
Peer-to-Peer for Collaborative Applications

Gianpaolo Cugola and Gian Pietro Picco
Dipartimento di Elettronica e Informazione—Politecnico di Milano

Piazza Leonardo da Vinci, 32—20133 Milano, Italy
{cugola, picco}@elet.polimi.it

Abstract

Peer-to-peer systems recently captured the attention
of practitioners and researchers as they provide an at-
tractive alternative to client-server architectures. Peer-
to-peer enables the creation of massively distributed
networks of data repositories that can be setup and
discarded easily according to applicative needs. Never-
theless, the current popularity of these systems is due
mostly to their use for file sharing over the Internet.

In this paper, we argue that the advantages of a peer-
to-peer architecture reach well beyond the realm of In-
ternet file sharing. In particular, they become key in
supporting enterprise processes and especially collab-
orative work involving mobile users. To support our
view, in this paper we report about the design of an ar-
chitecture and a core communication middleware in the
EU project MOTION, where a peer-to-peer architecture
is exploited to support collaboration among mobile and
geographically distributed users.

1 Introduction
and Motivation

The technological advances in computing and net-
working that characterized recent years determined an
increasing use of information technology for enabling
cooperative work among the members of a team. Com-
puter supported cooperative work (CSCW) has become
a prominent research area, dealing with issues spanning
from coordination protocols and ergonomy of user in-
terface down to middleware and architectures support-
ing distributed cooperation. This latter aspect is the
one we focus on in this paper.

Client-server vs. peer-to-peer collaboration.
Nowadays, teamwork is often supported using com-
monplace tools, like e-mail and Web-based tools, which
serve the basic need of enabling communication. In

some cases, more integrated applications like Microsoft
Exchange and Lotus Notes, or special-purpose CSCW
tools are employed, which typically provide users with
a shared workspace that contains also the information
and documents relevant to the task at hand. By and
large, however, all these tools exploit a rigid client-
server architecture, relying on a server for enabling
communication and sharing application data.

On the other hand, collaboration is intrinsically peer-
to-peer in nature. In our everyday life, human inter-
action is such that the members of a team typically
interact directly with each other, without the need of
an intermediary—like a server. Moreover, each mem-
ber typically carries along the documents relevant for
discussion, without the need of a centralized reposi-
tory, that is instead typically exploited only for stable
artifacts.

Pros and cons of peer-to-peer. These differences
result in an “architectural mismatch” between the ex-
ternal view provided by the application and its internal
software architecture. The effect of such a mismatch
is to closely couple the interaction with the enabling
architectural element, i.e., the server. The resulting
drawback is a lack of flexibility in carrying out the
interactions, which must all be funneled through the
server. Thus, for instance, the only way to make a doc-
ument available to other parties is by uploading it on
the workspace server. These limitation becomes even
more evident when mobility becomes part of the pic-
ture. People need to communicate and collaborate even
while in movement, and independently from the place
where they are. Sometimes, they need to cooperate by
setting up an impromptu meeting by using only their
computing devices and even in absence of a fixed net-
working infrastructure, as enabled by wireless ad hoc
networking. Nevertheless, in this situations server ac-
cess is often prevented by technical or administrative
barriers.

In this paper, we argue that a peer-to-peer approach
holds significant advantages over traditional client-



server architectures, by fostering an architecture that
maps more naturally on the application requirements,
and that is intrinsically more flexible and tolerant to
reconfiguration.

When a peer-to-peer architecture is adopted, infor-
mation and services are no longer gathered in a single
point of accumulation. Instead, they are spread across
all the nodes of the distributed system. Thus, for in-
stance, users directly host the resources they want to
share with others, with no need to publish them on
some server. In a sense, the server becomes now collec-
tively represented by the whole set of available peers.

Often, peer-to-peer architectures bring this notion to
an extreme by fostering a location transparent perspec-
tive and dropping the conventional assumption that
users know a priori which node is hosting the service
desired. A peer-to-peer interaction is then associated
with a mechanism that enables users to query the whole
space of information provided by the currently con-
nected peers, and find those with the relevant infor-
mation or service.

The uncoupling of the users’ clients from the server
supporting interaction better suits the requirements
coming from mobility, in that it frees clients from the
coupling with servers, and at the same time allows an
arbitrarily large and continuously changing set of nodes
to be accessed at once.

Hence, not only these architectural characteristics,
i.e., the absence of a centralized server, its replacement
through the illusion of a single, global access point to
the system, and the fluid configuration of the peer net-
work, map more naturally onto the application view of
a network of collaborating people. They also provide
an architectural framework that is intrinsically more
akin to scalability and reconfiguration. Interestingly,
these features are relevant not only in mobile scenarios
but also in fixed ones, where peers can be transpar-
ently added and removed as required by the current
business priorities. Moreover, the decentralized nature
of a peer-to-peer architecture encompasses more nat-
urally than centralized ones the case of multisite or
multicompany projects, where the cooperation infras-
tructure must span administrative boundaries, and is
subject to security concerns.

