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ABSTRACT Ultra-wideband (UWB) radios are increasingly exploited for localization in complex
deployments with tens or even hundreds of anchor nodes, whose positionmust bemeasured accurately: a long
and error-prone manual chore. Self-localization techniques can estimate anchor positions automatically,
from relative distances acquired via UWB, but are often evaluated i) only with a handful of anchors all
in range, a far cry from the large, multi-hop setups above, and ii) in simulation, therefore neglecting
system aspects and undermining immediate use in real contexts. We tackle the problem from a different,
practical viewpoint. First, we exploit three real-world, large-scale, multi-hop UWB testbeds, a unique asset
in the literature. Second, we build upon state-of-the-art multidimensional scaling (MDS) that, unlike recent
UWB-based techniques, is not limited to a specific type of localization or infrastructure, is computationally
lightweight, and does not require training. Third, we integrate MDS with in-field distance estimation,
yielding a complete, immediately usable self-localization system. Our evaluation, both in simulation and
in the testbeds above, analyzes extensively the parameter space (e.g., the impact of ranging errors or anchor
connectivity) and shows that anchor positions are determined quickly and accurately, minimizing manual
labor without significant detriment to the accuracy of the localization system relying on them.

INDEX TERMS Anchor positioning, localization, multidimensional scaling, ranging, ultra-wideband.

I. INTRODUCTION
The accuracy and reliability of localization systems based
on ultra-wideband (UWB) radios is gradually fostering their
adoption in a plethora of sectors [1], [2], [3], [4]. As these
systems become part of the fabric of our daily lives, prac-
tical issues concerned with their deployment in big num-
bers and over large areas arise. Covering an area of interest
(e.g., a factory, a mall, an office floor) involves tens or even
hundreds of nodes, whose fast and reliable deployment is key
to contain the operational costs associated with this technol-
ogy and boost its acceptance [3], [4], [5].

A. MANUAL ANCHOR LOCALIZATION
Knowing the accurate positions of the deployed anchors, i.e.,
the reference nodes w.r.t. which target localization occurs,
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is crucial to its performance. This measurement, typically
performed manually via specialized equipment (e.g., a laser
meter), is tedious and effort-demanding, especially with
many anchors across large areas. Worse, it is error-prone;
even with expert personnel, human errors may still occur
that lead to degraded localization performance, thus requiring
debugging sessions further increasing effort.

To offer a concrete example, we had first-hand experience
with Leica 3DDisto [6] which is a cross between a surveyor’s
robotic total station and a handheld precision Laser Distance
Meter (LDM).We used Leica 3DDisto to obtain ground truth
positions in our industrial plant testing facility, described
later; similar alternatives exist on the market. Although these
specialized tools are a significant leap forward compared to
LDM, they are still expensive, labor intensive, and require
training. Further, they require the station and the deployed
anchors to be in complete line of sight (LOS). In a large
installation, this cannot be guaranteed from a single point
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towards all anchors. Therefore, to localize all anchors, the
station must be moved to several points in the target area; this
requires recalibration of ground truth along with expertise to
convert all positions to a common coordinate system.

B. ANCHOR SELF-LOCALIZATION
An alternative approach is to automatically compute the
anchor positions via the distance estimation (ranging)
obtained with the on-board UWB radio, enabling the sys-
tem to perform anchor self-localization. This approach is
very appealing, as it minimizes the manual effort involved
in the measurement of anchor positions. For instance, the
Leica 3D Disto above could be used to localize a few anchors
from a single point, and delegate the remaining ones to
the self-localization system. Further, the latter would enable
localization even in scenarios where human intervention is
impractical or even impossible [7]. Actually, it was precisely
these observations, grounded in industrial use cases and expe-
riences, that motivated us to investigate the in-field, practi-
cal feasibility of self-localization to support, or completely
replace, existing manual methods.

C. DOES IT WORK OVER LARGE-SCALE,
MULTI-HOP AREAS?
This approach is of practical interest only if the anchor
positions automatically estimated are accurate enough,
and errors are not detrimental to the overall localization
performance.

Several techniques exist that tackle this goal (§II). Unfor-
tunately, they are evaluated, often via simulation, only in a
small-scale, single-hop scenario with a handful of anchors in
range of each other. For instance, a recent work [8, Table 1]
reports 8 self-localization solutions for UWB. In all cases,
the anchors are always in range of each other. Two solu-
tions are evaluated only in simulation; the remaining rely on
experiments using at most 8 anchors, and covering at most a
16 × 16 m2 area (with 5 anchors). In the same paper [8], the
authors offer a slightly larger evaluation with 15 anchors over
an area of 41 × 26 m2.

These setups are a valid means to evaluate the techniques at
hand, but are a far cry from the large-scale, multi-hop UWB
scenarios increasingly targeted by industry where, in contrast,
a manual approach is clearly impractical or even prohibitive
and self-localization essentially becomes a must. Therefore,
the question above remains open.

Further, by focusing on evaluating their novel tech-
niques, these studies often neglect the self-localization sys-
tem enabling their use, undermining immediate applicability
(and repeatability) in real contexts.

D. SEEKING AN ANSWER FROM A PRACTICAL VIEWPOINT
In this paper, we approach the problem from an opposite per-
spective that, however, is of immediate practical relevance.

First, we exploit three real-world, large-scale, multi-
hop testbeds deployed in an industrial setting (PLANT)

FIGURE 1. Anchor self-localization system architecture. After deploying
the wireless nodes, a distance acquisition system (e.g., UWB TWR)
measures the distance di,j between neighboring nodes, optionally
storing received (RX) signal diagnostics. The distance estimates d̂i,j
together with the known node positions Xa are used in a weighted MDS
solver to determine the unknown anchor positions Xu.

and two indoor areas of the University of Trento
(DEPARTMENT, RECEPTION). They contain up to 36 anchors over
∼3000 m2 and have very different geometries and non-line-
of-sight (NLoS) conditions. The size and realism of any of
these testbeds, representative of many use cases, is already
significantly higher than what commonly reported in the
UWB literature. The availability of three of them enables
us to explore real-world setups with different environmental
conditions and geometries, significantly affecting distance
estimation and, ultimately, localization.

