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Abstract—Ultra-wideband (UWB) localization enables user
tracking with high spatio-temporal resolution, whose exploitation
for detecting higher-level mobility patterns is largely unexplored.
We study whether i) existing detection techniques, developed for
coarser-grained localization, apply also to UWB trajectories, and
ii) the quantitative extent to which this enables finer-grained
analyses. We focus on the well-known stop-move pattern, and
offer a concrete use case of capturing visits in a real museum. We
contribute a novel metric suited to the high UWB spatio-temporal
resolution and use it to evaluate representative techniques. We
deploy a UWB system in a 25×15 m2 museum area and base
our analysis on 70000+ positions and 200+ ground-truth stops.
These are very close in space and time, yet results confirm very
accurate spatio-temporal estimation in the vast majority of cases.

Index Terms—Ultra-wideband, mobility pattern, trajectory.

I. INTRODUCTION

The increasing availability of spatial trajectories [1], [2]
from Global Navigation Satellite Systems (GNSS) and effi-
cient techniques to process them [3], [4] enable the extrac-
tion of mobility patterns, application-specific abstractions of
the movement of individuals [5], [6]. Existing approaches
focus on the large-scale, outdoor settings germane to GNSS,
yielding coarse spatio-temporal resolution. However, a recent
technological wave targets sub-meter position accuracy even in
indoor spaces, a powerful enabler in several applications [7].

Leading this wave, ultra-wideband (UWB) radios enable
communication and accurate localization. WiFi and Bluetooth
also offer both, but with a positioning error of meters [7].
UWB yields decimeter-level accuracy by relying on narrow
pulses (≤2 ns) improving time-of-arrival estimation and sep-
aration from multipath components. The increasing role of
UWB in location-based applications is witnessed by the many
Real-Time Location Systems (RTLS) based on it, and its recent
inclusion in smartphones, albeit still awaiting public APIs.
Research questions. Existing mobility analysis techniques,
limited by GNSS, target applications over large areas (m to
km) and temporal intervals (hours to months). UWB trajecto-
ries, accrued with much higher spatial resolution and temporal
frequency, should intuitively unlock finer-grained analyses,
e.g., to decimeters and seconds. However, the increased spatio-
temporal density of UWB positions, along with errors induced
by indoor environments, may conflict with the operation of
GNSS-based techniques or limit the resolution attainable.
Unfortunately, UWB-based mobility analyses are largely unex-
plored, leaving crucial questions unanswered: i) Are existing

techniques applicable to UWB trajectories, and ii) to what
quantitative extent they improve spatio-temporal accuracy?
Focus: Stop-move detection. We seek answers to these ques-
tions by focusing on the well-known stop-move [8] mobility
pattern (§II), key to many applications, for which we illustrate
representative techniques (§III). Broadly, a stop is an abstrac-
tion capturing a visit to a place; a move is a transition between
stops. In a trajectory, stops are spatio-temporally disjoint: i) an
individual visits one place at a time, and ii) visits to the same
place are distinct stops. Stops may represent the home range
of migrating animals, lasting months over a large area, or
people visits to a point of interest, e.g., the workplace, lasting
hours. This application-dependent spatio-temporal granularity
differentiates our work from the literature, as we consider stops
only few decimeters apart and lasting only few tens of seconds.
Real-world requirements and setup: Science museum.
These challenging requirements stem from a motivating real-
world use case also offering the concrete experimental setup
where to distill findings. We are collaborating with the curators
of the MUSE science museum (Trento, Italy), interested in
the fruition of exhibits by visitors. This is hardly a novel
topic; however, existing works [9]–[12] rely on Bluetooth and
are limited to coarse spatial resolution, e.g., room-level. In
contrast, our target museum area contains exhibits within few
decimeters of each other (Fig. 1). Reliably discerning stops
near them is basically impossible via Bluetooth. Further, the
curators are interested in stop durations as short as 10 s,
yielding precious insights on the visitors’ behavior.
Contributions and methodology. Real-world validation en-
tails comparing stop estimates vs. ground truth. This is often
done qualitatively, or by using metrics (e.g., focusing on
individual points [13]) that cannot faithfully capture the fine-
grained spatio-temporal features we target (§VII). Therefore,
we contribute a novel metric (§IV) that i) associates estimated
stops to true ones on a per-stop level, and ii) quantifies their
temporal overlapping with a novel indicator, S-score, along
with the classic F-score summarizing precision and recall.

We base our results on experiments in the museum (§V).
We track users wearing a UWB tag via time-difference-of-
arrival (TDoA) localization [14] while recording their ground-
truth movement via a user-operated smartphone application
and cameras we deployed. The 9 trajectories we gather consist
of 70000+ position samples and 209 stops over 100 minutes.

We exploit this dataset for a quantitative analysis along
several dimensions of UWB-based stop-move detection



(§VI). We first confirm the expressiveness of our novel metric,
then use it to compare techniques after selecting their best
configuration in our context. We consider both the raw tra-
jectories output by UWB and those “smoothed” via Kalman
filters. Finally, we quantify spatio-temporal errors by sharply
separating the contributions of segmentation and positioning.

