial at other venues before and after that
occasion, with a very different outcome. Aside from WSN confer-
ences such as EWSN’09 and IPSN’ 10, we also held the tutorial at
Middleware’08—a conference whose research community has sig-
nificant overlapping with SE. In that occasion, our tutorial had over
30 attendees, out of the nearly 200 drawn by the conference. Al-
though based on few observations, these considerations highlight a
remarkable lack of interest’* for WSNs in the SE community.

It is hard to tell why this is the case. The lack of interest may
come from the fact that the SE community perceives WSNs as too
“low-level”. On one hand, this may lead researchers to think that
the problems related to the development of software for tiny de-
vices do not belong to mainstream SE. Or, on other hand, the fact
that WSN software spans the entire network stack and reaches into
the physical layer may constitute a steep learning curve for SE re-
searchers. Another, less technical, reason may be the fact that there
are not enough “bellwethers”, i.e., senior, well-known researchers
paving the road towards a synergy of the two fields, and somewhat
highlighting its importance to the rest of the community. It should
also be noted, however, that this is in line with the more general dis-
affection of the SE community for what we can call “modern dis-
tributed computing”, i.e., pervasive, mobile, peer-to-peer comput-
ing. Although these topics are receiving a lot of attention by the re-
search community at large, and contain elements that resonate with
SE research, the SE community barely notices their existence. Very
few papers on these topics are published, if at all, in SE venues.

Interestingly, the situation is quite the opposite when one consid-
ers the presence of SE topics in WSN venues. Debugging papers
appeared at Sensys, IPSN, DCOSS. A couple of model checking
papers published at IPSN’ 10 witness that there is a growing aware-
ness in the WSN community that the field is mature enough to jus-
tify looking at principled ways of building WSN software. How-
ever, these SE papers are almost never authored by the people that
dwell at flagship SE conferences. Therefore, although the need for
SE techniques in WSN is evident, it is as if the two research com-
munities are impermeable to each other—at least as of today.

4. DOES IT MATTER?

So, where does this leaves us?

We believe that the contribution of SE concepts to the WSN
field is simply inevitable. Indeed, WSNs are a key element of the
grand vision of a physical world augmented by a myriad of com-
puting devices—known as Internet of Things, Cyber-Physical Sys-
tems, pervasive/ubiquitous/autonomic computing, ambient intelli-
gence, etc. That this vision will be eventually realized is becoming

%One reviewer of our ICSE’08 tutorial commented “There may be
a slight risk that it is a year or two too early, but this may be worth
taking”. With hindsight, the reviewer may have been right.

more and more evident: the availability of increasingly powerful
and smaller personal devices, along with the pervasiveness of sens-
ing and computing devices in everyday objects (e.g., cars, washing
machines) around us are clear signs of this transformation taking
place. As a consequence, sooner or later, WSNs—as one of the
enablers of this vision—are going to become mainstream. By then,
they may be quite different from the WSNs we know today, e.g.,
with even smaller footprint and more powerful computing, differ-
ent protocols, and so on. However, the fundamental challenges they
pose, namely, enabling reliable and flexible coordination of large
numbers of tiny devices, along with their in-field debugging and
reconfiguration, will simply not go away. Becoming mainstream
will mean essentially that enough of the tough “SE problems” in
WSNs are solved, to enable reliable, cost-effective, easily repro-
ducible and manageable deployments.

Whether this result is achieved by SE people is largely immate-
rial in the long run. However, joining forces between the SE and
WSN research communities today surely appears like a win-win
opportunity that is too attractive to miss.

S. REFERENCES

[1] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna,
M. Corra, M. Pozzi, D. Zonta, and P. Zanon. Monitoring
heritage buildings with wireless sensor networks: The Torre
Aquila deployment. In Proc. of the 8" Int. Conf. on
Information Processing in Sensor Networks (IPSN), 2009.

P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.

Programming wireless sensor networks with the TeenyLIME

middleware. In Proc. of the 8'" Int. Middleware Conf., 2007.

Embedded WiSeNts Project—Research Roadmap.

www . embedded-wisents.org/dissemination/

roadmap.html.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and

D. Culler. The nesC language: A holistic approach to

networked embedded systems. In Proc. of the Int. Conf. on

Programming Language Design and Implementation, 2003.

[5] Z. Lai, S. Cheung, and W. Chan. Inter-Context Control-Flow

and Data-Flow Test Adequacy Criteria for nesC

Applications. In Proc. of the 16" Symp. on Foundations of

Software Engineering (FSE), 2008.

Rincon Research Corp. TinyOS 2.0 Automated Unit Testing.

http://www.lavalampmotemasters.com.

[7] L. Mottola and G. P. Picco. Programming Wireless Sensor

Networks: Fundamental Concepts and State of the Art. ACM

Computing Surveys, 2010. To appear. disi.unitn.it/

~picco/papers/surveywsn.pdf.

OnWorld—Emerging Wireless Research.

www.onworld.com.

[9] G. P. Picco. Software engineering and wireless sensor
networks: Happy marriage or consensual divorce? In Proc.
of the 1°* Int. Wkshp. on Software Eng. for Sensor Network
Applications (SESENA’10), co-located with ICSE’10.

[10] K. Romer. PDA: Passive distributed assertions for sensor
networks. In Proc. of the 8" Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2009.

[11] TRITon. Trentino Research & Innovation for Tunnel
monitoring. triton.disi.unitn.it.

[12] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: A comprehensive source-level debugger for
wireless sensor networks. In Proc. of the 5t" Int. Conf. on
Embedded Networked Sensor Systems (SENSYS), 2007.

—

[2

—

3

—

[4

—

[6

—

[8

—