Second, unlike the aforementioned studies, we do not
propose yet another novel technique to solve the problem
of self-localization we formalize in §III, and rely instead
on multidimensional scaling (MDS). This well-known and
general technique has been successfully applied to different
localization technologies, including UWB. The reason of
our choice is that, in comparison with many UWB-specific
approaches (§II), MDS does not pose requirements on the
localization technique or infrastructure used, is computation-
ally lightweight, and does not require training.

Specifically, we rely on a weighted version of MDS [9].
In contrast to the classical one, which requires full-mesh con-
nectivity among anchors, this weighted variant does not and
is therefore applicable to the large-scale, multi-hop scenarios
we target where many anchors are not in range with each
other. Further, this variant exploits knowledge of a few anchor
positions to estimate the unknown ones, removing the need
for the rigid body transformations required by other common
approaches.

Third, we integrate the MDS algorithm with the mechan-
ics of acquiring in-field ranging estimates, yielding a
full-fledged, immediately usable self-localization UWB
system whose high-level operation is shown in Fig. 1.
Self-localization begins by measuring the distance di,j
between each anchor and its neighbors, via two-way ranging
(TWR) [10], [11], [12]. This first step populates a distance
matrix, input to the chosen state-of-the-art MDS algorithm
(§IV) that performs the actual computation of unknown
positions.

E. A REAL-WORLD SYSTEM EVALUATION
After describing in more detail the system implementation
(§V), we evaluate its performance in our testbeds (§VI).
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The combination of these two elements, and the resulting
findings, are the main contribution of this paper. To the best
of our knowledge, this is the first study that ascertains the
performance of a full-fledged self-localization UWB system
in-field and across different testbeds in large, multi-hop areas
with many anchors.

Self-localization is affected by several parameters, deter-
mined by deployment and configuration choices as well
as environmental conditions. Therefore, before the actual
testbed experiments, we exploit the geometric layout of our
testbeds in simulation to understand the sensitivity of the
algorithm to these parameters and the conditions under which
it works at its best, deriving the insights and guidelines driv-
ing the in-field experimental campaign.

Results indicate that, across all three real-world testbeds,
our system can estimate the position of all anchors with a
mean error well below 50 cm despite the presence of ranging
errors of higher magnitude. Further, we analyze the perfor-
mance of a localization system tracking a mobile target, and
demonstrate that the error in estimating the anchor positions
yields only a minor increase in the target positioning error
w.r.t. a configuration in which the position of anchors is
manually determined.

Our findings show how self-localization provides an effec-
tive and practically-relevant means to significantly reduce the
human effort in the deployment of UWB systems. Specif-
ically, the quantitative evidence we report from real-world,
large-scale, multi-hop areas, enables a concrete understand-
ing, largely missing in the literature, of the benefits and
limitations of self-localization in these contexts.

Of course, these are biased by our specific choice of
techniques, systems details, and environments. Further, there
is also margin for improvements and future work on the
topic. We encourage both repeatability of our results and
follow-up research by publicly releasing1 our system and
datasets. We outline these opportunities (§VII) before con-
cluding remarks (§VIII).

II. RELATED WORK
The problem of determining the positions of wireless nodes
received attention since the early days of wireless sensor
networks [13]. Most approaches first measure the distance
between neighbors, then estimate all node positions with an
algorithm based either on MDS or multi-lateration. In gen-
eral, distance estimates are obtained using UWB two-way
ranging (TWR) exchanges [11], [12], [14] or, in the case of
narrowband radios (e.g., WiFi, Bluetooth, IEEE 802.15.4),
from significantly less accurate received signal strength
(RSS) measurements [15], [16].

A. MULTIDIMENSIONAL SCALING
Early approaches exploited mere connectivity information,
estimating the distance between nodes as the number of com-
munication hops between them [17]. The resulting distance

1https://github.com/d3s-trento/selfloc

matrix is input to an MDS solver yielding only a rough
position estimate, due to the inaccuracy of distance estima-
tion. The distributed MDS approach in [18] computes the
relative positions of neighbors as local maps that are then
stitched together into a global one. The latter can be aligned
to a known coordinate system by applying a translation,
a rotation, and possibly a reflection to the estimated positions.
The work in [15] proposes an alternate distributed approach
encompassing known anchor positions in the computation,
to reduce the computational load and improve accuracy, and
exploiting non-binary weighting functions, e.g., to down-
weight measurements based on their confidence.

More recently, Franco et al. [9] reformulated the MDS
minimization problem to directly take into account known
anchor positions in a centralized approach. As a result, in each
iteration only unknown positions are computed. This simpli-
fies the problem and removes the need for roto-translations,
as estimated positions can potentially be aligned with known
ones in the target coordinate system directly during the min-
imization process. This reformulation, however, has been
tested only in simulation and a small setup with a handful
of UWB nodes.

B. MULTI-LATERATION
Other recent approaches targeting UWB, e.g., the auto-
positioning feature offered by Decawave [19] and the works
in [7], [20], and [21] are based on multi-lateration. After
measuring the distance between nodes, these approaches iter-
atively build a coordinate system by assigning a 1st node
to the origin (0, 0, 0) and placing a 2nd one on the positive
x-axis at (d1,2, 0, 0). The coordinates of the 3rd and 4th nodes,
derived in closed form, set the positive direction of the
y- and z-axis. The remaining node positions are determined
based on these 4 nodes and available distance information,
e.g., using a non-linear least squares solver. In comparison,
MDS provides a more elegant and efficient formulation of
the problem, simultaneously computing the position of all
nodes. Moreover, including known anchor positions in MDS
removes the need for a rigid body transformation to align the
built coordinate system to the desired one, generally yielding
more accurate estimates.