Despite our challenging setup, the best technique correctly
detects 186 stops out of 199, estimates their duration with an
average error of 3.4 s and their position with an extra 3.1 cm
error w.r.t. the larger ones from UWB localization, which we
identify as the main source of spatial error. In absence of
ground truth, the estimated stop can be correctly associated
to the closest exhibit in 88.9% of the cases. Overall, these
findings provide positive, quantitative answers to our research
questions, pushing the applicability of mobility analysis to
unprecedented fine-grained spatio-temporal resolution.

Our survey of related efforts (§VII) shows that this work
is the first studying stop-move detection on UWB-based
trajectories and, importantly, to offer an evaluation against
systematically-acquired ground truth in a real-world environ-
ment. We end the paper with concluding remarks (§VIII).

II. PROBLEM FORMULATION AND DEFINITIONS

A trajectory T={(p1, t1) . . . (pn, tn)} is a sequence of
positions pk and associated timestamps tk, sampling the
movement in space of an entity, a user in our case. We call
(pk, tk) a trajectory unit. A stop or segment is a sub-sequence
s = {(pi, ti) . . . (pj , tj)} ⊆ T capturing the user permanence
in the area represented by the centroid of positions {pi . . . pj}
during the time interval [ti, tj ]. A segmentation of T is a se-
quence of temporally disjoint stops. Abstractly, the problem is
to extract from a trajectory T the segmentation S={s1 . . . sm}
of estimated stops via a detection operation m(T, ρ,Π). Stops
shorter than the application-dependent temporal threshold ρ
are irrelevant and neglected; the set Π of configuration pa-
rameters depends on the technique at hand, as described next.
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Fig. 1. Museum target area (top) and map (bottom). Dots are points of interest
(POI) in front of exhibits; crosses are UWB anchors on the ceiling.

III. SEGMENTATION TECHNIQUES

We summarize the stop-move detection techniques we com-
pare (§VI) over our dataset, representative of state-of-the-art
approaches (§VII) with different complexity and tradeoffs.
Using spatial distance between units. A stop s can be seen
as the sequence of time-consecutive units {(pi, ti) . . . (pj , tj)}
whose spatial distance from the start of the segment is
smaller than an application-dependent threshold δ ∈ Π, i.e.,
|pi − pj | < δ. Segments with duration [ti, tj ] < ρ are ignored.

This approach was proposed in [15] as Stay Point Detection
(SPD) to identify visits to point of interests in GPS trajectories,
and is commonly used due to its simplicity. However, it is not
well-suited when stops have different spatial size (δ) or are
affected by outliers, e.g., due to positioning noise.
Using unit density. These limitations can be tackled by via
density-based clustering. In DBSCAN [16], a core point in
some abstract space has at least N neighbors within distance ε;
a cluster contains these points and, transitively, those of neigh-
boring core points. Unfortunately, when used for segmentation,
these methods cannot guarantee the temporal separation of
clusters except when spatially far from each other; recurrent
stops, e.g., at the same exhibit, become indistinguishable.

SeqScan [17] overcomes this limitation by defining a stop
as a cluster of units {(pi, ti) . . . (pj , tj)} where {pi . . . pj}
is a DBSCAN cluster. Unlike SPD, clusters can thus have
arbitrary spatial shape; unlike DBSCAN, SeqScan clusters
have (disjoint) time intervals [ti, tj ]; those <ρ are ignored.
Using user velocity (from Kalman filters). Another way
to look at stops is when user velocity is (nearly) zero. For
generality, we do not determine it with sensors, rather compute
it directly from UWB trajectories, whose noisy raw positions
however induce unacceptable velocity jitter. Nevertheless,
these trajectories are typically improved via Kalman filters
(§V-A) whose operation already entails hidden state variables
representing the velocity associated with units (pi, ti). Seg-
mentation then simply consists of identifying consecutive units
whose velocity is greater than a threshold θ ∈ Π, ignoring
segments [ti, tj ]<ρ. This Kalman-based velocity technique
(hereafter, KBV) is, to our knowledge, novel in stop-move
detection; it is interesting as a computationally cheap approach
reusing the filtering often already applied to trajectories.

IV. A NOVEL METRIC FOR STOP-MOVE DETECTION

Crucial to the practical application of segmentation tech-
niques is a clear understanding of the quality they offer. This
is important not only to compare alternatives but also their
different parameter configurations. To provide reliable results,
the output by a technique with a given configuration must be
evaluated against a ground-truth segmentation; the question is
how to measure the quality of the former vs. the latter.
Baseline: Unit-centric metric. A recent approach [13] is to
quantify this quality at the unit level. A unit (§II) belonging
to an estimated stop is a true positive (TP) if also part of a
ground-truth stop (hereafter, true stop); a false positive (FP) if
it is not. Dually, a unit belonging to no estimated stop is a false
negative (FN) if part of some ground-truth stop; otherwise, it is
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Fig. 2. An (artificial) example of segmentation. G is the set of time intervals
of true stops, D the one for estimated stops.

a true negative (TN), hereafter disregarded. The values of TP,
FP, FN can be used to compute popular metrics like precision
P = TP

TP+FP , recall R = TP
TP+FN , and the F-score = 2P×R

P+R
offering a single-value, concise quality indicator.

