Understanding Code Mobility

Gian Pietro Picco
Dipartimento di Elettronica e Informazione—Politecnico di Milano
P.za Leonardo da Vinci 32, 20133 Milano, Italy
Tel.: 439-02-2399-3519, E-mail: picco@elet.polimi.it

ABSTRACT

The tutorial provides a conceptual framework for code
mobility by illustrating a taxonomy of related technolo-
gies, architectural paradigms, and applications. As a
final case study, the concepts developed in the taxon-
omy are then applied to a quantitative assessment of
the benefits of mobile code technologies and architec-
tures in the network management application domain.

1 INTRODUCTION

Code mobility can be defined as the capability of a dis-
tributed application to relocate its components at run-
time. Component migration may involve the code of a
software component (e.g., the code of a class) or even
some combination of code and state, often referred to
as a mobile agent. This possibility has been made pop-
ular by Java and by a myriad of other languages and
systems. However, such systems differ in the way they
provide support to code mobility, as they rely on differ-
ent conceptual and terminological backgrounds, design
choices, and abstractions. Even worse, the frequent use
of the term “agent” to denote the application code being
relocated adds further confusion to the area, suggesting
links with disciplines like artificial intelligence which are
actually not concerned directly with this research area.

Mobile code has gained great attention because, by free-
ing the behavior of distributed components from their
location, it has the potential to change radically the way
distributed applications are developed and deployed.
Nevertheless, applications exploiting code mobility are
still largely missing, or they are limited to minimal
forms of mobility as in the popular example of the Java
applets being downloaded into Web browsers. It is evi-
dent that this is an immature research area, and there is
a strong need for a systematic approach to understand-
ing the key characteristics of code mobility as well as
for a careful analysis of the expected benefits.

2 TUTORIAL CONTENT

The aim of the tutorial is to provide a conceptual and
terminological framework that can guide the under-
standing and assessment of code mobility. This frame-
work comes under the shape of a taxonomy for mobile
code technologies, architectural paradigms, and appli-
cations that, while covering the state of the art in the
field, proposes a common lexicon and a precise charac-
terization of the founding concepts of the research area.

The portion of the taxonomy related to technology is
based on a reference model describing the basic abstrac-
tions into play, namely, executing units, resources, and
sites. Following this reference model, the mechanisms
provided by the existing technologies are classified, dis-
tinguishing among mechanisms dealing with mobility,
security, translation and execution, and communication.
Building on the classification of technology, a taxonomy
of architectural paradigms is presented. Architectural
paradigms abstract away from the underlying technol-
ogy and provide the application designer with a more
abstract view where to evaluate the opportunities for
mobile code. These two dimensions prepare the con-
text to discuss how code mobility can be exploited to
build distributed applications in novel ways. A set of
general advantages are discussed, together with a list of
application domains for code mobility.

Finally, a case study in network management is the op-
portunity to illustrate how the taxonomy is useful in
practice for understanding and evaluating mobile code.
An informal evaluation is provided, followed by a quan-
titative model that analyzes the critical parameters of a
network management task to assess the effectiveness of
mobile code for reducing the overhead of management
traffic in the network around the management station.

REFERENCES

[1] M. Baldi and G. P. Picco. Evaluating the Tradeoffs of
Mobile Code Design Paradigms in Network Management
Applications. In Proc. of the 20" Int. Conf. on Software
Engineering, 1998.

[2] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding

Code Mobility. IEEE Trans. on Software Engineering,
24(5), 1998.