C. OTHER APPROACHES
Another set of UWB-specific approaches tackles the prob-
lem by introducing additional system and/or operational con-
straints. The solution in [22], evaluated experimentally with
only 2 unknown anchors, relies on a variant of time-difference
of arrival (TDoA) to self-localize anchors, posing additional
synchronization and infrastructure constraints that may not
be necessary if alternative techniques are used for the actual
localization. Other works rely on a mobile tag to acquire
ranging measurements from the deployment area, increasing
their number and diversity. In [23], the fusion of inertial
measurement unit (IMU) and UWB data from a free-roaming
tag enables simultaneous localization and mapping (SLAM),
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yielding anchor localization as a necessary by-product; how-
ever, the system is demonstrated only in simulation. Instead,
in [24] the mobile tag is constrained to move on a known
path and its data matched against accurate ground truth; the
latter is provided by RTK GPS and generally difficult to
achieve indoor. Finally, the work in [8] extends the multi-
lateration approach in [20] by focusing specifically on the
NLoS problem and analyzing the channel impulse response
(CIR) associated to the UWB signal via machine learning.
As such, this approach is computationally heavy, requires
extensive training, and is difficult to transfer to different
environments.

D. IMPACT ON THIS PAPER
Unlike these studies, we are not proposing our own self-
localization technique. Instead, our goal is to ascertain
whether existing ones, hitherto evaluated only in simulation
or small, single-hop scenarios, are applicable to the large-
scale, multi-hop ones increasingly targeted by UWB appli-
cations and exemplified by our three real-world testbeds (§I).

Nevertheless, comparing in-field and on multiple testbed
all the techniques above, would be a daunting and some-
what unreasonable task, given that their implementation is
often not available and/or limited to simulation and there-
fore glossing over details of practical relevance. Indeed, our
other stated goal is to provide a full-fledged, immediately
usable self-localization UWB system, along with qualitative
guidelines informing its use and quantitative evidence of the
performance that can be attained in-field. Together, these
considerations forced us to select a single technique.

Our choice landed on the MDS-based approach by
Franco et al. [9], due to the following reasons. As mentioned,
MDS is a well-known and general technique, success-
fully applied in several contexts and with different tech-
nologies, and more efficient and flexible than approaches
based on multi-lateration. Further, unlike the last set of
approaches above, it does not pose additional system con-
straints, is computationally lightweight, and does not require
training. Finally, the specific weighted variant in [9] lifts
the constraint of classical MDS that all anchors must be in
range, therefore directly addressing large-scale, multi-hop
scenarios, despite having been evaluated only in simulation
and small-scale, single-hop ones.

We describe next the self-localization problem and the
techniques we employ to solve it.

III. PROBLEM STATEMENT
Consider a network deployment of N nodes in an
M -dimensional space, M ∈ {2, 3}, and position coordi-
nates X = [x1, x2, . . . , xN]T ∈ RN×M . We arrange X so that
X = [Xu,Xa]T , whereXu denote the n unknown coordinates
in X and Xa the m anchor positions known a priori. Our
goal is to determine the unknown Xu positions that satisfy
the measurable distance di,j between nodes i and j, ∀i, j ∈

{1 . . .N }, and respect the known Xa coordinates.

The unknown anchor positions Xu can be determined with
overall knowledge of the Euclidean distance between all
anchors, i.e., in 2D:

di,j =
∥∥xi − xj

∥∥ =

√
(xi − xj)2 + (yi − yj)2 (1)

The di,j distances are typically estimated manually with spe-
cialized equipment, e.g., laser meters. In contrast, our auto-
matic, in-band approach estimates them directly via the UWB
radio (§V) by using two-way ranging [10], [25], [26].

The corresponding d̂i,j estimates can be arranged as

D̂ =


0 d̂1,2 · · · d̂1,N
d̂2,1 0 · · · d̂2,N
...

...
. . .

...

d̂N ,1 d̂N ,2 · · · 0

 (2)

where D̂ is a square and symmetric distance matrix of size
N × N whose main diagonal elements d̂i,i = di,i = 0.
Although ideally d̂i,j = d̂j,i, this does not hold in practice.

Each measurement d̂i,j = di,j +η is affected by a noise η that
depends on a variety of system and environmental factors,
e.g., NLoS conditions. However, the matrix can be easily
made symmetric by setting d̂i,j = d̂j,i to the median of the
distribution resulting from multiple measurements. Further
improvements are enabled by techniques that, e.g., reject out-
liers, weight measurements, and performNLoS identification
and mitigation based on RX diagnostics [27], [28] (Fig. 1).

On the other hand, not all distances in (2) can be measured.
In large deployments, anchors are separated by multiple
wireless hops, beyond the communication range enabling
pairwise distance estimation. In practice, this limits the d̂i,j
measurements available, a crucial aspect to be accounted for
in determining the unknown positions Xu.

Finally, the distance between the m known anchors can be
directly computed as di,j =

∥∥xi − xj
∥∥. This reduces the over-

head of acquiring distance estimates and the computational
load of the self-localization algorithm, described next.

IV. ANCHOR SELF-LOCALIZATION
We illustrate the salient aspects of the state-of-the-art MDS
algorithm [9] we use to determine the unknown anchor posi-
tions Xu via the known m positions Xa and the distance
matrix D̂. The algorithm is based on a weighted variant
of MDS. We first introduce classical MDS and how it can
be used towards self-localization. We then discuss its main
drawback, i.e., the need for a complete distance matrix D̂, not
available in our context (§III), and how the weighted variant
overcomes this problem.We add the possibility to account for
known anchor positions, enabling the algorithm to directly
estimate only the n unknowns. Finally, we discuss the impact
of the initial estimate input to the algorithm in relation to local
minima.

A. MULTIDIMENSIONAL SCALING
MDS is a technique that, given a set of objects, aims at find-
ing a low-dimensional representation in which their distance
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closely matches the measured pairwise ‘‘dissimilarity’’ in the
original high-dimensional representation [15], [29]. In our
context, MDS can determine the Cartesian coordinates of
anchors given the pairwise distances between them. If dis-
tance measurements are error-free and all pairwise distances
are available, classical MDS provides a closed-form solution
to determine the anchor coordinates. In practice, this is not
the case and techniques based on non-linear least squares
(NLLS) via majorizing functions like SMACOF [30], [31]
are typically used to solve the problem. An MDS algorithm
essentially tries to find the representation X that minimizes
the mismatch between the measured dissimilarity d̂i,j and the
distances in X as follows

min
X
S(X) = min

X

∑
i<j≤N

(
d̂i,j − di,j(X)

)2
(3)

B. WEIGHTED MDS
The equation above requires the all-to-all pairwise distance
estimates d̂i,j between nodes, unfeasible when they are not
within communication range. In other words, classical MDS
cannot cope with missing data (i.e., links) and requires full
connectivity among anchors. To overcome this, a weight wi,j
can be associated to each di,j measurement, leading to [15]
and [18]

min
X
S(X) = min

X

∑
i<j≤N

wi,j
(
d̂i,j − di,j(X)

)2
(4)

Missing links have zero weight and do not affect the cost
function, while available and measured links have wi,j = 1.
This is the weighting function used in our experiments (§VI).
Alternatively, if information on the noise on distance esti-
mates is available, less accurate measurements can be down-
weighted [15]. Similarly, if multiple measurements are taken
per distance di,j, the weight could be set based, e.g., on their
variance.