Unfortunately, this unit-centric approach is oblivious to the
higher-level structure of the segmentation. By focusing on
which units fall into the time interval of true stops, it does not
capture properties of the estimated stops these units belong to.
Even something as simple as the number of correctly identified
stops is lost in the aggregated, unit-centric view.
Contribution: A Stop-centric metric. We propose an alterna-
tive metric that aims at directly matching each true stop with an
estimated one. We use the same popular metrics above (TP, FP,
FN, precision, recall, F-score), but defined at the level of stops
rather than units. For instance, precision is directly the fraction
of true stops over all estimated ones, rather than the fraction
of units belonging to true stops over all units belonging to
estimated stops. We argue, and confirm quantitatively (§VI),
that this change in the “lens” used to analyze segmentations
increases expressiveness and practical relevance. However, this
approach also raises new problems, discussed next.
Matching estimated and true stops (F-score). Consider
Fig. 2, an artificial example to illustrate all relevant cases,
where G and D are the sets of time intervals associated to
true stops and estimated stops, respectively. Our goal is to
establish a one-to-one relationship between them, based on
the intuition that if g ∈ G and d ∈ D represent the same stop,
their time intervals must overlap (ideally, coincide). Still, an
estimated stop can overlap multiple true stops and vice versa.
How can the matching be performed? g1
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Fig. 3. Finding the match-
ing set.

We cast the problem as an unbal-
anced assignment optimization over
the bipartite graph (G,D,E,W ),
where E is the set of edges (gi, dj)
linking overlapping stops, and W the
set of associated weights wij =

gi∩dj

gi
capturing how much of the true
stop gi overlaps with the esti-
mated one dj . The optimal assign-
ment yields the matching set M maximizing the sum
of weights. Applying these concepts to Fig. 2 yields
the graph in Fig. 3. Solving the assignment problem
yields M={(g1, d1), (g2, d4), (g4, d6), (g5, d7)}, from which
TP={d1, d4, d6, d7}, FP={d2, d3, d5}, FN={g3, g6} can be
derived, along with precision, recall, and F-score.
Determining the nature of false detections. This can be
inferred for a segmentation technique based on the relationship
between an estimated segment d and a true one g.

A false positive d is an actual fake if it does not overlap with
any true stop g (e.g., d3 in Fig. 2). Instead, when d ∩ g 6= 0
the FP is a split stop, i.e., a true stop is estimated as two or
more separate ones (e.g., g4 matched by d6 and overlapping
with d5). Indeed, as d is a FP it does not match any g but
some other di 6= d must, otherwise the assignment would not
be optimal. A special case is a short stop, when the duration
of g is <ρ (i.e., irrelevant, §II) but the one of d is not (d2).

Similarly, a false negative g is an actual missing stop (g6)
when g ∩ d = 0, otherwise it is a merged stop, i.e., two or
more true stops estimated as a single one (e.g., g3 lumped into
the same estimate d4 matched to g2). Indeed, g is not matched
by d although they overlap; thus, d must match another gi 6=g
otherwise, again, the assignment would not be optimal. As in
the FP case, a FN short stop could capture a true g incorrectly
estimated by d with duration <ρ. However, in practice, these
are automatically filtered by segmentation techniques.
Quantifying the similarity of matched stops (S-score). In
our example, M contains both (g1, d1) and (g2, d4), whose
temporal overlapping between estimated and true stops is
remarkably different (Fig. 2). Still, another segmentation yield-
ing the same M but with (g1, d1) and (g2, d4) perfectly tem-
porally aligned would yield the same F-score. This indicator
is therefore an expressive measure of correctness, but does not
capture how similar matched stops are. Yet, accurate detection
of temporal intervals is key to many analyses and also impacts
the accuracy of the corresponding stop positions, as discussed
later (§VI). Therefore, we complement the F-score with the

S-score =
1

|M |
∑

(g,d)∈M

g ∩ d
g ∪ d

The summation argument is the Jaccard index over the inter-
vals g and d associated to true and estimated stops, respec-
tively, a common way to capture their similarity. Its average
over the matching set yields the S-score, whose value is in
(0, 1]; it cannot be 0 because stops belong to the matching set
and is 1 only when they are perfectly aligned.

V. DATASET ACQUISITION AND CHARACTERISTICS

Before applying the proposed metric to configure and com-
pare segmentation techniques on our dataset, we describe the
methodology used for collecting it and characterize its content.

A. Collecting the Dataset

UWB localization system. We use TALLA [14], a state-of-
the-art time-difference-of-arrival (TDoA) localization system.
TDoA can support many users as a single UWB packet
broadcast by the mobile tag enables position computation by
the fixed localization anchors in the target area, based on their
different packet time of arrival induced by signal propagation
along different distances. However, positioning accuracy de-
pends on the tight time synchronization of anchors, typically
achieved via dedicated and costly wired infrastructure. TALLA
can localize many mobile tags over large-scale areas spanning
several anchors and with wireless-only time synchronization,
all highly desirable features for adoption by the museum.



