
A

DICE: Monitoring Global Invariants with Wireless Sensor Networks

ŞTEFAN GUNĂ, University of Trento, Italy
LUCA MOTTOLA, Swedish Institute of Computer Science
GIAN PIETRO PICCO, University of Trento, Italy

Wireless sensor networks (WSNs) enable decentralized architectures to monitor the behavior of physical
processes and to detect deviations from a specified “safe” behavior, e.g., to check the operation of control
loops. Such correct behavior is typically expressed by global invariants over the state of different sensors or
actuators. Nevertheless, to leverage the computing capabilities of WSN nodes, the application intelligence
needs to reside inside the network. The task of ensuring that the monitored processes behave safely thus
becomes inherently distributed, and hence more complex. In this paper we present DICE, a system enabling
WSN-based distributed monitoring of global invariants. A DICE invariant is expressed by predicates defined
over the state of multiple WSN nodes, e.g., the expected state of actuators based on given sensed environ-
mental conditions. Our modular design allows two alternative protocols for detecting invariant violations:
both perform in-network aggregation but with different degrees of decentralization, therefore supporting
scenarios with different network and data dynamics. We characterize and compare the two protocols using
large-scale simulations and a real-world testbed. Our results indicate that invariant violations are detected
in a timely and energy-efficient manner. For instance, in a 225-node 15-hop network, invariant violations
are detected in less than a second and with only a few packets sent by each node.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; D.3.2 [Programming
Languages]: Language Classifications—Specialized application languages

General Terms: Algorithms, Design

Additional Key Words and Phrases: System architectures, Programming models and languages, Network
protocols, In-network processing and aggregation

ACM Reference Format:
Gună, Ş, Mottola, M., and Picco, G. P. 2013. DICE: Monitoring Global Invariants with Wireless Sensor
Networks ACM Trans. Sensor Netw. V, N, Article A (January YYYY), 33 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The untethered computing power and autonomous operation of wireless sensor net-
works (WSNs) enable novel applications to monitor the behavior of physical processes.
A prominent example is monitoring the operation of control loops by checking that the
state of the physical process remains within the safety bounds dictated by the control
laws. Most often, such correct behavior is expressed by global invariants over the state
of different computational units attached to sensors or actuators.

Authors’s addresses: Ş. Gună and G. P. Picco, Dipartimento di Ingegneria e Scienza dell’Informazione Via
Sommarive, 14 I-38123 Povo (TN), Italy; Luca Mottola Swedish Insitute of Computer Science, Isafjordsgatan
22, 16440 Kista, Stockholm, Sweden. Luca Mottola is now also with Politecnico di Milano, Italy, Via Golgi,
42, 20133 Milano, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1550-4859/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Ştefan Gună et al.

To achieve autonomous monitoring of physical processes, a prominent trend moti-
vated by efficiency and flexibility reasons is to leverage increasing degrees of decen-
tralization [Stankovic et al. 2005]. As a result, WSN nodes increasingly host a sig-
nificant portion of the application intelligence. Such degrees of distribution, however,
drastically complicate the system operation.
Example scenarios and motivation. Consider a demand-driven building ventila-
tion system. Sensors feed periodic CO2 and pressure readings to a Heating, Ventila-
tion, and Air-conditioning Controller (HVAC). This operates fans in the building to
maintain the inhabitants’ comfort.

An example invariant that building operators require to check concerns the rela-
tion between the state of sensors and actuators dictated by control laws. Such sample
invariant can be specified as:

(I1) Whenever any sensor detects a CO2 reading above a given threshold, at
least one fan must be active.

Nevertheless, monitoring the correct HVAC operation may be subject to further con-
straints. For instance, a non-uniform pressure profile in the building may indicate a
malfunctioning HVAC. This condition can be checked as:

(I2) The difference in pressure between any two sampling points must re-
main below a given threshold.

A different example scenario is the transportation of perishable items [Hoppough
2006]. Currently-used RFID tags only allow tracking the location of items at specific
points along the supply chain. WSNs nodes may enable continuous, fine-grained mon-
itoring of the storage conditions, both at warehouses and during transportation. For
instance, when at a warehouse, the system could monitor an invariant similar to I1,
stating that when temperature readings from any nodes are above threshold, at least
one fan should be active. On the other hand, when packages are in a container a non-
uniform load may cause stability problems during transportation. WSN nodes may be
installed to ensure that the difference in load between any two sampling points in a
container must remain below a threshold, similar to I2.

The example invariants above are i) global, i.e., they cannot be evaluated based on
the state of a node alone, and ii) they possibly change over time. Similar needs for
distributed monitoring of global invariants are likely to arise in several application
scenarios, such as factory automation and health-care [Stankovic et al. 2005]. Indeed,
as WSNs foster decentralized and increasingly autonomous applications, the mech-
anisms ensuring their correct operation under any circumstance must also become
distributed. The latter vision motivates our work.
Contribution and Road-map. We present DICE (Distributed Invariant CheckEr),
a system to monitor global invariants in a distributed fashion using WSN nodes. A
DICE invariant is expressed by combining predicates defined over the state of multi-
ple WSN nodes, e.g., the current CO2 readings at any sensor node against the state of
fans attached to actuator nodes. Solving this problem in general requires global knowl-
edge of the system state [Garg and Waldecker 1994] and is further complicated by the
resource-scarce nature of WSNs.

To tackle this problem for DICE invariants, we identify a reduced set of global state
elements sufficient for detecting invariant violations—the local view. Based on this
concept, we design, implement, and evaluate two distributed protocols for monitoring
violations in scenarios with different environment and network dynamics, and with
different degrees of redundancy in detection:

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:3

— our fully-decentralized FLAT protocol allows any node to detect invariant viola-
tions, achieving increased failure tolerance against node crashes. It is particularly
efficient for monitoring slowly-changing processes and amenable to deployment on
relatively dynamic network topologies;

— our TREE protocol induces some degree of centralization by allowing only a subset
of nodes to detect invariant violations, but it does so very efficiently in scenarios
with high churn in application data and relatively stable network topologies.

The choice of the appropriate protocol depends on the specifics of the target scenario.
For instance, from a networking standpoint TREE may be the most appropriate solu-
tion in the relatively static HVAC scenario, while FLAT may be a better choice for the
logistics scenario, where the handling of packages is likely to induce node churn. Nev-
ertheless, both protocols above realize invariant monitoring efficiently: in a 225-node
network with a 15-hop diameter, both FLAT and TREE detect violations in less than a
second and with only a few packets sent per node.

The rest of the paper unfolds as follows. Section 2 analyzes the types of invariants
we target and describes the language to specify them. Section 3 defines the local view
concept and the assumptions we base our work upon, e.g., in terms of asynchronous
distributed processing. Section 4 illustrates the DICE system architecture, including
our dedicated tool-chain that automatically encodes invariants in their binary form
and generates their corresponding local view data structures, based on the type of
invariant monitored. Section 5 describes the two protocols for invariant monitoring
based on the notion of local view, and discusses how the specifics of distribution, e.g.,
relative to communication delays, may affect their operation, along with our remedies
to these issues. Section 6 reports quantitatively on the performance and correctness of
the two protocols, using both simulations to verify the behavior in large-scale networks
and a lab testbed to profile the traffic patterns using real-world sensed data. Section 7
contains a concise survey of related work. Section 8 ends the paper with brief remarks.

2. INVARIANTS
We describe how DICE invariants are formulated and the declarative language we
design to specify them.

2.1. Formulation
DICE invariants are combinations of atomic predicates1 over variables whose value is
a function of network nodes. A DICE invariant is thus of the form:

Q1x1, . . . Qrxr : P1(x1, . . . , xr) ◦ . . . ◦ Ps(x1, . . . , xr)

where Qi ∈ {∀,∃} (1 ≤ i ≤ r), Pj(x1, . . . , xr) (1 ≤ j ≤ s) is an atomic predicate whose
value depends on variables at nodes x1, . . . , xr, and ◦ ∈ {∧,∨,→}. Note that existen-
tial and universal quantifiers apply only to terms representing network nodes. These,
however, are solely used for addressing, and do not directly concur to determining the
truth value of an invariant. As such, a DICE invariant is simply analogous to a Boolean
condition in mainstream programming languages, with variables possibly residing on
different nodes.

We specifically focus on two types of global invariants characteristic of our target
applications:

1An atomic predicate is one with no deeper propositional structure [Whitesitt 1995]. This entails that a
predicate belonging to a DICE invariant cannot be further decomposed in more elementary predicates.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Ştefan Gună et al.

— in local-predicate (LP) invariants, each predicate involves only one node variable.
The invariant resulting from combining the predicates with ◦ ∈ {∧,∨,→} is however
global. LP invariants can be equivalently written as:

Q1x1 : P1(x1) ◦ . . . ◦Qrxr : Ps(xr), r = s.

— in distributed-predicate (DP) invariants there is only one predicate (i.e., s = 1) that
involves multiple node variables. DP invariants can be equivalently written as:

Q1x1, . . . , Qrxr : P (x1, . . . , xr).

In practice, undesired deviations from specified behaviors are often expressed as
comparisons against known thresholds [Lipták 1995], as in our motivating scenarios
in the introduction. Therefore, we consider invariants where P (x1, . . . , xr) is a Boolean
predicate or an inequality f(x1, . . . , xr) < T or f(x1, . . . , xr) > T , where f is a linear
function of the values of variables at x1, . . . , xr and T is a numerical constant.

2.2. Invariant Language
We design a declarative language to specify DICE invariants. The language is input to
a dedicated tool-chain, described in Section 4, which automatically generates the data
structures and executable code necessary for their distributed monitoring.
Attributes. Physical processes are monitored through WSN nodes, which directly re-
port either sensed data or the state of actuators. DICE attributes conceptually link
the WSN node and the physical process under control. Each node is characterized by
one or more attributes, each a typed mapping between a name and value. Different
nodes can have different attributes. DICE supports three kinds of attributes. Constant
attributes are set by the programmer and remain unchanged. In the HVAC scenario,

attribute int type = FAN;

declares an attribute representing the type of node, in this case one controlling a fan.
The value of periodic attributes, instead, is automatically updated by the system at a
programmer-specified rate. For instance,

attribute int co2 every 3;

declares an attribute for a CO2 reading, whose value is refreshed every 3 s. However,
polling the value of slow-changing attributes can be inefficient. Therefore, we also al-
low declarations such as

attribute bool isActive on event;

where an update to the active status (e.g., of a fan) is triggered by the control logic,
outside DICE, as discussed in Section 4.

Periodic and event-triggered attributes give developers the knobs to trade resource
consumption, e.g., in terms of processing, against the latency to make the state of a
physical phenomena available to DICE. The latter has an impact on the latency to
detect invariant violations, as these can be detected only once DICE is aware of the
environment state. We discuss these aspects and their implications in Section 3.
Invariants. DICE invariants are specified using existential or universal quantifiers
over WSN nodes and the @ operator to select which of a node’s attributes is referenced
in the invariant. As an example, the invariants in the introduction can be specified as:

invariant I1 {forall m: type@m = CO2 and co2@m > T
-> exists n: type@n = FAN and isActive@n}

invariant I2 {forall m,n: pressure@m - pressure@n <T}

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:5

invariant = invariant inv-name { predicate-exp } [tolerate-exp] ;
predicate-exp = (predicate | not (predicate)) [(and | or | ->) predicate-exp] ;
tolerate-exp = tolerate const time-unit [for const times in const time-unit] ; ;
predicate = (forall | exists) node-variable : bool-exp

| (forall | exists) quant-list : linear-exp (< | >) const ;
bool-exp = term [(= | < | > | !=) const] [(and | or | ->) bool-exp] ;
quant-list = node-variable [, quant-list] ;
linear-exp = [-] ([const *] term | const) [(+ | -) linear-exp] ;
term = attribute-name @ (node-variable | const) ;

Fig. 1. Invariant language grammar.

Notably, I1 is an example of LP invariant: both the antecedent and the consequent
in the logical implication individually refer to a single node, m and n respectively. On
the other hand, invariant I2 is of type DP, as the only predicate in the invariant checks
an inequality between the values of attributes at different nodes.