C. ACCOUNTING FOR KNOWN ANCHORS
The MDS algorithm determines the low-dimensional coor-
dinates of X in a new relative coordinate system. The new
coordinates must then be transformed to the desired coor-
dinate system via a rigid body transformation including a
rotation, translation, and possibly a reflection. To this end,
at least 3 points (4 in 3D)must bemeasured in both coordinate
systems. If we have m known positions (Xa), we can directly
include their coordinates in the MDS minimization problem
as in [9], removing the need for these transformations and
facilitating the accurate estimation of the unknown node
coordinates.

D. LOCAL MINIMA
As many other NLLS algorithms, MDS suffers from local
minima. Iterative MDS solvers require as input an initial
estimate X0

= [X0
u,Xa]T . For the algorithm to converge to

the desired minimum,X0
u must be well-positioned, especially

if there are significant errors in the distance measurements

d̂i,j and/or their number is small, due to a low density of
anchors. To deal with this issue, iterative solvers consider
multiple random initial estimates X0, computing each corre-
sponding solution and reporting as the final output the one
with the lowest residual cost from (4). This does not guar-
antee convergence to the optimal solution but increases the
likelihood to find it. Increasing the number of initial estimates
also increases the computational cost, which is acceptable if
the algorithm is run sparingly, e.g., only after deploying the
nodes.

V. SYSTEM IMPLEMENTATION
We offer details of our full-fledged, immediately usable self-
localization system (Fig. 1) combining in-field acquisition of
ranging estimates with the techniques described above. The
system, used in our experimental campaign (§VI), targets the
Decawave DW1000 UWB transceiver [32] and is developed
atop Contiki OS [33].

A. ACQUIRING AND REPORTING DISTANCE ESTIMATES
The in-band acquisition of distance estimates via UWB is
performed via two-way ranging, which comes in several
variants. SS-TWR is the simplest, with the lowest overhead
but also lowest accuracy [11]. In PLANT, we used asymmetric
DS-TWR [12], a classic scheme achieving higher accuracy
at the cost of higher message overhead, and therefore latency
and energy consumption. Instead, in our latest deployments
in DEPARTMENT and RECEPTION we use SS-TWR with a clock
drift compensation based on carrier frequency offset (CFO)
estimation [26], a recent technique yielding accuracy akin
to DS-TWR and the same overhead as SS-TWR. Concurrent
ranging [14], also recently proposed, could be another viable
option. However, its significant improvements in latency,
update rate, and energy consumption, are largely irrelevant
in common scenarios where anchors are mains-powered and
their distance acquired only sporadically. Further, these ben-
efits come at the cost of a slightly lower ranging accuracy,
crucial in self-localization.

We exploit the out-of-band network, present in all of our
testbeds, to schedule tests and collect the d̂i,j distance esti-
mates. First, we determine the neighborhood of each anchor
via a connectivity assessment and discard links with a packet
reception rate PRR < 25%. Based on the resulting con-
nectivity graph among anchors, we then instruct each one,
in sequence, to range against a given set of neighbors. This
simple solution schedules ranging exchanges, and in general
UWB communication, to guarantee the absence of collisions.

The reliance on an out-of-band network is not an issue
for most UWB applications, where it is already present.
For instance, in time-difference of arrival (TDoA) schemes
[34], [35] a wired or wireless network enables the collection
of the time information acquired by anchors, necessary to
compute the target position at a central server. In situations
where this out-of-band infrastructure is impractical or impos-
sible to deploy, the scheduling of ranging exchanges must
be performed in-band, over the UWB network. In this case,
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a multi-hop routing protocol, e.g., the RPL standard [36],
can be used to support i)the downward traffic necessary to
instruct each anchor to perform ranging, and ii) the upward
traffic to collect the d̂i,j values. We exploited this approach in
the PLaNS project [7]; however, its detailed description and
evaluation is outside the scope of this paper.

B. COMPUTING THE ANCHOR POSITIONS
The distance estimates collected at the server are used to
populate the distance matrix D̂ (§III). We mitigate the effect
of noise by setting d̂i,j = d̂j,i to the median of the distribution
yielded by the multiple measurements available. Further, we
compute the distance between known anchors as

∥∥xi − xj
∥∥

and set the corresponding elements in D̂.
This distance matrix is then input to the algorithm in §IV,

developed atop the Python implementation of MDS in
scikit-learn [37]. We extend the original source code
with the possibility to add i) weights to each distance esti-
mate, coping with missing data due to limited network con-
nectivity, and ii) known node positions in each SMACOF
step. The algorithm runs on a personal computer, which
receives the in-field measured distance estimates as input and
computes offline the estimated anchor positions.

VI. FROM THEORY TO PRACTICE
We now turn our attention to the performance of self-
localization in our real-world settings.
UWB Testbeds: We exploit the following large-scale,

multi-hop deployments representative of many UWB use
cases:

• PLANT: A 28-anchor deployment in a large industrial
plant, covering a rectangular area of ∼3000 m2. It is
characterized by the presence of metallic objects and
NLoS conditions, typical of industrial settings.

• DEPARTMENT: A 36-anchor deployment spanning an
entire floor at the University of Trento. The anchors
cover an area of 80 m × 40 m, but are deployed mostly
along corridors, which are very narrow (2.7 m) and
long (Fig. 10). This yields a very challenging geome-
try for localization, yet representative of many indoor
applications.