All nodes follow a common TDMA schedule. Anchors
exchange beacon packets whose period (epoch) is key to time
synchronization and thus positioning accuracy; beacons are
also received by nearby tags, ensuring they are time-aligned.
Each tag owns at least one slot where it broadcasts a location
packet, whose time of arrival is timestamped at all anchors.
These timestamps, along with the reference ones acquired
during synchronization, are used by a localization server to
estimate the tag position via a TDoA least-squares solver.
Improving position estimates via Kalman filters. UWB
measurements are affected by errors, yielding noisy trajecto-
ries commonly “smoothed” via Kalman filters [7].

Noise exists both when the tag moves and when stationary;
Kalman filters are usually optimized for either case. This
clashes with stop-move detection, which requires efficient
noise reduction in both cases and a fast switch between them
to accurately determine stop start/end times. Therefore, we
combine two Unscented Kalman filters (UKF) representing
the tag mode (stopped or moving) under the framework of
Interacting Multiple Models (IMM) [18]. The output position
is a linear combination of both filter estimates, weighted by
the probability of each filter to match the current tag behavior.

Hereafter, we refer to the trajectories output by TALLA as
raw and to those post-processed via IMM-UKF as filtered.
Fig. 4 exemplifies their difference, whose impact on stop
positions (§V-B) and segmentations (§VI) we analyze later.
System configuration and target area. User tags are battery-
powered and anchors mains-powered; both are DWM1001
nodes by Decawave (now Qorvo) equipped with the popular
DW1000 UWB radio [19]. Each anchor is connected via USB
to a Raspberry Pi, relaying TDoA data to the localization
server. The UWB anchors are deployed on the ceiling of
a 25×15 m2 area (Fig. 1). Those on the perimeter ensure
low geometric dilution of precision (GDOP) and thus high
positioning accuracy. The two near the center improve position
diversity, mitigating the impact of radio signal occlusions.

We configured TALLA with 250 ms epochs (4 Hz time
synchronization) and tags broadcasting 3 times/epoch (12 Hz
position update rate), and the UWB radio with the recom-
mended channel 5, a 64 MHz pulse repetition frequency (PRF)
and a 128 µs preamble.
Data collection methodology and ground truth. The target
area contains a large globe surrounded by 6 tables hosting

Fig. 4. Raw (white) vs. filtered (gray) trajectory. The colored points in the
latter fall in ground-truth stop time intervals.

many small-size exhibits, of which 44 were visited. Members
of the research team emulate the behavior of visitors by
repeatedly moving in the area then stopping in front of some
exhibit. Each user wears a necklace with a UWB tag on the
chest, a natural option for a real use. The position of the tag
is the one actually recorded by the UWB localization system.

Collecting reliable ground truth is challenged by mobility.
We obtained accurate spatial data by placing floor stickers at
all point of interests marking user stops (Fig. 1) and acquiring
with a laser meter their position (hereafter, POI). As for
temporal ground truth, a smartphone application enables each
user to record arrival/departure times for each POI by toggling
a button. We synchronized the smartphone and TALLA clocks,
obtaining a common time reference for ground truth and UWB
trajectories. Moreover, we placed 2 tripod-mounted cameras
with 180◦ angle on opposite sides, covering the entire area,
whose videos enabled validation of the smartphone data.
Dataset content. A UWB trajectory, the input for segmenta-
tion, contains units (§II) in the form ((x, y), t). For each times-
tamp t we collect both raw and filtered (x, y) positions (Fig. 4).
The ground-truth segmentation is represented by a sequence
of stops (ID , tarr , tdep), containing the arrival/departure times
to/from the POI with identifier ID , separately associated to
its ground-truth position. This unambiguously identifies the
stop location and accounts for recurrent visits. We collected
9 trajectories of similar duration (∼11 mins) for a total of
70090 units over 100.03 mins. The number of stops differs
across trajectories, from 11 to 29, for a total of 209 stops.

B. Characterizing the Dataset

Spatio-temporal characteristics. Fig. 6a shows temporal
features via the cumulative distribution function (CDF) of
stop durations in the ground truth. The chart substantiates the
claim (§I) that our dataset contains very short stops, with a
median of 12.4 s. The red line denotes the threshold below
which durations become irrelevant for the application (§II),
set to ρ=10 s based on requirements by the museum curators.
The 10 stops (<5%) below it should not be detected, leaving
199 true stops as the expected ideal segmentation output (§III).

Fig. 5. Spatio-temporal
view of Fig. 4 (filtered).