Figure 1 shows the grammar for the invariant language, which determines the in-
variants one can possibly specify. DICE invariants can have an arbitrary number of
node variables. Invariants can also refer to a specific node by using its identifier, as
in co2@52 for node 52. Besides the quantifiers forall and exists, the usual logical
operators and, or, not also apply.

An example invariant the grammar in Figure 1 prevents from specifying is
∀m,n : x@m+ x@n = T . Checking violations to this invariant indeed requires non-
polynomial time, as it is an instance of the NP-hard Boolean satisfiability prob-
lem [Whitesitt 1995], and would likely be prohibitively expensive to solve in a dis-
tributed fashion on a network of resource constrained nodes. Similar observations hold
for ∀m,n : x@m+ x@n 6= T , which the grammar also prevents.
Transient violations. Short-term invariant violations are inevitable in some scena-
rios. For instance, a sudden gathering of people may trigger a violation of I1 before
the fan is activated. However, if the HVAC operates correctly, the CO2 readings should
eventually return below T. Using the tolerate clause, DICE allows to specify transient
deviations along two dimensions: time and occurrences. For instance,

invariant I1 {forall m: type@m = CO2 and co2@m > T
-> exists n: type@n = FAN and isActive@n}

tolerate 10 min for 5 times in 24 h;

is a variation of invariant I1 where the CO2 readings are allowed to cross the thresh-
old for at most 10 minutes, supposedly enough for the HVAC to react. However, this
transient violation should not happen repeatedly, as this may indicate a failure in the
control system. Thus, the invariant also specifies that transient violations are allowed
at most five times per day, e.g., based on the building usage patterns.

3. MONITORING INVARIANTS
DICE invariants express properties that must hold simultaneously at multiple nodes.
Temporal operators, allowing relations among states occurring at different times, are
intentionally not included in the grammar in Figure 1. Their monitoring would re-
quire tracking the environment evolution over time, which clashes with the memory
limitations of typical WSN nodes.

Moreover, in abstract terms, an invariant violation is determined when a given com-
bination of values of physical quantities simultaneously occurs in the environment.
However, in practice, these physical values become available to any software monitor-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Ştefan Gună et al.

ing system only when they are observed through some device (e.g., a sensor) and stored
as program data—in the case of DICE, the node attributes. Our goal is to design a so-
lution that efficiently detects invariant violations, determined by changes in the DICE
attribute values at multiple nodes, if and only if they occur.

Based on the formulation above, detecting invariant violations can be regarded as an
instance of distributed predicate detection [Garg and Waldecker 1994]. In a perfectly
synchronized system with infinite communication and processing resources, a central-
ized solution that maintains global knowledge about the system state suffices to solve
the problem [Garg and Waldecker 1994]. On the other hand, in absence of specific
assumptions on system delays, absolute correctness—a system capturing invariant vi-
olations if and only if they occur—is impossible to achieve [Garg and Waldecker 1994].

WSNs are asynchronous systems, characterized by scarce communication and pro-
cessing resources, and non-deterministic system delays. Therefore, WSNs pose multi-
ple challenges:

(1) Maintaining global state knowledge is prohibitively expensive, e.g., in terms of
energy for communication, as any change of state at any node in the network may
require communication to a central unit.

(2) Due to the asynchronous nature of WSNs, node failures are generally not de-
cidable. Besides potentially leading to missed invariant violations, this generally
causes problems also for detecting when an invariant is complied with.

(3) Non-negligible delays, e.g., in sensing and communication, may prevent the system
from capturing all and only the invariant violations (as discussed above), yielding
both false positives and false negatives.

To tackle challenge (1), we reduce the amount of global information necessary at
each node by defining a notion of local view, i.e., a reduced set of information enabling
local detection of global invariant violations. In this sense, the local view represents
a slice of the global system state sufficient for checking global invariant violations. In
the rest of this section, we describe how the local view is populated at any given node,
depending on two types of invariants: local-predicate (LP) and distributed-predicate
(DP) invariants. Due to their specific structure, LP invariants allow for a monitoring
strategy, described in Section 3.1, that relies on the computation and dissemination
of Boolean values representing the value of predicates local to nodes. DP invariants,
on the other hand, require the processing and dissemination of individual attribute
values, as illustrated in Section 3.2.

Maintenance of the local view at each node, however, must be complemented by
protocols performing the efficient dissemination of its relevant changes, further com-
plicated by the presence of faults and non-deterministic system delays. To put the
dissemination protocols in context, we precede their discussion with the illustration
of the DICE compiler and run-time support in Section 4, as these aspects are key to
understand the way dissemination is performed. Our protocols, described in Section 5,
address challenge (2) by striking different trade-offs w.r.t. the resilience to node and
communication faults, and tackle challenge (3) with mechanisms that allow the recon-
struction of the order of events, greatly reducing the impact of communication delays
on the correctness of detection of invariant violations. We quantitatively assess the
impact of our design choices in Section 6.

3.1. Local-predicate (LP) Invariants
We exemplify the monitoring of LP invariants to provide an intuition of how the local
view can be efficiently populated. Next, we formally present the general algorithm.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:7

local
predicate

values

local view

T,T
F,*

F,T
F,* network

T,T
T,*

T,F
T,* network 2b2a

1b1a

INITIAL STATE

network

network

STATE AFTER UPDATE

node

<P1=T,
 P2=F> <P1=T,

 P2=F>

<P1=F,
 P2=T>

Fig. 2. Local view processing for a LP invariant ∀m,n : P1(m) ◦ P2(n), ◦ ∈ {∧,∨}. Value changes are shown
in bold. The node considered in the picture only affects the truth value of P1 and it is excluded from moni-
toring P2, e.g., as it happens for a CO2 sensor node monitoring type@n = FAN ∧ isActive@n.

Intuition. For simpler illustration, consider a slight variation of invariant I1 where
only universal quantifiers are used:

(∀m : type@m = CO2 ∧ co2@m > T)⇒ (∀n : type@n = FAN ⇒ isActive@n)

To detect violations of LP invariants and accordingly define the content of the local
view, we take inspiration from the notion of communication silence [Zhu and Sivaku-
mar 2005]. Let us assume that the example invariant above holds. Then, every node
attached to a CO2 sensor does not send any information to other nodes as long as
its reading is above T . The rest of the system implicitly takes the “collective silence” of
CO2 nodes as an indication that the predicate they monitor holds true. Similarly, nodes
controlling a fan do not send any information as long as the fans are active, which im-
plicitly indicates that every such node is currently operating the fan. Therefore, if the
entire system remains silent, it means that the invariant is complied with.

Whenever either the CO2 reading drops below T or a fan becomes inactive, the cor-
responding node notifies this event. Breaking the silence reveals a change in the truth
value of some predicate. Since the two predicates in I1 are joined by implication, the
invariant can be violated only when a notification arrives from a node controlling a fan
(i.e., there exists at least one inactive fan) while CO2 nodes remain silent (i.e., their
reading is still above threshold).

In general, based on the logical operators connecting two predicates ∀xi : Ph(xi) and
∀xj : Pk(xj), a violation is detected when i) the two predicates are in disjunction and
both node xi and xj send a notification that the corresponding predicate has become
false; or ii) the two predicates are in conjunction and either node xi or xj sends a
notification. In all other cases the invariant is complied with. Existential quantifiers
and logical implications are straightforwardly mapped to the cases above using known
transformations of logical formulae [Whitesitt 1995]. Note, however, that the system
performance is ultimately dictated only by the content of the local view, which is inde-
pendent of the predicate representation.

To realize this scheme, the local view for LP invariants contains, for each predicate,
a Boolean value representing its truth value.
Algorithm. The technique above is applicable to any LP invariant. Consider, without
loss of generality as mentioned above, predicates of the form ∀xi : Ph(xi).

Figure 2 illustrates the interplay between the local view on a node and the rest of
the network, focusing on the local view processing for a sample monitored invariant
∀m,n : P1(m) ◦ P2(n), ◦ ∈ {∧,∨}. For the sake of illustration, we assume that the node
in the picture can affect the value of P1, but not of P2, e.g., because it is a CO2 sensor

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Ştefan Gună et al.

Algorithm 1: Monitoring LP invariant ∀x1 : P1(x1)◦. . .◦∀xs : Ps(xs) on nodem. LVm
is the local view at node m. LVm[i] is the ith entry in the local view, corresponding
to predicate Pi. The functions value(e) and source(e) return the Boolean value
and the node identifier in local view entry e, respectively. Function disseminate()
triggers the dissemination of local view changes, using the dissemination strategies
illustrated in Section 5. Function evaluate() checks whether the current local view
determines an invariant violation. The size of the local view is lv size.

1 event onAttributeValueChange(attribute a, value v)
2 checkLocalAttributeValue(a, v);
3 if LVm updated then disseminate(LVm); evaluate();

4 event onLocalViewReceive(local view LVn received from node n)
5 for i←− 1 to lv size do
6 if value(LVm[i]) = true and value(LVn[i]) = false or
7 source(LVm[i]) = source(LVn[i]) then
8 LVm[i]←− LVn[i];
9 foreach attribute a and local value v for a do

10 checkLocalAttributeValue(a, v);
11 if LVm updated then disseminate(LVm); evaluate();

12 procedure checkLocalAttributeValue(attribute a, value v)
13 foreach predicate Pi ∈ {P1, . . . , Ps} that references a do
14 if value(LVm[i])=true and Pi|a=v = false or source(LVm[i])= m then
15 value(LVm[i])←− Pi|a=v;
16 source(LVm[i])←− m;

and therefore does not have a fan attached2. This invariant requires a local view con-
sisting of two Boolean values, one for each predicate. Assume the invariant initially
holds. The node remains silent as long as predicate P1 holds. When a change occurs,
two cases are possible:
(1) the truth value of the locally monitored predicate P1 changes from true to false (1a).

In this case, the local view is updated and propagated to the rest of the network (1b);
(2) a local view update from the network arrives, e.g., reporting that the value of the

predicate P2 monitored by a remote node changed from true to false (2a). Again, the
local view is updated and propagated to the rest of the network (2b).
Every time the local view changes, a node also re-evaluates the global invariant to

check whether the new information determines a violation.
Algorithm 1 illustrates the generic processing for a node m. When-

ever a local attribute a changes to a value v, we execute the procedure
checkLocalAttributeValue (line 1). This procedure checks, for every predicate
Pi that references the attribute a given as parameter (line 13), whether (line 14)
i) value v yields Pi false while the corresponding local view entry is true, or ii) m is
the node that last updated the value of Pi in the local view. The first condition is the
case where m “breaks the silence”: the discrepancy between the value of Pi in the local
predicate (false) and in the local view (true) allows node m to set the corresponding
entry in the local view to false, regardless of which node last modified it. In the second
condition, node m is the node that last changed a value in the local view, and is thus
responsible for the same entry at other nodes, irrespective of the truth value. In both

2The cases when a predicate is trivially false on a node because of values of constant attributes are auto-
matically identified by the DICE compiler and excluded from processing.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:9

cases, we update the local view with the new value for Pi and m as the associated
node identifier (line 15-16). If these operations cause a change in the local view, we
trigger the dissemination of the latter and check whether the new local view content
determines an invariant violation (line 3).

Upon receiving a local view update from another node n (line 4), node m checks its
local view (line 5-10) searching for entries that either became false based on informa-
tion received from the network, or that were updated by the node that last changed
them (line 6-7). The two conditions mirror those of line 14 in a distributed setting. The
former condition is the case of a remote node “breaking the silence” because it locally
detected a predicate to be false; the latter is the case of a remote node responsible for
an entry in the local view, regardless of the truth value. In both cases, m updates the
local view (line 8). In addition, node m checks all attributes a against their local values
(lines 9-10). This is necessary whenever an entry in the local view is reverted to true by
a remote node responsible for it, but the values at node m still force the same entry to
hold false. Due to the condition in line 14, the (local) false value immediately replaces
the one value in the local view, necessarily causing another dissemination of the new
local view where node m now responsible for the updated entry (line 11). As before,
the dissemination is triggered by any change in the local view, along with a check of
potential invariant violations.