• RECEPTION: A 19-anchor deployment covering a total
of 720 m2 in the reception floor of the University of
Trento. The area is L-shaped (Fig. 11a), with two nearly-
separated areas connected only by a few NLoS links.

Anchors are always placed on the ceiling of the target area.
Metrics: Our assessment revolves around the following

error metrics, for which we report the mean µ and standard
deviation σ , along with percentiles of absolute errors. The
ranging error between anchors enables us to characterize the
input to the self-localization algorithm. It is computed for
each link as d̂i,j − di,j, where d̂i,j is the distance estimate and
di,j =

∥∥xi − xj
∥∥ is computed from ground-truth anchor coor-

dinates. This metric informs us of the discrepancies one can
expect in the real world, and therefore of the extent to which

an inaccurate input affects the quality of the self-localization
output. The latter is directly captured by the anchor posi-
tioning error, computed as the difference

∥∥x̂i − xi
∥∥ between

the estimated position and the ground-truth one. Moreover,
in §VI-C we report the target positioning error, quantify-
ing the impact anchor positioning errors induced by self-
localization bear on the accuracy of the overall localization
system.
Outline: We first analyze via simulation, exploiting the

geometric layout of our testbeds, the impact of key environ-
mental, system, and configuration parameters on the resulting
anchor positioning accuracy (§VI-A). This step is necessary
to understandwhat are the tradeoffs at stake, and to inform the
configuration and setup of the self-localization system when
actually used in our three testbeds (§VI-B). The experimental
campaigns i) offer a validation of our simulation results, and
ii) concretely demonstrate the accuracy of self-localization
one can expect in real-world, large-scale scenarios; both
aspects are rarely found in the related literature, let apart
in combination (§II). Along the same lines, we close the
circle by ascertaining the impact of the inaccuracies in anchor
position induced by self-localization on the overall accuracy
of the localization system (§VI-C). This provides researchers
and practitioners with a concrete understanding, again largely
missing in the literature, of the benefits and limitations of
self-localization, albeit inevitably biased by the techniques,
systems, and environments we use.

A. UNDERSTANDING THE PARAMETER SPACE
The performance of the self-localization algorithm depends
on several parameters, of different nature. The choice
of which and how many anchors should have a known,
manually-determined position, and the density of all anchors
throughout the target area (§VI-A2–§VI-A3) are determined
in-field at deployment time. The amount of noise on ranging
errors (§VI-A4) is instead primarily determined by the envi-
ronment. Finally, accuracy directly descends from the initial
estimate passed as input to the self-localization algorithm
(§VI-A5). In this section, we exploit simulation to analyze the
impact of each parameter separately and quickly, deriving the
insights and guidelines we apply in our real-world evaluation
in §VI-B.

1) EXPERIMENTAL SETUP
We report simulations based on the geometric characteristics
of PLANT, to keep presentation concise. This testbed is a
system operational in an industrial context, whose anchor
placement is significantly more irregular than the other two.
Our real-world results (§VI-B) are based on the 28 anchors
available during the limited period of time when we were
allowed to perform measurements without disrupting the
facility operation. Here, we use instead the 38-anchor place-
ment originally planned, as it enables us to explore in simu-
lation the parameter space in a larger setup.

The simulations exploit the very same implementation
of the self-localization algorithm we described in §V.
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FIGURE 2. Positioning performance with 4 known anchor positions
(green circles) selected randomly (2a and 2b) and on the boundary of the
area (2c). Grey lines denote available wireless links, blue circles unknown
anchors, orange crosses estimated anchor positions, and red lines the
distance of the latter from ground-truth anchor positions.

The difference is in the input provided to it, and specifi-
cally the distance matrix D̂, which is synthetically generated.
To determine the neighborhood of each anchor, we assume
a UWB communication range of 15 m, which achieves a
connectivity similar to what observed in the real-world rang-
ing traces in PLANT (Fig. 8). We then populate D̂ with the
computed distance between anchors, and account for noise
by adding a ranging error from a zero-mean Gaussian distri-
butionN (0, σ 2) with σ = 15 cm. This simple model controls
noise with a single parameter, simplifying both the interpre-
tation of simulation results and their computation. However,
it does not account for the distance between anchors, their
antenna orientations, or the presence of NLoS; these aspects
are nonetheless investigated in our real-world testbed exper-
iments (§VI-B–§VI-C). Finally, as the performance of MDS
is affected by local minima (§IV), we execute the algorithm
with 128 different random initialization coordinates X0

u.
We use all these defaults unless otherwise specified, when

we change them to analyze specific configuration or environ-
mental conditions.

2) IMPACT OF THE POSITION OF KNOWN ANCHORS
The performance of the anchor self-localization algorithm
depends on which anchors have a known position (§IV).
We analyze the impact of their number and placement, useful
to the personnel in charge of deployment. There are two main
attributes to consider for anchor selection: i) anchor position
and ii) connectivity. We start our evaluation by looking at the
impact of the former on the estimation of Xu.
Fig. 2 compares the estimated and true anchor coordinates

in PLANT, considering 4 known positions. In Fig. 2a–2b the
selection is completely random; this is somewhat unrealistic
but allows us to analyze the algorithm behavior and elicit how
poorly-placed known anchors prevent correct estimation of
the unknown positions.

FIGURE 3. Average node degree (i.e., number of links per node) and
standard deviation as a function of the communication range in PLANT.

In Fig. 2a, the bottom half of the area contains only one
known position (anchor 8); the algorithm is unable to distin-
guish whether its neighbors should be located on its right or
left, leading to very large errors. A similar behavior occurs
in the top half despite the presence of three known anchors
(14, 15, 35), due to their placement and, more generally,
sparse connectivity. For instance, some unknown anchors
(11, 18, 21, 22) are to the left of all three known ones
above; therefore, MDS can comply with the input distance
matrix D̂ by placing these unknowns correctly to the left but
also incorrectly below the known anchors, yielding the large
errors. A denser connectivity would yield more elements in
D̂, further constraining the MDS algorithm, and ultimately
improving estimates, as analyzed later (Fig. 4).