As for spatial characteristics, ex-
hibits (POIs, §V-A) are physically
very close (Fig. 1). Fig. 6b shows that
80.6% of adjacent POIs are within
1 m, with a maximum of 1.59 m.
Again, this challenging dataset de-
mands high spatial resolution in dis-
cerning stops when segmenting tra-
jectories. Still, the distance between
consecutive stops within a trajectory
varies significantly (POI-POI line,
Fig. 6c) as exhibits are not necessarily visited in order. Fig. 5
shows the filtered trajectory in Fig. 4 with an extra time
dimension. The user mimicking visitors mixes short strides
to adjacent exhibits with longer ones (e.g., to join friends or
avoid crowds), including one around the central globe (e.g.,
to observe it from all angles).



Ground-truth stops vs. estimated UWB centroids. Fig. 5
illustrates another key point: each UWB trajectory contains
several positions (in color) for a stop, i.e., falling inside
the interval [tarr , tdep ] whose ground-truth value is reliably
determined via smartphone and cameras. Ideally, the centroid
of these UWB positions for a POI matches exactly the ground-
truth one; in practice, this is not the case. The POI is very
accurately measured with a laser meter in a fixed position; the
positions yielding the centroid are measured for a moving tag
and with larger UWB errors. Their main source is the user
body, creating non-line-of-sight (NLOS) between the tag on
the chest and the anchors behind the back. This is crucial when
one of them is the main time reference; manually changing
the latter when in NLOS reduces the mean positioning error
by 25%. NLOS mitigation techniques, an active topic of
research [20], [21], could be incorporated in TALLA and yield
improvements; however, it is beyond the scope of this paper.

Nevertheless, the error between the POI ground-truth and
centroid positions (Fig. 6d) remains sub-meter in 96.2% of
the cases, i.e., significantly better than techniques based on
WiFi and BLE, plagued by errors of several meters [7]. For
both raw and filtered trajectories, the median and mean error
are 42 cm and 46 cm, respectively; the commonly-used 75th

percentile is 57 cm. Interestingly, these metrics are within few
percents, i.e., the smoothing induced by Kalman filters does
not affect the position of the UWB stop centroid.
Trajectory structure: A key observation. Fig. 6c com-
pares the distance between consecutive stops computed using
ground-truth POI vs. UWB centroids; their difference is neg-
ligible, despite the errors affecting the latter and the close
placement of exhibits (Fig. 6b). Put differently, the UWB
positioning error does not modify the structure of trajectories;
the sequence of stops contained in each trajectory is essentially
the same regardless of whether we express it via ground-truth
positions or estimated UWB centroids. This fact has important
implications in deriving our findings, as discussed next.
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Fig. 6. Spatio-temporal characteristics of the dataset. Dashed lines represent
the mean and dotted lines the median.

VI. FINDINGS

We study the quality of reference segmentation techniques
(§III) against the yardstick of our novel metric (§IV) using
our dataset (§V) as the means to distill quantitative findings.
What to compare? The ground truth in our dataset consists
of stops (ID , tarr , tdep) where the times of arrival/departure
from a known POI are accurately determined. However,
segmentation techniques operate on UWB trajectories whose
positions are less accurate than ground-truth POIs, with an
error depending on the specific UWB localization system used.

Fig. 7 illustrates the methodological problem. The time
interval [tarr , tdep ] spent at a POI is known precisely from
ground truth. A segmentation estimating it perfectly is still
affected by spatial error: the distance (#1) between the centroid
of units in [tarr , tdep ] and the POI. However, real segmenta-
tions introduce errors w.r.t. [tarr , tdep ] and thus the centroid
computed over it, causing additional spatial error (#2).

Our metric focuses on the temporal dimension by matching
estimated and ground-truth intervals and directly associating
them to the ID of true POI positions. This may seem to neglect
the spatial dimension of segmentation quality. However, we
observed (§V-B) that UWB trajectories and ground-truth ones
have the same spatial structure; the temporal structure is there-
fore key. Moreover, our choice sharply decouples the quality
of segmentation from the one of localization; separating the
errors they induce would be impossible otherwise.

Consequently, we first use our metric to compare the
temporal errors of segmentations. Then, leveraging the above
decoupling, we study their impact on both the position of the
estimated centroid vs. the UWB one in the dataset and vs. the
POI position. This accounts for both time and space, ultimately
providing precious information for practical use.
Novel metric: Is it worth? We confirm the higher expressive-
ness of our stop-centric metric by observing that segmentations
with the same unit-centric quality can have different stop-
centric quality, and vice versa. For illustration only, we focus
on SeqScan segmentations of sample trajectories.

Fig. 8 shows two segmentations of the same trajectory. The
unit-centric metric assigns them the same F-score = 0.90; yet,
the spatio-temporal maps show that they are very different.
Segmentation 〈15, 24〉 correctly detects all 28 true stops.
Instead, 〈15, 12〉 lumps 8 distinct true stops into 2 large
estimated ones, representing incorrectly the user behavior. The
unit-centric metric is oblivious to structure, as it considers only

Estimated stop duration (associated centroid:   ) 

Ground-truth stop duration (associated centroid:   ) 

Ground-truth stop position (POI) 

2

3

UWB unit
1

1 UWB vs. POI

2 Estimated vs. UWB

3 Estimated vs. POI

Stop position error:

Fig. 7. UWB trajectories, ground-truth vs. estimated stops.



whether individual units belong to any stop. Conversely, our
stop-centric metric accounts for the 6 false negatives in the
second segmentation with a lower F-score than the first.