Note that generally a node remaining silent may also indicate failure of that node.
There is no remedy to this if the failed node is the only one allowing a violation to be
detected. This is unlikely in the scenarios we target, where WSN nodes are expected
to be deployed in large numbers, thus providing redundancy, and the monitored phe-
nomena span significant portions of space, thus involving several nodes.

3.2. Distributed-predicate (DP) Invariants
As illustrated above, monitoring violations of LP invariants can be achieved by dis-
seminating solely the truth value of the constituting predicates. We can determine
such value locally, as each predicate is a function of only one node variable.

This observation does not apply to DP invariants, whose (single) predicate involves
multiple node variables, in a sense generalizing the predicates seen in LP invariants.
As result, the truth value of the predicate can no longer be determined locally, and
dissemination of the actual attribute values becomes necessary.

For this case, as above, we start by presenting an example to quickly grasp the
rationale behind our strategy and how we build the local view. The general algorithm
is presented next.
Intuition. Consider invariant I2:

∀m,n : pressure@m− pressure@n < T

To detect violations, one should consider all combinations of pressure readings at any
two nodes. This is unnecessary if one identifies the worst-case combination, i.e., the
two nodes corresponding to the highest pressure difference. If this is below the thresh-
old, then the invariant is complied with, because any other pair of nodes has a smaller
pressure difference. Otherwise, the invariant is violated. In the case of I2, the highest
pressure difference is determined by the two nodes sensing the maximum and mini-
mum pressure.

The local view for a DP invariant thus needs to include, for every involved attribute,
the number of system-wide maximum and minimum values necessary to determine
the worst-case combination. If these values do not determine a violation, the invariant
is necessarily complied with. The key idea is not new per se: in a sense, comparing
the worst-case combination of maximum and minimum values at n nodes against a
threshold resembles the application of discrepancy functions to (n + 1)-dimensional

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Ştefan Gună et al.

Quantifier Threshold Local view

∀xi
f(x1, . . . , xi, . . . , xn) < T max (xi)
f(x1, . . . , xi, . . . , xn) > T min(xi)

∃xi
f(x1, . . . , xi, . . . , xn) < T min(xi)
f(x1, . . . , xi, . . . , xn) > T max (xi)

Fig. 3. DP invariants: information to insert in the local view for a positively correlated attribute xi.

spaces [Tsitsiklis 1984]. However, while the latter aims at analytically describing how
closely a structural model matches the observed data, we use a similar concept to
capture global invariant violations with a reduced set of data—the local view—in the
energy-constrained setting of WSNs.
Algorithm. The intuition above can be generalized to any DP invariant. Initially, let
us consider universally quantified invariants ∀x1, . . . , xn : f(x1, . . . , xn) < T . First, we
determine if the attributes at nodes x1, . . . , xn are positively correlated with f , i.e., if
the evaluation of f increases when the attribute value increases. For instance, in I2
pressure@m is positively correlated. Similarly, pressure@n is negatively correlated, i.e.,
a decrease in that term causes an increase in f . Based on this information, each node
builds a local view containing the network-wide maximum (minimum) values for posi-
tively (negatively) correlated attributes. This is sufficient to determine an invariant vi-
olation. The same technique is straightforwardly applied when the invariant requires
f to be above a threshold.

When node variables are existentially quantified, rather than identifying the nodes
that violate a property as we do in the case of universally quantified variables, we aim
instead at identifying the nodes that comply with the monitored property. Consider
∀m,∃n : x@m + y@n < T . Given the network-wide maximum of x, this invariant is
satisfied if we can find a node n where x@m+ y@n < T . To determine the worst-case
combination of nodes m and n, it is sufficient to identify the network-wide minimum
value for y. If this value is such that x@m+ y@n ≥ T when x is maximum, there exists
no other node in the network where the value of y satisfies the invariant, therefore we
detect a violation.

Figure 3 summarizes the mapping among the quantifiers, the function f , and the
information included in the local view w.r.t. a positively correlated attribute. This in-
formation is sufficient to detect violations of DP invariants. The case of negatively
correlated attributes is dual.

Figure 4 exemplifies for DP invariants the interplay of the local view on a node and
the rest of the network, similar to Figure 2. We consider a sample monitored invariant
∀m,n : x@m+ x@n < T , which requires a local view including the two network-wide
maxima of attribute x. Four cases are possible:
(1) a local value update does not affect the current local view (1a). In this case, no

further processing is needed. The local view on the other nodes can indeed remain
the same, and no communication is required (1b);

(2) a local value update must replace a value in the local view (2a). In this case, the
local view is updated and propagated to the rest of the network through the dissem-
ination manager (2b);

(3) the values in a local view update from the network do not affect the current local
view (3a). No further processing is required in this case, as the local view remains
unaltered (3b);

(4) a local view update from the network carries at least one value that must replace
an entry in the current local view (4a). The new values are merged into the local
view and the latter is disseminated further to reach system-wide convergence (4b).

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:11

local
attribute

value

local view

9,3
2

<9,4>

9,3
2 network

9,3
4

9,4
4 network

9,4
4

9,4
4 network

<9,2>

9,4
4

9,7
4 network

<9,7>

<9,7>

1b1a

2b2a

3b3a

4b4a

INITIAL STATE

network

network

network

network

STATE AFTER UPDATE

node

Fig. 4. Local view processing for a DP invariant ∀m,n : x@m+ x@n < T whose local view includes the two
network-wide maxima of attribute x. Value changes are shown in bold.

Algorithm 2: Monitoring of DP invariant ∀x1, . . . , xs :
∑s

i=1 a@xi < T on node m,
where a is an attribute and T is a constant. LVm[i] is the ith entry in the local
view for a given attribute a. The meaning of value(), source(), disseminate(),
evaluate(), and lv size are the same as in Algorithm 1. Additionally, min(LVm)
returns the local view entry whose value is minimum.

1 event onAttributeValueChange(attribute a, value v)
2 updateLocalView(a, v, m);
3 if LVm updated then disseminate(LVm); evaluate();

4 event onLocalViewReceive(local view LVn for attribute a received from node n)
5 for i←− 1 to lv size do updateLocalView(a, value(LVn[i]), source(LVn[i]));
6 if LVm updated then disseminate(LVm); evaluate();

7 procedure updateLocalView(attribute a, value v, source n)
8 for i←− 1 to lv size do
9 if n = source(LVm[i]) then

10 value(LVm[i])←− v; return;
11 if v > value(min(LVm)) then
12 value(min(LVm))←− v; source(min(LVm))←− n;

Algorithm 2 describes the generic processing for DP invariants at a node m, for the
case where the s maximum values of attribute a are included in the local view3. We
distinguish the case where the attribute value change originates locally (lines 1-3) and
when local view updates are received from the network (lines 4-5). In both cases, the
local view is first updated with the proper source node identifier (lines 2 and 5, respec-
tively), and in case of changes to the local view we trigger the local view dissemination

3The further generalization of Algorithm 2 for different attributes ai and the case of negative correlation do
not present technical complexity, but their presentation would be tedious and lengthy without contributing
any additional insight. Therefore, we omit them for brevity.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Ştefan Gună et al.

attribute
declarations

TinyOS
run-time

DICE
run-time

nesC attribute
implementation

DICE-specific
nesC interfaces

DICE
compiler

nesC
compiler

application
binary image

nesC
application code

(a) Attributes and application.

invariant
definitions

invariant
encoding

& signature
DICE

compiler

(b) Invariants.

Fig. 5. The DICE tool chain.

and check whether the change determines a violation (lines 3 and 6, respectively). The
core of the processing occurs inside updateLocalView (lines 7-12). For each local view
entry, we update the corresponding value in case the node n given as parameter is
found among those contributing to the local view (lines 8-10). In addition, and most
importantly, if the value v given as parameter is greater than the minimum value in
the current local view, i.e., the smallest of the maxima stored in it (line 11), v must
replace the latter (line 12).

4. SYSTEM ARCHITECTURE
We describe the tool-chain and run-time architecture of DICE. Our prototype targets
TinyOS [Hill et al. 2000], and relies on CTP [Gnawali et al. 2009] for the tree-based for-
warding necessary to the TREE dissemination strategy. Nevertheless, the techniques
we describe do not depend on either.

4.1. Compiler
In our example scenario, invariant I1 instructs DICE to check whether the fan is active
when CO2 readings at any sensor node are above a threshold. However, the control
logic actually operating the fan runs within the application code of the actuator node,
external to DICE. Attributes connect DICE with the application, enabling the former
to become aware of the status of the latter relevant to invariant monitoring.

Figure 5 outlines the tool-chain supporting this design. As illustrated in Figure 5(a),
the DICE compiler generates one nesC interface for each attribute declaration, thus
providing the connection between the source of attribute values and the DICE run-
time. The latter accesses the interface through a compiler-generated component that
periodically polls data from it or, for on event attributes, awaits the signaling of the
corresponding events. The attribute interfaces, the components providing these inter-
faces, the DICE run-time, and the TinyOS libraries are input to the nesC compiler,
which yields the binary image to upload on the nodes.

Invariant specifications do not require integration into a binary image. Thus, they
can be changed freely without reprogramming the WSN nodes. To support this design,
as shown in Figure 5(b), the compiler generates a binary encoding for every invari-
ant. This describes the logical relations between the predicates in an invariant, used

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:13

Algorithm 3: Generating the signature of a DP invariant ∀x1, . . . , xr : P (x1, . . . , xr):
S is the invariant signature, composed of a tuple 〈h, (pos(h), neg(h))〉 where h is an
attribute name and pos(h) (neg(h)) is the number of times attribute h appears pos-
itively (negatively) correlated with the function f in P , as described in Section 3.2.
pos(h) neg(h) are initially zero for all attributes.

1 function signature(P)
2 S ←− ∅;
3 distribute quantifiers in P ;

/* e.g., transform "c · (h@m− k@n)" to "c · h@m− c · k@n" */
4 foreach h referenced by P , any node m, any quantifier c do
5 if c = ∀ then
6 pos(h)←− pos(h) + number of terms “h@m” preceded by ‘+’;
7 neg(h)←− neg(h) + number of terms “h@m” preceded by ‘-’;
8 if c = ∃ then
9 pos(h)←− pos(h) + number of terms “h@m” preceded by ‘-’;

10 neg(h)←− neg(h) + number of terms “h@m” preceded by ‘+’;
11 S ←− S ∪ {〈h, (pos(h), neg(h))〉}
12 return S;

to check violations given the truth value of the predicates themselves. The compiler
encodes invariants using their postfix notation, with names replaced by numerical
identifiers to reduce space. The run-time relies on a simple stack machine to interpret
invariants encoded this way.

For DP invariants, the compiler also automatically generates an invariant sig-
nature, which determines what values need to be collected to detect viola-
tions. Algorithm 3 describes how the signature is generated. Consider invariant
∀x, z ∃y : a@x+ a@y − a@z < T as an example. Following a preprocessing step (line 3)
where quantifiers are moved close to the quantified terms, for every attribute h ap-
pearing in P we search for the number of times h appears with a plus or minus sign
in the linear function f in P (lines 4-11), as described in Section 3.2. In case of uni-
versal quantifiers, a plus (minus) sign indicates positive (negative) correlation (lines
5-7); the dual applies for existential quantifiers (lines 8-10). For our example, Algo-
rithm 3 finds one positively correlated term (a@x) and one negatively correlated term
(a@z) corresponding to universal quantifiers. For existential quantifiers, a@y is the
only negatively correlated term. The occurrence of plus and minus signs depending on
the quantifier is progressively summed up to build the signature (line 11), which is
finally returned when all attributes are examined (line 12). For our example, the com-
piler generates a signature (〈a, (1, 2)〉). Such signature instructs the DICE run-time to
collect the single maximum and the two minimum values of a throughout the network.