In Fig. 2b, all randomly-selected known anchors are in the
bottom half, yielding accurate estimates for the anchors in
this area. In contrast, the estimates in the top half exhibit
large errors, despite the fact that they satisfy the distance mea-
surements d̂i,j available. Indeed, recall that missing distance
estimates are assigned a zero weight in the cost function.
As a result, the algorithm may position these anchors in areas
whose connectivity, while satisfying the input constraints,
would be quite different from the real one.

In contrast, in Fig. 2c the 4 known anchor positions are
selected on the boundary of the deployment. In this case, the
algorithm accurately estimates the position of all unknown
anchors with a mean error µ = 10 cm, standard deviation
σ = 4 cm, and a maximum error of only 20 cm. Setting the
known positions at the boundary of the deployment encloses
the unknown anchors to a confined area, making it easier for
the algorithm to correctly determine the unknown positions
and limiting the likelihood to suffer from large errors as
observed in Fig. 2a and 2b. These anchors are also typically
the easiest to visually identify on-site, therefore helping the
personnel in charge of measuring the actual anchor positions,
e.g., using a map and a laser meter.

3) IMPACT OF ANCHOR DENSITY AND NUMBER
OF KNOWN POSITIONS
The self-localization algorithm (§IV) is sensitive to the over-
all density of anchors, both unknown or known. Moreover,
concerning the latter, it is sensitive not only to the position
(§VI-A2), but also to the number of known anchors.
To investigate the former issue, we change the communi-

cation range from the default of 15 m to 30.5 m, in steps
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FIGURE 4. Maximum positioning error as a function of the
communication range and the number of known anchors across
15 iterations per configuration with a random (4a) and boundary (4b)
selection of known anchors. Note the different scale of the right colorbar.

of 0.5 m. This changes the density of anchors and there-
fore the number of their neighbors (Fig. 3). Increasing den-
sity increases the information available to self-localization,
improving the estimation of the unknown anchor coordinates.

To investigate the latter issue, we change the number of
known anchors from 4 to 15, in steps of 1, for each com-
munication range tested. Increasing the number of known
positions decreases the unknowns to determine, simplifying
the localization problem and increasing accuracy.

We consider both i) a random anchor selection to further
illustrate the impact of a poor anchor choice, and ii) a selec-
tion with all known anchors on the boundary. We run each
configuration 15 times, changing the ranging errors intro-
duced in the distance matrix D̂.
Fig. 4 shows two heatmaps with the maximum positioning

error obtained per configuration considering the random (4a)
and boundary (4b) anchor selection cases. Using a random
selection, self-localization requires at least 6 known anchor
positions (16% of all anchors in Fig. 2) and a high den-
sity of >11 neighbors (Fig. 3) to reliably and accurately
determine the unknown anchor positions. Interestingly, with
an average density of ≈8 neighbors, the algorithm can-
not determine all unknown positions accurately even with
15 known positions (40%), reasserting the importance of
sufficient connectivity—at least with a random selection.
Indeed, selecting the known anchors on the boundary of the
deployment area improves performance dramatically, yield-
ing a maximum error ≤45 cm in all configurations tested
(Fig. 4b). Further, the number of known anchors bears only
a marginal impact, suggesting that the dominating factor is
their selection on the boundary and their connectivity.

4) IMPACT OF RANGING ERRORS
To examine how ranging errors affect the anchor positioning
accuracy, we change the default ranging error distribution
N (0, σ 2) in §VI-A1 by increasing σ from 5 cm to 1 m in
steps of 5 cm. For each value of σ , we run 30 iterations
producing different Gaussian distance errors. We select the
same 4 known anchor positions as in Fig. 2c.
Fig. 5 shows that, as expected, the anchor positioning

error increases with the ranging error. When NLoS or
otherwise noisy links are predominant, the anchor positioning
accuracy decreases significantly and rapidly. However, in the

FIGURE 5. Anchor positioning error boxplots as a function of the ranging
standard deviation σ . Small dots represent samples outside the 1.5×

inter-quartile range of the distribution.

common case where most links are LoS and relatively few
are NLoS, we can generally expect a ranging precision with
σ ≤ 25 cm, resulting in a positioning error ≤50 cm. This
is usually acceptable and bears limited impact on the overall
localization accuracy, as we demonstrate in §VI-C, while our
automated self-localization toolchain dramatically decreases
the deployment setup time and effort.

5) IMPACT OF INITIAL ESTIMATES
As mentioned in §IV, MDS suffers from local minima; the
initial position X0 is crucial in ensuring convergence. There-
fore, we cannot rely on a single random X0, rather we must
compute the solution with several and select as the final
output the one that provides the lowest cost. This, however,
increases the computational overhead of the approach.

We analyze these issues by changing the number of ini-
tial positions #X0 from 1 to 256 with a power-of-two step.
We execute 15 iterations per configuration, and report the
mean, standard deviation, and maximum values of execution
time and positioning error, itself aggregated across all esti-
mated unknowns. We use default settings (§VI-A1) and the
same 4 known anchor positions of Fig. 2c.
Table 1 shows the results as a function of the number of

initial estimates. As expected, the execution time increases
with #X0, while the positioning error decreases. Neverthe-
less, these results allow us to identify the minimum number
of iterations required to obtain a reasonable error, which
is key to verify the practical applicability of the approach,
and a precious indication at deployment time. Under the
conditions evaluated, to obtain a mean error <50 cm we
need #X0

≥16 initial estimates. Nevertheless, the maximum
positioning error can be much higher; to limit it to <1 m,
we need at least 64 iterations. Interestingly, the correspond-
ing execution time is only a handful of seconds; even with
256 iterations, the worst-case execution time is 20.22 s on the
rather old laptop model (MacBook Pro 2013) we used.

These values confirm the practical applicability of the
technique, as embodied in our system. The computational
overhead is entirely acceptable in absolute terms, especially
considering that the self-localization computation is likely to
be run only during the anchor deployment.
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FIGURE 6. Normalized histogram and CDF of the ranging error across all measurements in the three studied deployments.

TABLE 1. Execution time and positioning error as a function of the
number of initial X0 values considered in the algorithm using a ranging
error distribution with σ = 15 cm, 15 iterations with different random
errors, and the 4 known anchor positions in Fig. 2c.