Fig. 9 illustrates the dual situation on another trajectory.
The unit-based metric assigns a higher F-score to 〈20, 36〉; one
could infer it detects more stops than 〈10, 36〉. Instead, both
detect 21 true stops with 1 FN; 〈10, 36〉 actually yields more
accurate duration estimates, as shown for one sample stop in
the spatio-temporal maps. These aspects are faithfully captured
by our metric via the F-score and S-score, respectively.

This higher expressiveness has practical implications. For
instance, in our museum context, some analyses may focus on
how many exhibits are visited, others on how long each visit is.
Our metric clearly distinguishes the two aspects, guiding the
choice of the most appropriate technique and/or configuration.

Based on all these considerations, hereafter we report only
the results obtained with our proposed stop-centric metric.
Segmentation: Which parameters for what quality? We
ascertained the impact on quality of several configurations for
each technique. Table I shows results over the entire dataset
for filtered trajectories. The highlighted best configurations are
those with highest F-score and, when equal, highest S-score,
e.g., as in 〈10, 12〉 and 〈15, 24〉 for SeqScan. Again, alternative
criteria striking different quality tradeoffs are possible.

All methods yield good quality. KBV has the lowest one
and is the most sensitive to its θ parameter; yet, it is the
cheapest computationally (§III). At the other extreme, SeqScan
yields the highest quality and its two-parameter configuration
increases flexibility. Table I also reports the unit-centric metric,
confirming its lower expressiveness. This is evident for KBV,
whose highest F-score is obtained with θ=100 that i) detects
only 123 out of 199 true stops, yet ii) has nearly the same
F-score of the best SPD configuration, detecting 189.
Raw vs. filtered trajectories: Does it matter? Filtered trajec-
tories reduce spatial jitter vs. raw ones (Fig. 4) but also induce

Stop-centric Unit-centric
ε,N TP FP FN F-score S-score TP FP FN F-score

15, 24 28 0 0 1.00 0.79 4953 932 80 0.90
15, 12 22 0 6 0.88 0.74 5013 1087 20 0.90

ground truth 〈15, 24〉 〈15, 12〉
Fig. 8. Different stop properties, same unit quality.

Stop-centric Unit-centric
ε,N TP FP FN F-score S-score TP FP FN F-score

10, 36 21 0 1 0.98 0.84 4348 483 1228 0.84
20, 36 21 0 1 0.98 0.83 5375 718 201 0.92

ground truth 〈10, 36〉 〈20, 36〉
Fig. 9. Similar stop properties, different unit quality.

TABLE I
EXPLORING PARAMETERS FOR FILTERED TRAJECTORIES;

δ AND ε ARE IN CM, θ IN CM/S.

Stop-centric Unit-centric
TP FP FN Precision Recall F-score S-score F-score

δ SPD
20 116 17 83 0.872 0.583 0.699 0.714 0.630
30 161 16 38 0.910 0.809 0.856 0.772 0.777
40 175 19 24 0.902 0.879 0.891 0.790 0.822
50 181 19 18 0.905 0.910 0.907 0.797 0.835
60 189 18 10 0.913 0.950 0.931 0.778 0.854
70 187 21 12 0.899 0.940 0.919 0.757 0.850
80 187 18 12 0.912 0.940 0.926 0.749 0.850
90 183 17 16 0.915 0.920 0.917 0.730 0.849
ε,N SeqScan

10, 12 186 8 13 0.959 0.935 0.947 0.810 0.871
15, 12 176 11 23 0.941 0.884 0.912 0.774 0.872
20, 12 165 13 34 0.927 0.829 0.875 0.741 0.869
10, 24 176 8 23 0.957 0.884 0.919 0.815 0.842
15, 24 187 9 12 0.954 0.940 0.947 0.796 0.870
20, 24 177 11 22 0.941 0.889 0.915 0.770 0.871
10, 36 166 6 33 0.965 0.834 0.895 0.813 0.824
15, 36 183 8 16 0.958 0.920 0.938 0.803 0.859
20, 36 178 10 21 0.947 0.894 0.920 0.777 0.869
θ KBV
10 31 4 168 0.886 0.156 0.265 0.594 0.42
20 110 6 89 0.948 0.553 0.698 0.729 0.658
30 154 4 45 0.975 0.774 0.863 0.766 0.719
40 168 11 31 0.939 0.844 0.889 0.781 0.801
50 175 10 24 0.946 0.879 0.911 0.781 0.831
60 168 10 31 0.944 0.844 0.891 0.751 0.844
70 162 9 37 0.947 0.814 0.876 0.724 0.846
80 142 7 57 0.953 0.714 0.816 0.684 0.847
90 129 9 70 0.935 0.648 0.766 0.650 0.851