4.2. Run-time Layer
Figure 6 illustrates the main components of the DICE run-time. At the core is a data
structure implementing the local view as defined in Section 3. Every local view entry is
associated to a tuple 〈name, value, source, timestamp〉. The name field refers to a pred-
icate for LP invariants, or to an attribute for DP invariants. The type of invariant also
determines the content of the value field, which stores a Boolean value for LP invari-
ants or a numerical value for DP invariants. The source field keeps track of the node
that originated the associated local view entry, whereas the timestamp field is used
by the dissemination manager to ensure a correct processing of local view updates, as
described in Section 5.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Ştefan Gună et al.

local view
manager

updates

evaluation
manager

uses

uses

local
view

invariants

local
attributes

dissemination
manager

sends
updates

receives
updates

reads

network

Fig. 6. The architecture of the DICE run-time.

The evaluation manager checks the local view against user-specified invariants,
determining their violations. The local view manager determines the appropriate
changes to the local view, based either on value changes of the local attributes, or
updates received through the network. The latter are performed according to the pro-
tocol in the dissemination manager. The same protocol is used to disseminate local
view updates, regardless of the invariant type.
Evaluation manager. A change in the local view triggers the evaluation manager to
check if any of the monitored invariant is violated, using the invariant encoding. If the
current local view indicates a violation and the invariant does not include a tolerate
clause, the evaluation manager immediately generates a notification. Otherwise, the
evaluation manager starts a timer with duration equal to the tolerance period. If a
subsequent local view change brings the invariant back to compliance before the timer
expires, no violation is notified. Otherwise, the violation is notified as if it were detected
at the end of the tolerance period.
Local view manager. Changes to the local view are determined by the local view
manager, which executes the algorithms described in Section 3 depending on the type
of invariant. The changes are caused either by a local update (i.e., an attribute value
change) or by a remote update (i.e., attribute value changes from the network). In
turn, these changes may require further dissemination of updates, as dictated by the
monitoring algorithms. The dissemination manager, illustrated next, takes care of this.

The current implementation allows monitoring of multiple invariants, whose local
view is however disseminated independently. This strategy could be improved upon
in the cases where the invariants share some attributes, by eliminating redundant
transmissions of the local view updates. The opportunity for such optimization can be
automatically detected off-line by the compiler, which would generate a single master
signature for all monitored properties.
Dissemination manager. The next section describes two protocols to disseminate
local view updates—i.e., determining how they are propagated inside the “network”
bubbles of Figure 2 and Figure 4. The FLAT protocol, described in Section 5.1, is de-
signed to cope with failure-prone scenarios. In FLAT, all nodes can detect violations,
achieving increased reliability through redundancy. The TREE protocol, described in
Section 5.2, is optimized for scenarios with high variability in the application data. In
these scenarios, TREE significantly reduces the communication overhead w.r.t. FLAT,
at the expense of limiting the detection of violations only to a subset of nodes. Finally,
Section 5.3 describes how these protocols deal with the challenges posed by communi-
cation delays.

5. LOCAL VIEW DISSEMINATION: PROTOCOLS
In this section we describe the design of two protocols for efficiently disseminating the
local view updates enabling global invariant evaluation in DICE. Both protocols ad-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:15

step 1

9,6
4

9,6
6

9,6
9

9,6
6

9,6
5

9,6
5

at
tri

bu
te

va
lu

e

local view

9,7
7

9,6
6

9,6
9

9,6
6

9,6
5

9,6
5

A B C

D E F

step 2

9,7
7

9,7
6

9,6
9

9,7
6

9,6
5

9,8
8

step 3

9,8
7

9,8
6

9,8
9

9,8
6

9,8
5

9,8
8

step 4

9,8
7

9,8
6

8,4
4

9,8
6

9,8
5

9,8
8

step 5

9,8
7

8,6
6

8,4
4

9,8
6

9,8
5

8,4
8

step 6

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

Fig. 7. Disseminating local view updates in FLAT.

dress challenge (2) in Section 3 by striking different trade-offs w.r.t. node and commu-
nication failures. In doing so, we target networks of static or quasi-static WSN nodes,
where node mobility happens rarely—if at all—as representatives of the applications
we target. Highly mobile settings, on the other hand, require different solutions as they
introduce new challenges; for example, how to keep track of whether a node contribut-
ing a network-wide maximum remains reachable as it roams around. We conceived
preliminary solutions for these scenarios as well [Gună 2011], omitted here because of
space constraints. We conclude this section by discussing how we address the impact
of communication delays on the overall correctness of DICE, tackling challenge (3) in
Section 3.

5.1. FLAT

To allow any node to detect violations, all nodes must eventually agree on the most
recent local view. To achieve this, we disseminate every local view update to the entire
network. This functionality resembles well-known dissemination protocols [Levis et al.
2004; Lin and Levis 2008]. However, these are usually designed to propagate data
from a single source, one data at a time. In DICE, every node is a possible source and
multiple dissemination processes triggered at different nodes may overlap in time.
This prevents off-the-shelf re-use of existing protocols.

To tackle the problem in our specific scenario, we adapt the polite gossiping tech-
nique [Levis et al. 2004]. At each node, the dissemination manager periodically broad-
casts the current local view. It also receives local view updates from other nodes, stor-
ing them in a network cache containing the last received local view. As long as the net-
work cache is the same as the local view, the broadcast period increases exponentially
up to a maximum τh to reduce traffic once the network has reached convergence. Oth-
erwise, the dissemination manager informs the local view manager of new data from
the network. The local view manager determines whether the received information
should be merged with the current local view, according to the processing described
in Section 4.2. If so, re-propagation occurs with the broadcast period reset to the min-
imum τl, to speed up dissemination. A node suppresses the periodic broadcast if at
least γ neighbors already broadcast the same information. The values for τl, τh, and γ
are set depending on application scenario and network layout.
Update propagation. We deal with concurrent dissemination processes from differ-
ent nodes by merging local view updates as they propagate. Consider Figure 7 as an
example, again with the monitored invariant ∀m,n : x@m+ x@n < T . We assume all

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Ştefan Gună et al.

nodes have the same local view 〈9, 6〉 in step 1. In step 2, node A changes its local value
to 7 and propagates an updated local view 〈9, 7〉, which reaches node B and D. While
these further rebroadcast the update, the value of x at F jumps to 8, as in step 3. The
two updates originating at A and F “compete” for the propagation. The local view man-
ager stops the propagation of the smaller update from A wherever the larger update
from F has already been processed. This would happen at E, if the update from F is
received before those from B or D. As a result, the larger value overcomes the other,
providing eventual consistency of local views, as in step 4.

Note that, if we were to use “as is” an existing dissemination protocol (e.g., DIP [Lin
and Levis 2008]) every node would disseminate one of the two new values in Figure 7.
Indeed, these protocols are based on a globally-consistent version number. The dis-
semination of the two updates would occur with the same version number. Without
the ability to process local view updates as they propagate, intermediate nodes would
propagate either of the two values, possibly causing inconsistencies. Although incon-
sistencies can be dealt with by the source of the larger value when it recognizes that
its update did not propagate throughout the network (and repeats the dissemination),
this would cause higher network overhead. Thus, a data-agnostic protocol such as DIP
would likely generate higher traffic than our solution.
Value deletion. The above processing is not sufficient for nodes whose state belongs to
the current local view. The last two steps of Figure 7 illustrate the problem. In step 5,
the value of x at C changes from 9 to 4. Contrary to the previous case, here one of the
values in the local view disappears as a consequence of a state change. In this case,
based on local information, C determines that the new maxima are 8 and 4. If this
local view at C, LVC , were propagated as described above, the system would reach an
inconsistent state. Indeed, according to the local view information stored in the run-
time layer as LVC = 〈〈x, 8, F, t4〉, 〈x, 4, C, t5〉〉, with t5 > t4, B and F would infer that
the value of x at C dropped from 9 to 4. However, once this information is merged with
their local views, yielding LVB = LVF = 〈〈x, 8, F, t4〉, 〈x, 6, B, t0〉〉 and rebroadcast, the
receiving A, D, E would obtain no information on the last update at C, and incorrectly
conclude that 〈x, 9, C, t1〉 (t1 > t0) is still valid.

We address the problem by appending an eviction entry to local view updates, en-
abling the removal of stale values. The entry is a tuple 〈attribute, source, timestamp〉
re-propagated at each hop along with the local view update. In our example, the evic-
tion entry 〈x,C, t5〉 allows nodes to determine that entry 〈x, 9, C, t1〉 is no longer valid,
and eventually converge to 〈〈x, 8, F, t4〉, 〈x, 7, A, t2〉〉.

We use the periodic broadcasts of the current local view also to determine if a node
is unreachable and its state should be evicted. When a node A misses a given number
of consecutive broadcasts from a neighbor B contributing to the local view, A assumes
that B failed4. Then, A recomputes its local view and propagates it along with an
eviction entry, with the same structure and processing discussed earlier. In this case,
however, the entry 〈∗, B, t〉 causes the eviction of all attribute values provided by the
crashed node. A node joining (or re-joining after failure) starts with an empty local
view, eventually made consistent through the periodic broadcast process.

5.2. TREE

In scenarios characterized by high variability in application data, the FLAT protocol is
likely to exhibit a significant communication overhead. Therefore, in the TREE protocol
we leverage a tree-shaped routing topology to propagate local view updates. In TREE,
each node pushes updates only upwards, towards the root, rather than to the entire

4To prevent nodes from erroneously considering neighbors as failed because of the broadcast suppression
mechanism above, nodes contributing to the local view never suppress their own broadcast transmissions.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:17

6,3
6

9,2
9

local view

B C

ne
tw

or
k

ca
ch

e
7,3
7

9,2
9

B C 7,3
7

9,2
9

B C

step 1 step 2 step 3

7,3
7

3,2
3

B C

step 4

7,3
7

3,2
3

B C

step 5

7,39,27,36,3 9,2 3,2

7,4
4

A9,6
4 attribute

value

A 9,6
4

A 9,7
4

A 9,7
4

A

6,3 9,2 7,3 9,2

Fig. 8. Disseminating local view updates in TREE.

network. As shown in Section 6, with frequent local view updates this yields a signif-
icant reduction in network traffic w.r.t. FLAT. On the other hand, with this technique
only the root of the tree is always guaranteed to obtain the information necessary to
detect violations. The other nodes may detect violations only whenever the local view
updates determining the violation are generated within their own subtrees.

Our solution departs from the traditional use of tree-shaped routing topologies for
data collection because of two key aspects:

— Unlike data collection protocols, in our case the root is not physically attached to a
base station. Indeed, the tree overlay is meant only to provide structure to an other-
wise flat network, to improve on communication overhead. Further, other nodes are
expected to take over the role of the root, to provide load balancing and therefore
increased WSN lifetime.

— We obtain such improvements by limiting the propagation of local view changes up-
stream based on the content of local caches at every node. Such caches store a sum-
mary of relevant values previously forwarded upstream. This form of in-network
aggregation improves “by construction” over the straightforward solution whereby
every local view change is always forwarded upstream, even when not necessary.

Update propagation. Figure 8 shows an example of update dissemination in TREE.
The monitored invariant again requires a local view including the two network-wide
maxima. Nodes maintain in their network cache one entry for each of their children,
as illustrated for parent A and children B and C in step 1. This entry stores the most
recent local view update from the corresponding child, representative of the state of
the subtree rooted at it. In step 2, a local value change at node B causes a modification
to B’s local view, and the subsequent propagation towards the parent. Propagation
occurs after a short timeout that allows nodes to process local view updates possibly
coming from their own children, further reducing network overhead. Upon receiving
the update, A rebuilds its local view based on the content of the network cache and
the local attribute values, as in step 3, and propagates the update further, as the local
view has changed.
Value deletion. The processing for deleting values from the local view is similar. In
step 4, a local attribute value drops at node C. This causes a local view update at
C, and the corresponding propagation towards the parent A. This again recomputes
the local view based on the new content of the network cache and the local attribute
values, as in step 5, and propagates the update further because of the changes in the
local view.