Cooperation vs. Internet file sharing. At this
point, it is natural to ask what is the relationship be-
tween what discussed so far and the many applications
(e.g., Napster, Gnutella, and Freenet to name a few)
developed in the last years that exploit a peer-to-peer
architecture. Unfortunately, it turns out that these ap-
plications start from premises that are rather different
from those outlined thus far. They target the Inter-

net and aim at providing peer-to-peer computing over
millions of nodes, with file sharing as their main ap-
plication concern. By simplifying a little, we could say
that what most of these applications essentially provide
is a new generation of file transfer (FTP) service. The
difference in perspective from the domain of collabora-
tive work is made evident by their search capabilities,
that typically do not guarantee to capture information
about all matching files. In the domain of Internet file
sharing, it is reasonable to adopt this best-effort ap-
proach, that may return an empty result set even if
some of the searched files actually exist in the system.
However, this is usually not acceptable in an enterprise
environment, where completeness of searches is usually
a key requirement.

Peer-to-peer is no silver bullet. As a further con-
sideration, we may observe that currently available
peer-to-peer applications bring peer-to-peer to an ex-
treme, where the logical network of peer is totally fluid:
every peer plays exactly the same role of the others,
and none of them can be assumed to be fixed and
contributing to the definition of a permanent infras-
tructure. This radical view, albeit intellectually stim-
ulating, prevent access to the resources exported by
non-connected peers. This is not acceptable in the
enterprise domain we consider, where critical data is
often required to be always available, independently
from its owner. Moreover, the enterprise environment
is much more structured than the Internet one. Lever-
aging this structure whenever possible is likely to pro-
vide improvements and optimizations.

The motion approach. Based on all these consid-
erations, in the motion project we developed an in-
novative platform for collaborative applications, which
adopts a peer-to-peer architecture specifically geared
towards the enterprise domain. The next section de-
scribes the architectural principles defining our peer-to-
peer approach, while Section 3 gives a concise overview
of the middleware support that embodies these princi-
ples and that lies at the core of the platform.

2 Architectural Principles

The peer-to-peer approach taken in motion is in-
spired by previous work on the Lime [3] coordination
model, and its generalization into the notion of global
virtual data structure (gvds) [2]. The notion of gvds
is a meta-model of communication, originally conceived
for mobile environments, centered around the idea of
enabling coordination among mobile units through a



data space that is transiently shared and dynamically
built out of the data spaces provided by each unit in
range.

This data space is global because it includes all the
data contained in all the local data spaces of the con-
nected units, and it is virtual since it does not exist
physically as a single entity, like the local ones. In-
stead, it is an “illusion” dynamically generated by the
underlying middleware upon invocation of the local ac-
cess primitives, and according to changes in connec-
tivity. Hence, the gvds paradigm naturally enables
a context-aware style of coordination where, in every
moment, the context is described by the content of the
gvds, which reflects the state of accessible units.

The architecture of the motion platform enriches
the notion of gvds with some abstractions appropriate
to the application domain, that deal mostly with users,
data, and a way to group them according to some re-
lationship, as described in the following.

Abstractions. The execution of an instance of the
motion platform involves a set of individuals, which
constitute what we call a virtual population. A virtual
community is instead a subset of a virtual population,
as defined by some membership relation. Typically,
this relation is the interest in a given topic. A given in-
dividual can be a member of zero, one, or more virtual
communities. At a given point in time, only a subset of
the virtual community can be reached directly through
network connectivity. We call this subset a connected
community.

Thus, for instance, the set of people working at com-
pany ACME constitute a virtual population, while the
set of people working at ACME and interested in the
design of the latest model of toaster constitute a vir-
tual community. The connected community is the one
a given individual running a motion client can access,
based on network connectivity. If no connectivity is
available to a member, she will have access to a com-
munity temporarily containing only herself.

Communities define a scoping mechanism that can
be leveraged off for grouping not only people, but also
data. The resource space is the set of artifacts (e.g.,
documents) owned by each individual. It provides a
minimal set of primitives needed to store, retrieve, and
query the elements of the set. The owner of a resource
space has access to all of its content. Instead, the
member space is the subset of documents contained in
an individual’s resource space that pertain to a given
community. An individual can be member of multi-
ple communities, and she can choose which documents
pertain to each community. The same document may
be made available to several communities. This means

that member spaces can have intersections. A mem-
ber space can be seen as a “community view” on an
individual’s resource space. Finally, the community
space is the union of all the member spaces belong-
ing to the members of a community, and is effectively
a gvds spanning several nodes.