100 123 11 76 0.918 0.618 0.739 0.629 0.855

the same stop-move structure (Fig. 6); it is unclear whether and
how they affect segmentation quality. Therefore, we performed
for raw trajectories the same parameter exploration of Table I,
except for KBV. The best configurations for SPD (δ=80) and
SeqScan (ε=15, N=24) respectively detect 8 and 10 fewer
TP with an increase in FN, despite exploiting higher values
of both distance (δ, ε) and number of points (N ) to account
for the higher position dispersion. This confirms that filtered
trajectories yield higher quality, although the difference is not
dramatic, as shown also by the other metrics (Table II).
What is the nature of false positives/negatives? The F-score
of our stop-centric metric offers further insights on quality by
expressing the type of false detections (§IV). The analysis in
Table I shows that SPD detects nearly as many true stops
as SeqScan (more, on raw trajectories) but with more false
positives, lowering precision and F-score. Table II now clearly
shows that the culprit are split stops, a known weakness of the
method. Moreover, all techniques are equally sensitive to stops
with duration shorter than ρ=10 s; interestingly, this is the
main source of mis-detection in SeqScan. Finally, fake stops
are surprisingly rare, even absent with KBV.

Dually, missing stops are the main source of FN for all
techniques. SeqScan and SPD achieve similar results; the
latter is more sensitive to spatial resolution. A smaller δ does
not affect split and merge stops but increases missing ones;
with δ=20 (not shown), they become the only FN source.
In contrast, the two-parameter structure of SeqScan achieves



TABLE II
SEGMENTATION TECHNIQUES AT A GLANCE: STOP-CENTRIC METRIC AND ADDITIONAL INSIGHTS.

Technique Dataset
Main metric Nature of false detections Spatio-temporal errors (in TP) Correct POI

F-score S-score TP FP FN tstart tend ∆t ∆s TP only overallsplit short fake merged missing µ σ µ σ µ σ µ σ

SPD filtered 0.931 0.778 189 10 7 1 3 7 -0.83 4.60 1.16 3.61 2.00 6.65 4.11 6.12 93.1 88.4
raw 0.903 0.764 181 13 7 1 5 13 -1.01 3.82 1.33 5.04 2.35 7.25 4.55 6.71 92.8 84.4

SeqScan filtered 0.947 0.810 186 1 6 1 4 9 -1.64 2.53 1.78 4.05 3.43 4.93 3.12 4.45 95.2 88.9
raw 0.921 0.779 176 1 5 1 8 15 -3.03 3.40 1.98 4.82 5.02 6.41 6.24 33.1 92.6 81.9

KBV filtered 0.911 0.781 175 5 5 0 7 17 0.26 5.21 1.99 4.96 1.72 8.01 4.26 8.42 92.0 80.9

high quality with similar (or even lower) spatial resolution
ε, slightly increasing merged stops in other less-performant
configurations (not shown). Finally, the many missing stops in
KBV are due to its reliance on velocity rather than distance,
frequently changing around the threshold θ. This parameter
crucially affects the nature of FN, dominant in KBV (Table I);
a value of 100 cm/s yields a majority (40) of merged stops,
while 10 cm/s yields all missing stops.
How temporal errors affect spatial ones? We defined the
S-score as a concise indicator of the temporal overlapping
between true stops and estimated ones (TP). However, it does
not account for the absolute error in the temporal alignment
between the estimated and true stops. Here, we analyze this
aspect along with the impact it bears on spatial error (Fig. 7).

Given an estimated segment [t1 , t2 ] and a ground-truth one
[ta , tb ] of duration td=t2−t1 and tg=tb−ta, we consider the
errors in duration ∆t=td−tg , start tstart=t1−ta, and end
tend=t2−tb. Moreover, we consider the corresponding spatial
error ∆s=|pd− pg|, i.e., the (absolute) distance (#2 in Fig. 7)
between the centroids pd and pg of UWB positions falling in
td and tg . Table II reports their mean µ and standard deviation
σ in the best configurations; Fig. 10 shows the CDFs of ∆t
and ∆s of filtered trajectories only, due to space limitations.

All techniques perform well, with errors of few seconds
and centimeters. KBV is the most accurate temporally, with
a mean error µ=1.72 s. Yet, its mean spatial error ∆s is
the highest among filtered trajectories; it is very near to
SPD, whose median is however significantly worse. At the
other extreme, SeqScan yields the worst duration estimates; µ
is nearly twice w.r.t. KBV, although the absolute difference
is <2 s. Nevertheless, it is the most accurate spatially—a
counterintuitive result explained by observing that i) SeqScan
is robust to outliers by design, intrinsically reducing spatial
noise ii) temporal precision (σ) is the highest iii) tstart is
underestimated and tend overestimated, both in median (not
shown) and mean by nearly the same amount, which tends
to center the true stop inside the estimated one, reducing the
distance between the corresponding centroids (Fig. 7).