The key difference w.r.t. FLAT, easily seen by comparing Figure 7 and 8, is that
TREE does not bring convergence of the entire network to the same local view. Indeed,
local view updates are directed only towards the root, while in FLAT they spread along
arbitrary paths in the network. This difference is key to the improvements in commu-
nication overhead enjoyed by TREE, which are however counter-balanced by the fact

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Ştefan Gună et al.

that only a subset of the nodes (possibly only the root) is guaranteed to detect viola-
tion. Moreover, the overlay topology used by TREE makes this protocol less robust in
the presence of communication or node failures and induces an uneven load on nodes.
Next, we illustrate the mechanisms we employ to tackle these issues.
Network cache consistency. Changes in the routing topology, packet losses, and
node failures may render the content of the network cache no longer consistent with
the system state. This may cause both false negatives, e.g., when a local view update
reporting a new maximum is lost, and false positives, e.g., when a maximum drops and
nodes higher in the tree miss the local view update because of a topology change.

We adopt a soft-state approach to maintain the consistency of network caches. Each
cache entry is associated with an expiration timeout that causes its removal unless
the node responsible for it refreshes the entry within the timeout. To further improve
performance in case of changes in the routing topology, upon changing parent the child
node sends an explicit eviction message to the former parent. If this is still reachable,
the message causes the removal of the child’s cache entry before the timeout expires.

An extreme case of node failure is the crash of the tree root, which is a single point of
failure in TREE. Nevertheless, when the root stops acknowledging packets, the neigh-
boring nodes can locally detect the crash and elect a new root, e.g., using existing
protocols [Frank and Römer 2005].
Load balancing. In TREE, the local view at every node filters the updates from the
descendants based on aggregate information obtained from the corresponding subtree.
As a result, nodes down in the tree are more likely to be relaying local view updates
towards their parents, as their local views cover the system state to a lesser extent
compared to nodes closer to the root, yielding an uneven load among WSN nodes.

We design a simple load balancing scheme to address this issue. Our scheme rotates
the root role among the nodes to achieve a more even energy consumption. The decision
to rotate is taken based on an estimation of the current energy budget of the network,
as perceived at a given node. We periodically determine the node where this quantity
is maximum, and hand over the root role to it.

We estimate the energy budget of a node n as:

wn(i+ 1) =
1

2
· wn(i) +

1

2
·
∑

m∈Neigh(n) wm(i)

|Neigh(n)|
(1)

where wn(i) is the energy budget at node n at the current step i and Neigh(n) denotes
the 1-hop neighbors of n. Observe that in Equation 1 every node contributes to the
evaluation of wn(i + 1) at every other node, as the formula is recursively applied to
the entire network. We achieve this by periodically exchanging the current value wn(i)
with the nodes in Neigh(n) and computing the next value wn(i + 1) until the metric
becomes stable (i.e., wn(i + 1) = wn(i) ± ε, ε being an approximation constant) or we
reach a maximum number of iterations. Note that each iteration requires only a single
broadcast of the current wn(i) from each node n.

Interestingly, identifying the node with the largest stable value of the metric in
Equation 1 can be achieved by reusing the same machinery we use to compute in-
network the global minima and maxima necessary to monitoring invariants. As a re-
sult, the current root eventually knows whether there exists another node n with a
larger wn(i). If so, it hands over the root role to node n using an eventually-consistent
dissemination protocol [Levis et al. 2004]. The hand-over message also includes the
last sequence number used by the former root to refresh the routing tree. When node
n receives such notification, it starts building a new routing tree rooted at itself using
a strictly greater sequence number. Based on this information, every other node in the

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:19

A

B

C u3

u1 u2

transmission delay

violation

(a)

A

B
C

u3 u4

u1

D

u2
u2

u4

m
ul
ti-
ho
p

m
ul
ti-
ho
p

(b)

A

B u2

u1
time synch.

error

uncertain
violation

(c)

Fig. 9. Motivation and limitations of the history buffer.

network recognizes that a root change has taken place, and stops the propagation of
the hand-over message.

5.3. Communication Delays
Communication delays may cause specific interleavings of local view updates that
cause either protocol to miss some violations. Figure 9(a) illustrates the problem. Say
that updates u1 and u3 establish a state violating the monitored invariant, whereas
any other system state complies with it. Ideally, nodes A and C would propagate their
updates as soon as they occur. In practice, however, the network stack may cause com-
munication delays, e.g., because of collision avoidance mechanisms at the MAC layer.
The intermediate node B may then receive the updates in the order u1, u2 and u3. If
we used only the most recent update from every node to evaluate the invariant, the
system would not detect the violation.
Solution. We tackle the problem above with two combined mechanisms: i) a proto-
col maintaining a consistent ordering among timestamped local view updates, and ii)
a circular history buffer storing recently-received updates, including those that have
been superseded by new ones.

Our timestamp synchronization is inspired by [Römer 2001], adapted by neglecting
communication and network stack delays. At each hop, the data is sent along with the
timestamp of generation and the sender’s (physical) clock at send time. At the receiver,
the latter is used to convert the data timestamp to the receiver’s (physical) clock before
inserting the data in the history buffer. With this information, a node can reconstruct
the proper sequence of updates and detect violations. For instance, B in Figure 9(a) is
able to match u3 with u1, both stored in its history.
Limitations. This mechanism is effective only if there is at least one node with ac-
cess to both u1 and u3, and therefore able to reconstruct the correct order causing the
violation. This is not always the case in our protocols, which do not guarantee FIFO
ordering on multi-hop paths. Consider Figure 9(b), where the monitored invariant is
again violated only in the state following u1 and u3. The violation may go unnoticed if
communication delays and update reordering cause the most recent updates u2 and u4
to supersede u1 and u3 at intermediate nodes B and C. As further re-propagation of
the updates causing the violation is “quenched” at intermediate nodes, it may happen
that no node in the network has enough information to detect the violation. However,
addressing this problem would require either the propagation of the entire history, or
stricter assumptions on communication delays and FIFO ordering—both too expensive
in a WSN setting.

In addition, inaccuracies in timestamp synchronization may produce situations
where given combinations of local states are uncertain [Römer and Ma 2009]. Consider
Figure 9(c). Assume the state ofB before u2 at physical time t2, combined with the state
of A after u1 at physical time t1, violate the monitored invariant. If the timestamp syn-
chronization error εTS is greater than |t2 − t1|, then it is not possible to determine

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Ştefan Gună et al.

Component TREE FLAT

local view manager 9.8 KB
dissemination manager 7.4 KB 2.9 KB
load balancing 3.2 KB n/a
history buffer 2.2 KB
evaluation manager 6.6 KB
Total 28.7 KB 25.5 KB

Fig. 10. Program memory occupation of DICE components.

the correct ordering of such updates when inserting them in the history buffer. Using
our timestamp synchronization protocol, εTS may be as large as 200µs per hop [Römer
2001], although protocols exist to reduce εTS to a few µs per hop [Maróti et al. 2004]. In
practice, this means that we may not detect “instantaneous” violations that exist only
for a few hundred milliseconds. However, these violations are not an issue in the sce-
narios we target where, as we already mentioned, transient violations of much longer
duration are commonly accepted, and properly specified in DICE using the tolerate
clause.

6. EVALUATION
We evaluate the performance and correctness of our DICE prototype based on two
complementary approaches.

Section 6.1 focuses on TOSSIM simulations. These allow us to analyze and com-
pare FLAT and TREE by relying on global knowledge of the network state. Moreover,
using a simulator simplifies the assignment of value distributions to network nodes,
and enables us to easily test different scenarios. Finally, it allows us to analyze rela-
tively large networks, up to 225 nodes, at the price of a less accurate representation
of wireless transmission. Therefore, Section 6.2 analyzes data from a real deployment
consisting of TelosB motes placed in indoor and outdoor areas of our lab. This serves
as a validation of our simulation results, albeit on a smaller scale, and as a real-world
testing of our prototype based on actual environmental data.

We use our TinyOS implementation of DICE, described in Section 4, to run both
simulation and testbed experiments. Our implementation has a modular design, which
allows the user to select which dissemination protocol to employ based on system and
application requirements. Figure 10 shows the code memory overhead. In terms of
data memory, FLAT occupies ∼1.4 KB, while TREE occupies ∼4.2 KB. The larger data
memory footprint of the latter is due to the buffers internal to CTP. These values are
independent of the number and nature of the invariants monitored, each contributing
an additional 10 B in the local view, 12 B in the network cache, and 14 B in the history
buffer. The invariant specification is very compact thanks to the encoding illustrated
in Section 4.1; for instance, the properties I1 and I2 in Section 2 occupy only 194 B.

As discussed in Section 3, the detection procedures depend on the nature of the mon-
itored invariant. However, LP and DP invariants rely on the same underlying dissemi-
nation mechanism; they differ only in that the former can leverage “collective silence”.
This is possible because, for LP invariants, it suffices to disseminate only the (locally
determined) truth value of the single predicates, rather than the actual attribute val-
ues, as discussed in Section 3.2. This minimizes communication overhead to a great
extent. For this reason, in the following we consider only DP invariants.
Metrics. We focus on detection latency and communication overhead. As for the for-
mer, we define the global detection latency as the time difference between the instant
when a change in the environment triggering a violation is available to DICE through
the node attributes—i.e., it becomes observable by the software—and the instant at

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:21

which the violation is first detected anywhere in the network. From the application
point of view, this indicates how fast the distributed dissemination protocols we devise
can detect a violation.

Other metrics are useful to evaluate the “internal” performance of detection. Sim-
ilar to the global detection latency, we define the node detection latency as the time
difference between when a state change in the node attribute values triggers a viola-
tion, and the time at which any given node locally detects the violation. The average
value of this metric is an indication of the speed at which the information necessary to
evaluate invariants propagates through the network.

Global and node detection latency are related: the former coincides with the node
detection latency of the first node recognizing the violation, easily computed as the
minimum among all node detection latencies. The node detection latency can be com-
puted only for those nodes that actually detect the violation—all in FLAT, typically
only a fraction in TREE. Therefore, for the latter protocol we also evaluate the detec-
tion count, i.e., the number of nodes that detect the violation, as a measure of the
redundancy of detection in TREE.

To investigate the overhead imposed on a node, we report on the average number of
local view changes per node and the average number of packets sent per node, measured
over the time span between the generation of the state change triggering a violation
and the time at which the last node in the network detects it. These can be regarded
as an indirect measure of the computational overhead and a direct measure of the
communication overhead, respectively.
Correctness. In DICE, every state change triggers a brief period during which invari-
ants may be incorrectly reported as violated or being complied with. This is the time
required for the update to propagate throughout the network and is assessed as part
of the aforementioned latency metrics.

Instead, our focus is on missed violations and false alarms. These can be generated
by an incomplete propagation due to message losses. However, in FLAT the periodic
rebroadcast guarantees eventual delivery. In TREE, update propagation relies on CTP,
which achieves a message delivery ratio up to 99.9% [Gnawali et al. 2009]. Therefore,
we do not analyze this aspect further.

The more interesting case is instead whenever an incorrect report about the invari-
ant is caused by the reordering of updates inside the network, as discussed in Sec-
tion 5.3, caused by an uneven propagation speed and a high churn in the attribute
values. These conditions may reorder updates and cause indifferently a missed viola-
tion or a false alarm. For simplicity, in our evaluation we use scenarios that generate
only the former.
Findings. We summarize as follows the key conclusions we draw based on our evalu-
ation, which serve as a guideline for applying either of our dissemination strategy:

— In applications with frequent topology changes or likely node failures, the FLAT
strategy is preferable, because of the unstructured operation that is largely unaf-
fected by topology changes and the redundancy provided by every node’s ability to
locally detect invariant violations. This materializes both in reduced network over-
head and smaller detection latencies.

— In scenarios where attribute values change frequently, the TREE strategy is prefer-
able, as in-network aggregation greatly reduces the network overhead compared to
FLAT. On the other hand, with slow attribute value changes, the cost of maintain-
ing the tree topology outweighs the benefits of in-network aggregation, and FLAT
becomes preferable.

— As the complexity of the monitored invariant grows, FLAT scales better than TREE,
as the in-network aggregation functionality of the latter increasingly becomes in-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Ştefan Gună et al.

effective. This again is reflected in greater network overhead and larger detection
latencies with more complex invariants in TREE.