According to the notion of gvds, the community
space defines a transient data space, where information
is provided only by the connected members. Never-
theless, the ability to communicate and share artifacts
asynchronously was a key requirement for the develop-
ment of the motion platform, due to its intended use
in an enterprise environment. Supporting this require-
ment implies relying on the persistence of artifacts, in-
dependent from changes in connectivity.

For this reason, we associate to each community
space a community cabinet, whose contents are not sub-
jected to transient sharing, rather they are persistent.
Since it is part of the community space, the cabinet is
available to all community members. Nevertheless, the
content of the cabinet is permanently available rather
than transiently built and dynamically changing, i.e.,
the content is available to community members inde-
pendently of whether the individual owning a given re-
source in the cabinet is currently connected. At this
level of abstraction, we are not concerned about how
cabinets will be implemented. In principle, several al-
ternatives exist, with various degrees of decentraliza-
tion (and complexity). We will detail this issue in the
next section.

Architecture overview. The conceptual model de-
scribed thus far is implemented using a peer-to-peer
architecture whose main components are described in
Figure 1.

At the top, the presentation layer takes care of visu-
alizing the service interface to the user in a way that is
adapted to the device the user is currently using. While
the presentation layer may vary according to the de-
vice, the underlying business logic is coded only once,
and contained in the TeamWork services. Services can
be general-purpose (i.e., needed by users in any situa-
tion, like searching and browsing community spaces) or
application-specific (e.g., those developed for the mo-
tion end-users). Moreover, services can be installed
and removed dynamically using service configuration
facilities. All services rely on a set of TeamWork Ser-
vice Components, providing the building blocks for ser-
vice programmers.

Below the TeamWork service layer, the Advanced
Communication Middleware provides the core commu-
nication facilities needed to retrieve and disseminate
information in a peer-to-peer network. The next sec-



Web Integration

Terminal adaptation and 
GUI visualization services

General
purpose
services

Application
specific
services

Service
configuration

TeamWork service components

Authentication
and secure
channels

Repository
adapter

Publish/Subscribe
and search

RepositoryAccess
control

Mobile code
support

Java Virtual Machine

OS/HW

PeerWare

Presentation

TeamWork
services

Advanced
Communication
middleware

Figure 1: The architecture of the motion platform.

tion illustrates its key features.

3 Middleware Support

The Advanced Communication Middleware (acm)
provides the core communication facilities the motion
platform builds upon. These facilities enable a peer1 to
make information contained in its repository available
to other peers in the system and, at the same time,
perform distributed queries towards other repositories,
subscribe to events and disseminate the corresponding
event notifications efficiently, push information from a
source to a number of peers, and exploit mobile code to
relocate application code across the peer network—all
in a secure way.

Middleware Components. The data sitting on a
machine and owned by a peer is stored in the Repos-
itory. These data are made available to the rest of
the system through the main component of the acm,
the Publish/Subscribe and Search module. This mod-
ule is actually implemented by PeerWare [1], a peer-
to-peer middleware that enables the gvds notion by
providing access to the union of all the repositories of
all the connected peers.

The data structure provided by PeerWare is a hi-
erarchy of nodes containing documents, where a docu-
ment may actually be accessible from multiple nodes,

1For simplicity, we assume a one-to-one mapping between
users and peers, and use the two interchangeably. In the mo-
tion architecture there are ways to accommodate more complex
schemes.

N1

N2 N3

N4 N5

N6

N7

N8 N9 N10

D1

D2

D3
D4

D5

D6

D7D8
Node

Document

Legenda

Figure 2: The data structure provided by PeerWare.

N1

N2 N3

N4 N5

N6

N7

N8 N9 N10

D8

D2

D3 D4

D5

D6

D7D8

N1

N2 N3
N7

N8 N9 N10

D1

D3

D6

D7D8

N1

N2 N3

N4 N5

N6

D2

D4

D5

D1

D8

Peer A
 (DS1)

Peer B
 (DS2)

GVDS

Figure 3: Building the gvds in PeerWare.

as shown in Figure 2. Hence, this data structure is
similar in structure to the directory tree of a Unix
file system. When a peer is isolated, it is given ac-
cess only to its own tree. However, when connectivity
with other peers is established, the peer has access to
the virtual tree constructed by superimposing the trees
contributed by all the peers in the system, as illustrated
by Figure 3. This data structure is naturally exploited
in motion to map the notion of community onto the
hierarchy nodes.

By exploiting the primitives provided by Peer-
Ware, peers can query the global repository as if it
was local, as well as subscribe for events occurring in
the repository and receive the corresponding notifica-
tions. The hierarchy provides a natural mechanism to
provide scoping, thus leading to an efficient implemen-
tation of searches, and to the definition of a security
protection domain.