Fig. 10a also shows that SPD often severely underestimates
stop duration, likely the culprit for the many stop splits
(Table II). Nevertheless, its performance in terms of ∆t and
∆s does not change significantly when moving from filtered
to raw trajectories. This is not the case for SeqScan, whose
metrics for the latter (Table II) are nonetheless heavily affected
by a single outlier, caused by the merging of distant stops,
whose removal yields µ=3.82 cm and σ=7.74 cm for ∆s.

Anyway, this is in line with false detections (Table II); while
SPD is prone to stop splitting, SeqScan is to merging.
Can estimated stops be correctly associated to POIs?
Among the distances in Fig. 7, we analyzed #1 in our dataset
(Fig. 6d) and #2 by reporting ∆s (Table II); we now investigate
their combination, #3. Its value is not very informative, given
that ∆s is very small and so is the difference between #1 and
#3; for SPD, the worst-case (filtered), is 46 cm median and
52 cm mean, only few centimeters more than in Fig 6d.

Instead, the crucial question is: Can we correctly identify the
POI visited by the user via the estimated centroid, i.e., without
ground truth? This of practical relevance, as it is how a real
system would work. Intuitively, the association can consist
simply of determining the POI closest to the estimated stop.

This is challenging in our setup with i) POIs close to each
other (Fig. 6b) and ii) non-negligible UWB positioning error
(Fig. 6d). Still, Table II shows that stops can be accurately
associated to POIs. Considering only TP, the POI closest to
the estimated stop is correct in >92% of the cases, with a
maximum of 95.2% for SeqScan. However, techniques differ
in their ability to identify TP, reducing the fraction of overall
correct associations, nonetheless always >80%. KBV is the
worst, due to its lowest TP; for the same reason, SeqScan is
the best at 88.9%, although its accuracy on raw trajectories
degrades below SPD, reasserting the importance of filtering.

VII. RELATED WORK

Stop-move detection. Trajectory segmentation has been ap-
plied to GPS trajectories for a long time [22]. We considered
techniques (§III) representative of two main classes: criteria-
based define stops based on, e.g., distance, time duration,
velocity, as in SPD and KBV, but also [22], [23]; cluster-
based include SeqScan and, e.g., [24]–[26]. Others are based
on statistical models [13] or do not even rely on segmenta-
tion [27]. Our focus is not on exhaustive comparison, rather
on quantifying the quality attainable w.r.t. ground truth when
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Fig. 10. Duration and spatial error for filtered trajectories.



applying stop-move techniques to UWB, and contributing a
novel metric better eliciting tradeoffs and challenges.
Ground truth and metrics. Evaluation against ground truth
is hindered by the complexity induced by mobile targets (e.g.,
a migrating animal). Validation is often only qualitative, e.g.,
through visual inspection of trajectories, or via simple metrics
like the number of stops [24], [28]. This may suffice over
large-scale areas with well-separated stops, but is difficult in
our setup where stops are close both in space and time. The
recent unit-centric approach [13] offers a quantitative metric,
but without a real-world validation.

Our stop-centric metric (§IV) is significantly more expres-
sive, as confirmed by the analysis of our dataset gathered in a
real museum and with accurately acquired ground truth. The
use of F-score on stops instead of units was also proposed
in [25], [26]. However, these works do not state how a true stop
is measured, likely demanding it to qualitative considerations.
Instead, we provide definitions and methods enabling both
automated quantitative analysis and interpretation of false
detections, along with a measure of stop similarity, reuniting
all relevant dimensions in a single methodological framework.
Stop-move and museums. Museums are a natural application
for stop-move detection, crucial to understanding visitor be-
havior. However, reported experiences are based on Bluetooth,
whose poor positioning accuracy [7] forces coarser trajectory
models whose units are entry/exit or proximity events instead
of positions. In [9], nodes in key areas of the Louvre en-
abled analysis of the overall stay in the museum (hours) and
frequency of visits to areas. Similar experiences determined
the stay in a room [12] or “hotspots” and other macro-
level indicators [10]. These approaches extract spatio-temporal
features from the Bluetooth signal, increasing complexity and
reducing accuracy. In contrast, we showed quantitatively how
the higher accuracy of UWB directly translates in a much
greater spatio-temporal resolution in discriminating stops.

VIII. CONCLUSIONS

The high spatio-temporal accuracy of UWB localization in-
tuitively enables fine-grained detection of stop-move patterns,
key to many applications. Yet, this opportunity has not been
studied, let apart quantitatively and experimentally. This is our
goal, exploiting a museum deployment with accurate ground
truth, also rare in the literature. The findings, albeit not directly
generalizable, concretely inform about the quality attainable in
practice in a real-world setting.

We define a novel, expressive metric relating estimated
and true stops, enabling the configuration and comparison of
segmentation techniques originally targeting coarser-grained
scenarios. We show that, once applied to UWB trajectories,
they induce only small spatio-temporal errors of few centime-
ters and seconds. Therefore, we identify the UWB localization
system, not segmentation, as the main source of spatial error,
likely mitigated by continuous progress in UWB research.
Nevertheless, estimated stops are correctly associated to true
ones in the vast majority of cases, enabling fine-grained UWB-
based stop-move detection in this and other practical contexts.
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