— When the physical values possibly determining an invariant violation are clustered
in a limited area (e.g., in case of a heating source) and thus sensed by a subset of
nearby WSN nodes, FLAT generally features smaller detection latencies than TREE,
as the propagation of local view changes determining the violation is forced by the
tree topology and may thus take sub-optimal routes, unlike the unconstrained prop-
agation in FLAT.

Next, we discuss these aspects in detail based on our quantitative results.

6.1. Simulation Experiments
We analyze the behavior of DICE using synthetic distributions of attributes, and eval-
uate separately the performance of the update dissemination and the likelihood of
missed violations.

Nodes are arranged in a square grid5, with an inter-node space of 10 m. We analyze
network configurations ranging from 25 nodes to 225 nodes. Unless otherwise noted,
in TREE the root is placed in one of the grid corners. Network connectivity is simulated
using the LinkLayerModel tool in the TinyOS distribution.

We configured FLAT and TREE as follows. The polite gossiping employed by the for-
mer uses τl = 200 ms and τh = 4 s as lower and upper bounds of the transmission
period, and γ = 5 as the number of neighbor transmissions triggering a message sup-
pression. In TREE, we use the default CTP parameters of the TinyOS distribution.
Moreover, as mentioned in Section 5.2, TREE buffers incoming updates for a small in-
terval, which we set to 200 ms (i.e., same as τl) to ensure that the minimum time an
update is buffered at a node is the same for FLAT and TREE. Unless otherwise noted,
the results of each experiment are averaged over 50 repetitions.

6.1.1. Performance of Update Dissemination. Our protocols are influenced by the complex-
ity of the invariant and specifically by its signature, determining the number of at-
tribute values that must be present in the nodes’ local views. To capture this aspect we
use five invariants, collectively defined as:

∀n1, . . . , nk :

k∑
i=1

x@ni < T, k ∈ {2, 3, 4, 5, 6}

As illustrated in Section 3, each invariant requires the local view to contain the k
largest values of the x attribute. To avoid cluttering our charts, in the remainder we
show only the results for the extremes, i.e., for k ∈ {2, 6}.

Fig. 11. A gradient dis-
tribution for x.

We consider two value distributions for x. The first is a 3-
dimensional gradient, shown in Figure 11. This distribution sim-
ulates a physical phenomenon (e.g., a heating source) where the
values sensed in the range [1, 10] are proportional to the inverse
of the square of the distance from a source, placed at the center
of the grid. As the grid and distribution are perfect, we obtain a
set of concentric rings of nodes with the same value for x. In the
second distribution, instead, each node assumes a random value
in the range [1, 100]. Albeit somewhat more artificial, this distribution is interesting in
that violations do not follow a pattern and can happen anywhere in the network.

The simulations are executed as follows. In the initial state i) all nodes hold a value
x = 0 ii) their local view reflects this global state iii) the overlay used by TREE pro-

5We also ran simulations with randomly-generated topologies. However, the many sources of randomness
(topology, value distribution, timers, etc.) make them much less insightful.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:23

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e
s

Nodes

FLAT k = 2 FLAT k = 6 TREE k = 2 TREE k = 6

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

A
v
g

.
L

V
 c

h
a

n
g

e
s

Nodes

(a) Gradient distribution.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

A
v
g

.
L

V
 c

h
a

n
g

e
s

Nodes

(b) Random distribution.

Fig. 12. Average local view changes per node.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e
s

Nodes

FLAT k = 2 FLAT k = 6 TREE k = 2 TREE k = 6

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

A
v
g

.
p

a
c
k
e

ts
 T

X

Nodes

(a) Gradient distribution.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

A
v
g

.
p

a
c
k
e

ts
 T

X

Nodes

(b) Random distribution.

Fig. 13. Average number of sent packets per node.

tocol is completely built. This initial stable state is then perturbed with either of the
aforementioned gradient and random distribution. The simulation ends when all nodes
converge again to the same local view containing the new global maxima.

Unless otherwise noted, all simulations in this section are performed by using the
setup above.

0

0.2

0.4

0.6

0.8

 4 8 12 16 20

A
v
g
.
p
a
c
k
e
ts

 T
X

 (
×
1
0

3
)

Changes (nodes / min)

TREE
FLAT

Fig. 14. Communication over-
head vs. update rate.

Local view changes and packets sent. As shown in
Figure 12, the number of local view changes is slightly
higher in FLAT than TREE. Indeed, in the latter local view
changes are aggregated as they travel upstream: at a par-
ent node, a local view change from one child (represent-
ing the state of an entire sub-tree rooted at it) may be su-
perseded by a local view from another child, and result in
a single local view change propagated upstream. Instead,
in FLAT local view changes propagate in an unstructured
fashion: a local view change may still “quench” another at a
given node, but because view changes propagate along ar-
bitrary paths, the same view change may reach other nodes
along a different path and trigger other view changes.

Looking at local view changes alone, TREE would appear as the most convenient
approach. However, tables turn when the average number of packets actually trans-
mitted is considered, as shown in Figure 13. The higher value for TREE is determined
by the messages necessary to maintain the network caches up-to-date and consistent—
therefore, in essence, by the structure induced by TREE. In contrast, FLAT structure-
less dissemination of updates does not bear this overhead.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Ştefan Gună et al.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e
s

Nodes

FLAT k = 2 FLAT k = 6 TREE k = 2 TREE k = 6

 0
 2
 4
 6
 8

 10
 12
 14

 0 50 100 150 200 250

N
o

d
e

 d
e

te
c
ti
o

n
la

te
n

c
y
 (

s
)

Nodes

(a) Gradient distribution.

 0
 2
 4
 6
 8

 10
 12
 14

 0 50 100 150 200 250

N
o

d
e

 d
e

te
c
ti
o

n
la

te
n

c
y
 (

s
)

Nodes

(b) Random distribution.

Fig. 15. Average node detection latency.

Impact of update rate. However, the observation above holds only in the case where
the frequency at which the attribute values change at each node is relatively low. This
is evident in the experiment in Figure 14, where we simulate a 10×10 grid monitoring
the invariant ∀m,n : x@m+ x@n < T . Nodes start from a random value of attribute x.
Periodically, a number of randomly-selected nodes change their value to obtain the
rate on the x-axis, over a simulated time of 2 hours. Intuitively, if the update rate is
low, one or more “sweeps” of the entire network are sufficient in FLAT to inform all
nodes about the new local view. If instead there are many concurrent changes, in FLAT
they propagate in an unstructured fashion, each potentially causing a new update and
therefore a new dissemination competing against the others. This ultimately generates
a traffic that grows linearly with the update rate, precisely due to FLAT’s inability to
aggregate the updates. In contrast, the structure provided by TREE, detrimental at
low update rates, becomes an asset when the update rate increases: local view updates
can be effectively aggregated in-network and over subtrees, therefore greatly limiting
the increase in traffic.
Detection latency. Figure 15 focuses on the average node detection latency. We note
that the relative performance of FLAT and TREE is greatly affected by the distribution
of attribute values: the behavior of TREE with the random distribution is significantly
worse than FLAT—an order of magnitude in the case of k = 6. Indeed, in the random
distribution the maxima can be anywhere. However, in the case of the gradient distri-
bution, the attribute maxima are located at the center of the grid; a violation can be
easily detected by neighbors in either protocol.

The significantly higher latency of TREE is explained by the fact that, in this proto-
col, i) the likelihood of detection is higher in nodes that are closer to the root, and ii) the
root can be far away from the nodes contributing to the detection. Instead, in FLAT the
propagation of maxima can be thought of as a “bubble”, whose expansion (caused by
the propagation of local view updates) is not restricted to an overlay as in TREE. As
a consequence, the violation is detected as soon as the “bubbles” corresponding to the
attribute maxima intersect at some node.

This behavior not only yields a smaller average node detection latency than TREE,
but also a different distribution of the detection latencies at each node, as shown in
Figure 16 for both gradient and random distribution. In the case of FLAT, the detection
latency at each node resembles a Gaussian distribution, with relatively short tails.
Instead, in TREE the distribution of latency is much more irregular: the nodes that
are closer to the maxima (placed in the middle of the grid) detect the violation with a
latency comparable to the slowest FLAT nodes, but others may detect with a latency
two orders of magnitude larger. Moreover, the difference when moving from a gradient

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:25

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

d
e

s
 (

%
)

Latency (s)

(a) TREE, gradient distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
o

d
e

s
 (

%
)

Latency (s)

(b) FLAT, gradient distribu-
tion

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30

N
o

d
e

s
 (

%
)

Latency (s)

(c) TREE, random distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
o

d
e

s
 (

%
)

Latency (s)

(d) FLAT, random distribu-
tion

Fig. 16. Detection latency for 225 nodes, k = 2. Values on the x-axis have different scales.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e
s

Nodes

FLAT k = 2 FLAT k = 6 TREE k = 2 TREE k = 6

 0
 2
 4
 6
 8

 10
 12
 14

 0 50 100 150 200 250

G
lo

b
a

l
d

e
te

c
ti
o

n
la

te
n

c
y
 (

s
)

Nodes

(a) Gradient distribution.

 0
 2
 4
 6
 8

 10
 12
 14

 0 50 100 150 200 250

G
lo

b
a

l
d

e
te

c
ti
o

n
la

te
n

c
y
 (

s
)

Nodes

(b) Random distribution.

Fig. 17. Global detection latency.

to a random distribution is more marked in TREE than in FLAT, especially w.r.t. the
tails of the latency distribution.

In addition to the distribution of attribute values, which in practice is often un-
known, the other parameter affecting the relative performance of the two protocols is
the complexity of the monitored invariant, which in our experiments is represented
by the value of k. As k increases, a node requires data from an increasing number of
sources to perform detection. Therefore, the latency increases with k for both FLAT and
TREE, as shown in Figure 15. However, the impact of this parameter is significantly
larger in the latter.

Finally, Figure 17 shows the global detection latency (i.e., the time to the first de-
tection), while Figure 18 shows the ratio between the average node detection and the
global detection. Under challenging conditions, such as invariants with high complex-
ity or scenarios with a random distribution, it is generally more difficult to detect
violations. This causes the global latency to be higher and closer to the node latency,
as reflected by the low values, and constant ratio between the two, in Figure 18(a) for
k = 6 and Figure 18(b) for all cases. If the invariant is simple or the changes more
localized, as in Figure 18(a) for k = 2, the global latency is much smaller than the node
latency, with the structure of the overlay inducing bigger differences in TREE.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Ştefan Gună et al.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
v
g
.
L
V

 c
h
a
n
g
e
s

Nodes

FLAT k = 2 FLAT k = 6 TREE k = 2 TREE k = 6

 0

 5

 10

 15

 0 50 100 150 200 250

N
o

d
e

/g
lo

b
a

l
d

e
te

c
ti
o

n
 l
a

te
n

c
y

Nodes

(a) Gradient distribution.

 0

 5

 10

 15

 0 50 100 150 200 250

N
o

d
e

/g
lo

b
a

l
d

e
te

c
ti
o

n
 l
a

te
n

c
y

Nodes

(b) Random distribution.

Fig. 18. Ratio between average node detection and global detection latency.

 0

 5

 10

 15

 20

 0 50 100 150 200 250

N
o
d
e
s
 (

%
)

Nodes

k = 2, gradient

k = 2, random

k = 6, gradient

k = 6, random

Fig. 19. Nodes detecting vio-
lations in TREE.

Detection count. Similar arguments explain the trends
of detection count, i.e., the fraction of nodes that detect vi-
olation. As already mentioned in Section 6, this metric is
meaningful only for TREE, as FLAT guarantees eventual
detection at all nodes. As seen in Figure 19, the higher the
complexity of an invariant, the lower the detection count.
The likelihood of a node performing detection increases
closer to the root, and as k increases the phenomenon is
exacerbated. A similar reasoning holds w.r.t. the attribute
value distribution: the more scattered the values trigger-
ing a violation, the fewer the nodes that possess all the re-
quired information to enable detection, which explains the
lower values for the random distribution.

6.1.2. Assessing the Risk of Missed Violations. In Section 5.3 we discussed the compro-
mises we make w.r.t. the potential of missing a violation; here, we evaluate their use-
fulness. Firstly, we analyze the effectiveness of the history buffer in preventing missed
violations, by reproducing a scenario similar to Figure 9(a). Secondly, we assess how
DICE behaves in situations where history buffers cannot help, similar to Figure 9(b).
Finally, we evaluate the impact of node failures.