B. REAL-WORLD ANCHOR SELF-LOCALIZATION
We now quantify the performance of self-localization in our
three real-world, large-scale, multi-hop testbeds. We begin
by characterizing the quality of ranging estimates, inevitably
affected by errors induced by the environment (§VI-B2).
As these estimates are collected by our system and provided
as input to the MDS algorithm (§IV), they crucially affect the
accuracy of the anchor positions returned as output, analyzed
next (§VI-B3).

1) EXPERIMENTAL SETUP
In all testbeds, each anchor is composed of a UWB
node paired with an embedded PC; the latter enables
communication access to a central server via Ethernet.
In PLANT, an anchor consists of a custom Linux computer
interfaced with a UWB platform designed by the company
owning the deployment, based on the Decawave DW1000
UWB transceiver [32]. Anchors use channel 2 with center
frequency fc = 3993.6 MHz and 499.2 MHz bandwidth.
In DEPARTMENT and RECEPTION, anchors consists of an

EVB1000 board [38] attached to a Raspberry Pi v3 (RPi) and

a J-Link programmer. The UWB radios use channel 7 with
fc = 6489.6 MHz and 900 MHz bandwidth.

All experiments use the highest 6.8 Mbps data rate.

2) ANALYSIS OF RANGING ERRORS
To appreciate the quality of the output of self-localization,
an analysis of the quality of the input is necessary. We report
the ranging errors present in our real-world testbeds, and
investigate whether their presence can be inferred from the
PHY-level indicators available on the UWB radio.

a: ACCURACY AND PRECISION
Fig. 6 shows the normalized histogram and cumulative dis-
tribution function (CDF) of the ranging error distributions
across more than 1.2k, 163k, and 111k estimates covering all
available links (PRR ≥ 25%, §V) in PLANT, DEPARTMENT, and
RECEPTION, respectively.

The best ranging performance is obtained in RECEPTION

with µ = 4 cm and σ = 20 cm and percentiles of the
absolute error of 95th = 29 cm and 99th = 61 cm. This
testbed spans two open areas where most anchors enjoy LoS
conditions, except for the few connecting the two areas. At the
other extreme, in DEPARTMENT anchors are placed in long
and narrow corridors, with corners and ceiling half-walls
causing several NLoS links, responsible for a long-tailed error
distribution where 99th = 1.94 m and the error is ≥ 87 cm in
5% of the estimates. As a consequence, the overall accuracy
(µ = 20 cm) and precision (σ = 57 cm) are also significantly
worse. PLANT shows a similar long tail of errors ≥ 1 m in
5% of the estimates, this time caused by the complexity of
the industrial environment, despite obtaining slightly better
performance with µ = 8 cm and σ = 44 cm.

b: CAN WE IDENTIFY ERRORS?
These long-tailed error distributions are a challenge for the
self-localization algorithm, ultimately preventing accurate
positioning of all anchors (§VI-B3). Therefore, based on
our extensive datasets, we investigate whether a correlation
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FIGURE 7. Ranging error vs. distance, CFO, FPPL, RSS, and |RSS − FPPL| across more than 163k and 111k ranging estimates in DEPARTMENT and
RECEPTION, respectively. Errors do not exhibit a clear correlation with these measured radio features.

FIGURE 8. Positioning performance with 4, 6, and 8 known anchor
positions (green circles) in the boundary of PLANT. Grey lines denote
available wireless links, blue circles unknown anchors, and orange
crosses estimated anchor positions.

exists between these errors and PHY-level indicators avail-
able on the radio. A positive answer would enable us to reli-
ably discard faulty estimates, increasing the self-localization
accuracy.

We consider the relation between ranging errors and i) the
ground-truth distance, ii) the carrier frequency offset (CFO)
between the ranging initiator and responder, iii) the first
path power level (FPPL), iv) the received signal strength
(RSS), and v) their difference |RSS − FPPL|. Concerning
the latter indicator, according to Decawave [39] links with
|RSS − FPPL| > 10 dBm are generally in NLoS, while links
with |RSS − FPPL| < 6 dBm are in LOS.

The scatter plots in Fig. 7 report results for DEPARTMENT and
RECEPTION, our largest datasets. We observe no direct relation
between the ranging errors and the ground-truth distance or
the CFO. Instead, large errors often have lower RSS and
FPPL values; however, many other links with comparably

low values yield very accurate ranging estimates. Finally,
the NLoS indicator suggested by Decawave is similarly
unreliable, given that the largest errors in our dataset have
|RSS − FPPL| < 10 dBm.
We conclude that these simple radio features cannot be

used to identify errors, at least in our testbeds, and therefore
are not included as part of the ranging computation. More
sophisticated techniques are the subject of active research,
as briefly discussed later (§VII), and could in principle be
used to improve the ranging accuracy; however, they are
outside the scope of this work.

Instead, we investigate next whether the self-localization
algorithm is robust enough to yield accurate anchor positions
even in the presence of these long-tailed error distributions.

3) PERFORMANCE OF ANCHOR POSITIONING
We now investigate the performance of the self-localization
algorithm (§IV) in determining the positions of the unknown
anchors based on the ranging traces previously analyzed.

We first consider PLANT, as this was the focus of our
simulation-based analysis (§VI-A). Fig. 8 shows the esti-
mated vs. ground-truth anchor coordinates with 4, 6, and
8 known anchor positions on the boundary, respectively 14%,
21%, and 28% of the total. Overall, the performance is quite
good despite the long-tailed errors in Fig. 6a; the maximum
error is ≈1 m in all cases, even if 5% of the ranging estimates
are affected by errors≥ 1 m, confirming the robustness of the
system. With only 4 known anchors, the positioning error has
µ = 44 cm, σ = 23 cm, and 90th = 72 cm. Results improve
with 6 anchors (µ = 33 cm, σ = 24 cm, 90th = 68 cm) and
8 anchors (µ = 32 cm, σ = 25 cm, 90th = 63 cm) albeit
only marginally, as suggested by the heatmap in Fig. 4b.