Security is clearly a relevant issue in the scenario we
are targetting, where a user is empowered with the abil-
ity to query a global space of information at once. Se-
curity concerns are addressed in the acm by two sepa-
rate modules. The Authentication and Secure Channels
module provides mechanisms for ensuring privacy and
integrity of communication, by establishing encrypted



channels, and for handling the security information
necessary to authenticate a peer. Essentially, this mod-
ule creates a secure communication path among peers,
so that access to the gvds can be limited based on the
identity of the peer requesting it. The actual security
policy that determines the capabilities of a given peer is
embedded by the Access Control module. It intercepts
requests of operations on the Repository and checks
whether they are valid according to the access control
table and to the security information associated with
the peer and evaluated during authentication, e.g., cer-
tificates.

It is important to note that the functionality pro-
vided by the security modules and by the repository
are sharply decoupled from the specific implementa-
tion provided for these functionalities. Thus, the se-
curity protocols, as well as the format of the security
information used to perform authentication, and the
repository effectively used can be changed easily, e.g.,
to adapt them to the common practice of a specific
business environment.

Finally, the Mobile Code Support module provides
the ability to relocate dynamically application code
across the various peers. This capability, albeit avail-
able directly to the TeamWork services, is also used
directly by PeerWare to enable the dissemination of
application-specific ways to access a remote repository,
e.g., by providing application-dependent filtering capa-
bilities.

Deployment and Prototype. As mentioned in Sec-
tion 1, in collaborative applications there is a tension
between the need of contributing documents only as
long as the owner is involved in an interaction, and
the need for maintaining other documents permanently
available, independently from the set of users currently
connected. This requirement is already captured by
the architectural principles described in Section 2, by
introducing the concept of cabinet. At the level of the
run-time architecture, the same requirement led to the
distinction between a set of permanently available back-
bone peers, and a fringe of mobile peers which are al-
lowed to connect and disconnect as required. Given
the way PeerWare operates and routes requests for
data and notifications to events, all these peers are con-
nected to form a tree in which the mobile peers repre-
sent the leaves, as shown in Figure 4.

Observe that, to keep intact the advantages of a peer-
to-peer architecture in terms of flexibility, the distinc-
tion between backbone and mobile peers is only a de-
ployment one. In other terms, both run the same mo-
tion components, which allows them to locally store
data and to freely access the data shared by each peer

Legenda

Backbone peer

Non-backbone peers

Lighweight peer

Figure 4: The run-time architecture of the motion platform.

and the services realized by the motion platform. In
particular, backbone peers may act as cabinets for one
or more communities, thus allowing data to be perma-
nently accessible independent from the set of currently
connected peers.

A third set of peers is that of lightweight peers. They
either run a lightweight version of the motion compo-
nents, which does not include the repository (e.g., in
case of PDAs), or access the motion platform through
a standard Web browser. In both cases they connect
to one of the backbone peers, which act as an access
point to the motion platform.

4 Conclusions

In this paper, we argued that peer-to-peer architec-
tures, currently made popular by file sharing over the
Internet, may bring considerable advantages when ex-
ploited for supporting collaboration among geograph-
ically distributed and mobile users. Collaboration de-
fines a scenario where interaction is intrinsically peer-
to-peer; exploiting a peer-to-peer architecture reduces
the architectural mismatch between the application
and its implementation. Moreover, the flexibility and
scalability properties of this architecture opens up sev-
eral opportunities, and become a natural choice when



mobility is part of the requirements.
This paper provided a concise overview of the mid-

dleware at the core of the motion platform. Prelimi-
nary experience with the platform and the middleware
confirm the usability of the prototype and the relevance
of the benefits. Further experimentation, including the
delivery of a industrial-strength prototype and its de-
ployment at the premises of the end-users involved in
the motion project, will give us the opportunity to
validate our ideas on the field.

Acknowledgments

We thank the members of the motion consortium
for providing the context where the ideas described in
this paper were born, discussed, and put in practice.

References

[1] G. Cugola and G.P. Picco. PeerWare: Core
Middleware Support for Peer-To-Peer and Mobile
System. Technical report, Politecnico di Milano,
November 2001. Submitted for publication. Avail-
able at www.elet.polimi.it/~picco.

[2] A.L. Murphy. Enabling the Rapid Development
of Dependable Applications in the Mobile Envi-
ronment. PhD thesis, Washington University in
St. Louis, MO, USA, August 2000.

[3] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime:
A Middleware for Physical and Logical Mobility. In
Proc. of the 21st Int. Conf. on Distributed Comput-
ing Systems (ICDCS-21), May 2001. To appear.