10
5

0
 0 5 10

 0

 5

 10

 15
node Anode B

(a) Initial distribution.

10
5

0
 0 5 10

 0

 5

 10

 15

node A
node B

(b) Final distribution.

Fig. 20. Distributions to
assess the impact of his-
tory size.

History buffers. We assess the extent to which history buffers
help avoiding missed violations by monitoring ∀m,n : x@m +
x@n < 28 in a 225-node grid. Nodes are initially assigned the
distribution of x values in Figure 20(a), which violates the in-
variant due to the two nodes A and B, in opposite corners,
with x = 14. After 500 ms (i.e., while the updates caused by
the initial distribution are still propagating) this distribution
is changed into the final one in Figure 20(b), which satisfies the
invariant. Note that in both distributions a fraction of the nodes
maintains the value of their attribute at x = 0. The change of
distribution in the other nodes, instead, triggers a flood of up-
dates. These updates are inserted in the history of all nodes,
including A in the upper-right corner, on which we focus our ex-
periment. A is also the root used in the simulations carried out
for TREE. Our goal is to see how A can evaluate the invariant,
and detect the violation, by combining its history with an older
state of node B. Indeed, both A and B hold a value x = 14; how-
ever, the rapid change in distribution after only 500 ms occurs

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:27

 0

 20

 40

 60

 80

 100

25 30 35 40 45 50

V
io

la
ti
o

n
s

m
is

s
e

d
 (

%
)

History size

of nodes
with updates

28
45
66
91
120

Fig. 21. Impact of history size in FLAT.

before B’s value propagates all the way to A. The latter node can detect the violation
only if its entry with x = 14 is still available in the history when B’s x = 14 reaches
A. Indeed, the high number of concurrent updates near A may fill A’s history, flushing
old entries.

In our experiments, the history size ranges from 25 to 50. For each size, we report the
percentage of violations detected by A over 350 runs. To determine the extent to which
concurrent updates render the history ineffective in preventing missed violations, we
use different sizes for the upper-right triangle of Figure 20(a), ranging from 28 to 120
nodes.

Interestingly, even with a small history size of 25 elements, TREE manages to cap-
ture all the violations triggered by all updates. The explanation lies in the shape of the
tree topology built by TREE: the average number of children is 1, and the maximum
is 5. Thus, each node receives data from a small number of neighbors, and therefore
the risks of filling up the history buffer are lower. This is not valid for FLAT, where a
node can overhear packets from several neighbors. However, Figure 21 shows that a
history of 40 elements is already sufficient to bring the likelihood of missed violations
below 4% in all cases, and a relatively small history of 50 elements guarantees detec-
tion even with a massive amount of updates, where more than half (120 out 225) of
the nodes change their distribution. This confirms that the history buffer is effective
in preventing missed violations.
Update reordering. The previous experiments demonstrate the ability of DICE to
reconstruct a violation based on old values contained in the history. However, as men-
tioned in Section 5.3, this may not be enough when updates are propagated along
non-FIFO multi-hop paths; this may cause a more recent update to supersede an old
one, as shown in Figure 9(b). Situations like these are more likely to happen if the
violation persists for a short time; a long duration implies a re-propagation of updates,
and therefore increased chances that they are received in the right order.

We reproduce these scenarios as follows. We simulate a 225-node grid monitoring
∀m,n : x@m+ x@n < 10. The value distribution for x is such that all nodes are placed
on a plateau at x = 1, except for two opposite vertexes at x = 3. As in Figure 9(b),
we change simultaneously the value to x = 6 on both these vertexes, obtaining short
“pulses” that cause the violation of the invariant. Between pulses, we set x = 3 for
3 s, during which the updates should propagate throughout the network. This choice
yields a worst-case scenario where the number of hops in between the two vertexes
is the largest possible, which increases the probability of losing updates due to their
reordering along multi-hop paths. For TREE, the root was set to one of the corner
nodes other than the two chosen vertexes. The input to experiments is the duration of
the pulses. The output is the percentage of violations detected globally and per node.
These are reported over 50 runs of 5-minute experiments, for a total of more than 3000
pulses simulated.

Figure 22 shows the results, distinguishing between the number of violations de-
tected globally and the average number of violations detected by any node. The signif-

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Ştefan Gună et al.

 0

 20

 40

 60

 80

 100

.4 .8 1.2 1.6 2 2.4 2.8

V
io

la
ti
o
n
s

re
p
o
rt

e
d
 (

%
)

Pulse duration (s)

per node global

 0

 20

 40

 60

 80

 100

.4 .8 1.2 1.6 2 2.4 2.8

V
io

la
ti
o

n
s

re
p

o
rt

e
d

 (
%

)

Pulse duration (s)

(a) TREE

 0

 20

 40

 60

 80

 100

.4 .8 1.2 1.6 2 2.4 2.8

V
io

la
ti
o

n
s

re
p

o
rt

e
d

 (
%

)

Pulse duration (s)

(b) FLAT

Fig. 22. Detection of fast violation pulses.

icantly better performance of FLAT is determined by its fully decentralized nature: be-
cause updates disseminate along multiple arbitrary paths, although some nodes may
miss some violations, others can catch them. Even when the pulse duration is 400 ms
(i.e., twice the lowest polite gossiping period τl) 40% of the violations are detected by at
least one node. With a pulse duration of 2 s, more likely to occur in real-world applica-
tions, FLAT detects 100% of the violations. The worse performance of TREE is caused
by its structure, which not only forces updates to propagate through predefined paths,
but also yields larger detection latencies, as already pointed out. Latencies are also
the cause for the lower average detection rate per node. Moreover, compared to the
gradient scenario in Section 6.1.1, here the maxima are not necessarily close to each
other, therefore latency is higher.
Node failures. The overlay exploited by TREE makes it more fragile in comparison
with FLAT’s structure-less, intrinsically more resilient strategy. To quantify this as-
pect, we run experiments comparing the two protocols in the presence of node failures.
On a 10× 10 grid, we monitor the invariant ∀m,n : x@m+ x@n < T . All nodes change
their x to a random value every 2 minutes, over a simulated time of 2 hours. In TREE,
the root was set in one of the grid corners. Every 2 minutes we make two random nodes
fail at the worst possible moment, i.e., right in between an attribute change and the
dissemination of the corresponding local view change. Node failures are not recovered:
the system reaches a point where the network is partitioned and no detection is pos-
sible. In this challenging scenario, TREE is able to detect violations only in 56% of the
induced node failures. Instead, FLAT is able to detect a violation in 84% of the induced
node failures, thanks to the inherent resilience of its dissemination.

6.1.3. Load Balancing in TREE. In Section 5.2 we described a load balancing scheme for
TREE to mitigate the fact that nodes farther from the root bear a bigger fraction of
the communication overhead. To evaluate our scheme, we simulate a network of 100
nodes deployed in a 10×10 grid. We monitor the invariant ∀m,n : x@m+x@n < T for 5
simulated days. We randomly change the value of attribute x at each node every 2 min-
utes. To quantify the load, we count the number of bytes transmitted and received at
every node, which approximates the corresponding energy consumption. Figure 23(a)
shows the case where no load balancing is performed, and the root remains fixed at
coordinates (0,0). The chart confirms the intuition that nodes far from the root bear a
much higher load w.r.t. the others. Figure 23(b) shows, in the same scenario, the effect
of changing the root at the end of each simulated day based on the scheme described
in Section 5.2. The relative standard deviation of the load is 175% in Figure 23(a), and
drops to 43% in Figure 23(b).

In principle, an even more uniform load could be achieved by increasing the fre-
quency with which the metric w is computed, and therefore a new root is elected. How-
ever, this comes at two costs. First, the overhead of informing the next root of its new

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:29

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

L
o

a
d

x

y

L
o

a
d

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

fixed root

(a) Root is fixed at (0,0).

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

L
o

a
d

x

y

L
o

a
d

 0 1 2 3 4 5 6 7 8 9 0 1
 2 3

 4 5
 6 7

 8 9

1
st

 root 2
nd

, 4
th

 root
3

rd
 root

5
th

 root

(b) Root is initially at (0,0), and
moves according to our load bal-
ancing scheme.

Fig. 23. Load distribution in TREE.

outer wall

118 45

103111

119 12

19

2249

15

120

42

114

110
44

51 53

sink

(a) Topology snapshot for TREE.

 0

 20

 40

 60

 80

 100

120114 19 44 42 15 51 22 53 12 45 118119111110 49 103

P
D

R
 (

%
)

Node (packet source)

Node 103
Node 120

(b) Packet delivery ratio for nodes 103 and 120.

Fig. 24. Laboratory testbed: setup and connectivity.

role: in the simulations of Figure 23, this averages to 1.7 packets per node for each
hand-off. Second, the transfer of responsibility to the new root is not instantaneous. In
our simulations, the time elapsed since the old root relinquished its role until all nodes
join the tree set up by the new root is on average 1.2 s, and depends on the distance be-
tween the two roots. For instance, the transfer from (0,0) to (9,3) takes longer than the
one from (9,3) to (9,9). While the tree is being reconfigured, packets containing local
view updates may “wander” in the network; we counted an average of 0.44 per node
during each root transfer. However, these are not lost: the underlying CTP protocol
buffers each received packet at each hop, enabling their correct re-routing towards the
new root as soon as its tree is set up.

6.2. Testbed Experiments
To analyze the traffic patterns and investigate the system behavior over time against
the dynamics of real-world sensed data, we run a number of tests using 17 TelosB

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Ştefan Gună et al.

 20

 40

 60

 80

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

T
e

m
p

.
(o

C
)

Time

Node 103
Node 120
Node 51

 20

 40

 60

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

T
e

m
p

.
(o

C
)

Time

Node 103
Node 120
Node 51

 0

 50

 100

 150

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

A
v
g

.
c
o

u
n

t

Time

Packets TX
LV changes

 0

 50

 100

 150

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

C
o

u
n

t

Time

Packets TX
LV changes

 0

 50

 100

 150

1
3

:1
9

1
3

:5
0

1
4

:2
1

1
4

:5
4

1
5

:2
5

1
6

:1
2

1
6

:4
5

1
7

:1
6

1
7

:4
7

1
8

:1
8

1
8

:4
9

1
9

:2
1

1
9

:5
2

2
0

:2
3

2
0

:5
6

2
1

:2
7

2
1

:5
8

2
2

:2
9

2
3

:0
1

2
3

:3
2

2
3

:5
9

L
V

 c
h

a
n

g
e

s

Time

Node 103
Node 120

 0

 50

 100

 150

1
0

:5
3

1
1

:2
4

1
1

:5
6

1
2

:2
7

1
2

:5
8

1
3

:2
9

1
4

:0
0

1
4

:3
2

1
5

:0
3

1
5

:3
4

1
6

:0
5

1
6

:3
6

1
7

:0
8

1
7

:3
9

1
8

:1
0

1
8

:4
1

1
9

:1
2

1
9

:4
3

2
0

:1
5

2
0

:4
6

2
1

:1
7

2
1

:4
8

L
V

 c
h

a
n

g
e

s

Time

Node 103
Node 120

 0

 50

 100

 150

1
3
:1

9

1
3
:5

0

1
4
:2

1

1
4
:5

4

1
5
:2

5

1
6
:1

2

1
6
:4

5

1
7
:1

6

1
7
:4

7

1
8
:1

8

1
8
:4

9

1
9
:2

1

1
9
:5

2

2
0
:2

3

2
0
:5

6

2
1
:2

7

2
1
:5

8

2
2
:2

9

2
3
:0

1

2
3
:3

2

2
3
:5

9

P
a

c
k
e

ts
 T

X

Time

Node 103

Node 120

(a) TREE

 0

 50

 100

 150

1
0
:5

3
1
1
:2

4
1
1
:5

6
1
2
:2

7
1
2
:5

8
1
3
:2

9
1
4
:0

0
1
4
:3

2
1
5
:0

3
1
5
:3

4
1
6
:0

5
1
6
:3

6
1
7
:0

8
1
7
:3

9
1
8
:1

0
1
8
:4

1
1
9
:1

2
1
9
:4

3
2
0
:1

5
2
0
:4

6
2
1
:1

7
2
1
:4

8

P
a

c
k
e

ts
 T

X

Time

Node 103

Node 120

(b) FLAT

Fig. 25. Laboratory testbed: experimental results.

motes deployed in a lab environment as shown in Figure 24(a). Every node periodi-
cally reports statistics to a node connected to a computer. We monitor the invariant
∀m,n : temp@m− temp@n < 10◦C where temp is the temperature, sampled every 2 s
using the on-board SHT11 sensor. This rate is overkill for a slowly-changing phenom-
ena such as temperature: we intentionally use it to stress our system. To avoid short-
term oscillations in temperature values due to sensor inaccuracies, we fed DICE with
a moving average over the three most recent temperature readings. We configured the
protocols as mentioned in Section 6.1, and let the system run for about 11 hours.

Figure 25 illustrates the results we gathered. The charts in the top row show the
temperature values at three nodes representative of different placements, yielding dif-
ferent temperature changes. As shown in Figure 24(a), node 103 is placed indoors;
its reported temperature value is relatively constant. Node 120 is instead exposed to
direct sunlight; its readings are greatly influenced by the time of the day. This and
similarly-placed nodes are more likely to experience a sudden value change, large
enough (compared to nodes in other areas) to trigger violations. Finally, node 51 is
almost always in shade, therefore usually reports the lowest temperature.

The charts in the second row from the bottom of Figure 25 illustrate the system
performance over time, plotting the local view changes and packets sent per node,
aggregated over periods of 30 minutes. On average, we observe about one local view

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:31

change every 3.75 minutes for TREE and 1.5 minutes for FLAT. Therefore, as in our
simulations, the number of local view changes is higher in FLAT than in TREE. The
better performance of TREE corresponds to the simulation settings to the right of the
crossing point in Figure 14, where the higher update rate favors TREE over FLAT.
However, unlike in simulation, in this case the number of packets is higher than lo-
cal view changes. The reason is that temperature changes very slowly, therefore the
communication overhead is dominated by the keep-alive messages in both protocols,
unchanged w.r.t. simulations.

The trends above are illustrated by the charts at the bottom of Figure 25. Node 103
is in the center of the testbed, whereas node 120 is at its fringe. The snapshot of the
routing topology6 for TREE in Figure 24(a) shows that node 103 aggregates and reports
data only from indoor nodes, with a relatively constant temperature curve. Addition-
ally, the path from node 120 towards the sink does not include node 103. Thus, one
would expect this node to have a lower number of local view changes than node 120,
which is instead outdoor and experiencing a temperature increase. Interestingly, this
is the case for TREE but not for FLAT. The reason is that in FLAT, as the packet de-
livery ratio in Figure 24(b) indicates, node 103 has more good neighbors and therefore
more update sources, hence the higher number of local view updates. Instead, node 120
can receive updates from fewer sources, hence its lower number of local view changes.

Finally, the effect of polite gossiping in FLAT can be observed by looking at the local
view changes and packets transmitted for nodes 103 and 120. In the case of node 103,
not every update corresponds to a packet transmitted. As this node has a larger num-
ber of neighbors, it is more likely to suppress its broadcast, unlike node 120. For the
latter, in the absence of neighbors communicating redundant data, we can see that the
number of packets transmitted is considerably higher than the number of local view
updates.

7. RELATED WORK
The problem we tackle with DICE is reminiscent of predicate detection in dis-
tributed systems. In this field, seminal work investigates the detection of stable pred-
icates [Chandy and Lamport 1985], whose truth value changes only once in the sys-
tem lifetime. Our work focuses instead on unstable predicates [Garg and Waldecker
1994], that is, predicates whose truth value may change repeatedly. A particular class
of unstable predicates are linear inequalities in the form

∑
i xi > K, similar to DP

invariants. This class has been previously studied by Tomlinson and Garg [1997]. In
some respect, their algorithm is analogous to ours, e.g., it identifies the largest values
of xi to decide whether the predicate is satisfied. However, their techniques, as well
as most literature on distributed predicate detection, are based on logical time and
therefore expensive and hardly applicable at run-time in WSNs; post-mortem analy-
sis of global state through a mixture of physical and logical timestamping has indeed
been explored by Sookoor et al. [2009]. Our work is instead motivated by the desire to
support run-time detection of invariant violations.

In-network aggregation, the technique we employ to reduce traffic and collect net-
work state, is widely referenced in the WSN literature. Various protocols, network
overlays and summarization techniques have been proposed in this respect [Madden
et al. 2002; Considine et al. 2004; Nath et al. 2004]. However, the general goal of these
works focuses on data acquisition and traffic optimization, overlooking issues that are
key in monitoring invariants, e.g., the consistency of the gathered state.

6The topology is relatively stable, with an average of only 5.70 parent changes per node in the 11-hour
experiment.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Ştefan Gună et al.

Moreover, declarative approaches have been proposed as programming [Mottola and
Picco 2011] or debugging [Cao et al. 2008] abstractions for WSNs. TinyDB [Mad-
den et al. 2005] is an example of the former, where an SQL-based, database-like ab-
straction simplifies querying data from a WSN. In contrast with TinyDB and similar
programming-oriented approaches, which focus on providing construct to develop the
core application functionality, DICE focuses instead on the complementary problem of
ensuring that the latter behaves as intended.

In this respect, the work closest to ours is the one on passive distributed assertions
(PDA) [Römer and Ma 2009]. As in our system, programmers specify the correct behav-
ior of programs in PDA by using predicates that can be seen as a combination of LP and
DP invariants. Nevertheless, the monitoring process occurs in a centralized manner, by
relying on a fixed monitoring station outside the WSN, and based on global knowledge
of the system state. The latter is acquired by using a secondary WSN deployed along-
side the real one that sniffs and delivers packets to the monitoring station, which in
many cases limits practical applicability.

8. CONCLUSIONS
We presented DICE, a system for WSN-based distributed monitoring of global invari-
ants in physical processes. DICE provides a declarative language to specify invariants
and a run-time support enabling efficient monitoring of their violations. The run-time
can be configured to use either the structure-less FLAT protocol or the TREE protocol,
which instead relies on an overlay. FLAT provides increased fault tolerance by allow-
ing any node to detect a violation, at the expense of increased overhead in scenarios
with high rate of changes in the monitored application state. TREE provides improved
performance in this scenario by structuring and optimizing the dissemination of rel-
evant state changes, but this very structure makes the approach more complex, as it
requires additional mechanisms to preserve structure in the presence of failures, and
limits the ability to detect violation only to a subset of the nodes.

Acknowledgments
The authors wish to thank Christine Julien, Alberto Montresor, and Kay Römer for
their comments on early drafts of this paper.

This work is partially supported by the European Union Seventh Framework Pro-
gramme (FP7-ICT-2009-5) under grant agreement n. 258351 (project makeSense).

References
Qing Cao, Tarek Abdelzaher, John Stankovic, Kamin Whitehouse, and Liqian Luo. 2008. Declarative trace-

points: a programmable and application independent debugging system for wireless sensor networks.
In Proc. of the 6th Int. Conf. on Embedded Networked Sensor Systems (SenSys). ACM, New York, NY,
USA, 85–98.

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. 3, 1 (1985), 63–75. DOI:http://dx.doi.org/10.1145/214451.214456

Jeffrey Considine, Feifei Li, George Kollios, and John Byers. 2004. Approximate aggregation techniques for
sensor databases. In Proc. of the 20th Int. Conf. on Data Engineering (ICDE). IEEE, New York, NY, USA,
449–460.

Christian Frank and Kay Römer. 2005. Algorithms for generic role assignment in wireless sensor networks.
In Proc. of the 3rd Int. Conf. on Embedded Networked Sensor Systems (SenSys). ACM, New York, NY,
USA, 230–242.

V. K. Garg and B. Waldecker. 1994. Detection of weak unstable predicates in distributed programs. IEEE
Trans. Parallel Distrib. Syst. 5 (March 1994), 299–307. Issue 3.

Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. 2009. Collection tree
protocol. In Proc. of the 7th Int. Conf. on Embedded Networked Sensor Systems (SenSys). ACM, New
York, NY, USA, 1–14.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

DICE: Monitoring Global Invariants with Wireless Sensor Networks A:33

Ştefan Gună. 2011. On Neighbors, Groups, and Application Invariants in Mobile Wireless Sensor Networks.
Ph.D. Dissertation. University of Trento.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. 2000. System archi-
tecture directions for networked sensors. SIGPLAN Not. 35 (November 2000), 93–104. Issue 11.

Suzanne Hoppough. 2006. Shelf life. Forbes magazine. (April 2006).
Philip Levis, Neil Patel, David Culler, and Scott Shenker. 2004. Trickle: a self-regulating algorithm for

code propagation and maintenance in wireless sensor networks. In Proc. of the 1st Symp. on Networked
Systems Design and Implementation (NSDI). ACM/USENIX, New York, NY, USA, 15–28.

Kaisen Lin and Philip Levis. 2008. Data discovery and dissemination with DIP. In Proc. of the 7th Int. Conf.
on Information Processing in Sensor Networks (IPSN). IEEE Computer Society, Washington, DC, USA,
433–444.

Bela Lipták. 1995. Process Control. CRC Press Inc., Baton Rouge, IW, USA.
Samuel Madden, Michael Franklin, Joe Hellerstein, and Wei Hong. 2002. TAG: a Tiny AGgregation service

for ad-hoc sensor networks. SIGOPS Operating System Review 36 (December 2002), 131–146.
Samuel Madden, Michael Franklin, Joe Hellerstein, and Wei Hong. 2005. TinyDB: an acquisitional query

processing system for sensor networks. ACM Transactions on Database Systems 30, 1 (2005), 122–173.
Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. 2004. The flooding time synchronization

protocol. In Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems (SenSys). ACM, New
York, NY, USA, 39–49.

Luca Mottola and Gian Pietro Picco. 2011. Programming wireless sensor networks: fundamental concepts
and state of the art. Comput. Surveys 43, 3 (April 2011), 19:1–19:51.

Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. 2004. Synopsis diffusion for
robust aggregation in sensor networks. In Proc. of the 2nd Int. Conf. on Embedded Networked Sensor
Systems (SenSys). ACM, New York, NY, US, 250–262.

Kay Römer. 2001. Time synchronization in ad hoc networks. In Proc. of the 2nd Symp. on Mobile ad hoc
networking & computing (MobiHoc). ACM, New York, NY, USA, 173–182.

Kay Römer and Junyan Ma. 2009. PDA: passive distributed assertions for sensor networks. In Proc. of the
8th Int. Conf. on Information Processing in Sensor Networks (IPSN). IEEE Computer Society, Washing-
ton, DC, USA, 337–348.

Tamim Sookoor, Timothy Hnat, Pieter Hooimeijer, Westley Weimer, and Kamin Whitehouse. 2009. Macrode-
bugging: global views of distributed program execution. In Proc. of the 7th Int. Conf. on Embedded Net-
worked Sensor Systems (SenSys). ACM, New York, NY, USA, 141–154.

John A. Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar. 2005. Opportunities and obligations for
physical computing systems. Computer 38 (2005), 23–31. Issue 11.

Alexander I. Tomlinson and Vijay K. Garg. 1997. Monitoring functions on global states of distributed pro-
grams. In J. Parallel Distrib. Comput., Vol. 41. Academic Press, Inc., London, UK, 173–189.

John Tsitsiklis. 1984. Problems in Decentralized Decision Making and Computation. Ph.D. Dissertation.
MIT.

John Eldon Whitesitt. 1995. Boolean Algebra and Its Applications. Dover Publications, Mineola, NY, USA.
Yujie Zhu and Raghupathy Sivakumar. 2005. Challenges: communication through silence in wireless sensor

networks. In Proc. of the 11th Int. Conf. on Mobile Computing and Networking (MobiCom). ACM, New
York, NY, USA, 140–147.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