We now switch our attention to the results in DEPARTMENT

and RECEPTION, where we have a larger ranging dataset and
more freedom in performing additional tests, due to logistics.
Specifically, and before delving into the positioning perfor-
mance, we investigate in more depth the connectivity in these
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FIGURE 9. Network connectivity heatmap in DEPARTMENT and RECEPTION.
In the former, nodes are deployed in long, narrow corridors where each
node generally has 3 to 12 good neighbors. In RECEPTION, we have two
clearly distinguished open areas, poorly connected between them.

testbeds because, as seen in §VI-A3, it is key for the correct
operation of the algorithm.

Fig. 9 depicts connectivity using a heatmap whose colors
represent PRR values. In DEPARTMENT, anchors are deployed
across 4 long and narrow corridors, severely constraining
connectivity. Anchors generally have at most 3 to 6 good
neighbors, except for anchors 1–7 that are deployed in
a small open area and enjoy higher connectivity. Instead,
in RECEPTION there are two large open areas; anchors in the
same area are highly connected. On the other hand, anchors
across the two areas are poorly connected via fewNLoS links,
as the key anchors (50 and 65) have an obstacle in front that
severely impacts the PRR with nodes 70–77.
Fig. 10 and 11a compare the estimated vs. true anchor

positions in DEPARTMENT and RECEPTION, respectively. In both
cases, we select only 4 known anchor positions (11%
and 21%, respectively) on the boundary of the target
area.

In DEPARTMENT, the placement of anchors along corridors
severely constrains the spatial resolution along one of the
coordinate axis. Moreover, there are several NLoS links
(e.g., anchor 8 with 1–6 or anchor 21 with 22–28), ham-
pering correct estimation of the anchor positions. Nonethe-
less, we observe that the main dimension in the corridor is
estimated accurately, e.g., the x-axis coordinates of anchors
8–16 and 22–29. The other dimension, affected by poor spa-
tial resolution, could be improved in a post-processing step
or with manual validation. On the other hand, the position of
the unknowns in the small open area comprising anchors 1–7
is estimated with an error ≤71 cm, despite we provided the
algorithm with only one known anchor in the area.

In RECEPTION, performance is significantly better, arguably
due to higher connectivity between anchors and more reason-
able geometry. Across the unknown anchors, the positioning
error has µ = 24 cm, σ = 18 cm with a minimum error
of 3 cm and a maximum of only 58 cm, despite the large
size of the target area. The largest errors are for anchors 51,
62, 64 (slightly above the true positions) and 65 (slightly to
the right), probably due to the large ranging error of 1.22 m
between anchors 65 and 70 and the 30 cm overestimation
between 65 and the known anchor 50, due to obstacles and
walls yielding NLoS.

C. SELF-LOCALIZATION ERRORS: DO THEY MATTER?
To ascertain whether the self-localization techniques and sys-
tem evaluated here are ultimately of practical interest for real-
world applications, we assess the impact of the above inaccu-
racies in estimating anchor positions on the accuracy of the
localization system exploiting them. To this end, we compare
the accuracy of tracking a mobile target in RECEPTION using
the true, manually-measured anchor coordinates vs. using
those estimated by our self-localization approach (§VI-B3).
We focus on RECEPTION because its L-shaped geometry offers
an interestingmix of deployment conditions. The bottom area
(Fig. 11, y < 16 m) is long, narrow, and with an irregu-
lar anchor placement, overall yielding a more challenging
setup w.r.t. the top area, wider and with anchors regularly
and more densely placed. These two areas, hereafter NARROW

and REGULAR, are representative of corresponding real-world
situations; we therefore analyze their separate impact on
performance in addition to the aggregate one over RECEPTION.

Nevertheless, acquiring ground-truth trajectories of mobile
targets over the wide area covered by RECEPTION is very chal-
lenging. Therefore, we resort to the following methodology.
We first generate the trajectories in simulation, which enables
us to easily define ground truth to compare against and ascer-
tain the absolute impact of self-localization on localization
accuracy. Moreover, we determine the distance between the
target positions determined with true vs. estimated anchor
coordinates, as a measure of the relative impact induced by
the latter. This is actually a very important metric because,
in real applications, ground truth is not known a priori
and therefore not available for comparison. In other words,
we answer the question:What would be the difference in tar-
get positioning by using true vs. estimated anchor positions?
If the difference is small enough, choosing one over the other
should not really matter in practice. Interestingly, this latter
metric does not require ground truth, and we can therefore
measure it with relative ease based on real trajectories in our
testbed.

1) SIMULATED TRAJECTORY
We define the ground-truth trajectory as a round-trip along
the L-shaped area, spanning both NARROW and REGULAR.
We simulate 3200 positions; however, due to the geometry
of RECEPTION and the simulated trajectory, only 661 (∼20%)
are in REGULAR. For each ground-truth position, we select the
4 closest anchors and simulate 4 ranging estimates with zero-
mean Gaussian error N (0, σ 2) and the default σ = 15 cm
(§VI-A1). Then, we use an NLLS solver to compute the target
positions P̂T, based on the true anchor coordinatesX, and P̂E,
based on the estimated ones X̂.

Fig. 11a visually compares both trajectories against the
ground-truth one. The latter is actually not visible, as it is
accurately captured by both P̂T and P̂E; both these trajectories
are actually very close to each other. The largest differences
are found near anchors 62–64, whose estimated positions are
slightly above the true ones, and therefore alters the trajectory
P̂E accordingly.
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FIGURE 10. Anchor self-localization in DEPARTMENT. Grey lines denote available wireless links for
ranging.

FIGURE 11. Ascertaining the impact of self-localization errors on the overall localization accuracy of target position tracking in RECEPTION.

FIGURE 12. CDF of the target positioning error w.r.t. ground truth
in Fig. 11.

The CDF of the positioning error (Fig. 12) offers an alter-
nate, quantitative view. Using true anchor positions achieves
a mean error µ = 17 cm with σ = 10 cm, yielding
50th = 16 cm and 95th = 35 cm. As expected, the
error increases using estimated anchor positions. However,
it remains≤51 cm for 95% of the 3200 location samples, with
50th = 25 cm, µ = 26 cm, and σ = 14 cm.
Instead, Fig. 13 analyzes the distance ||P̂E − P̂T|| between

the target position in P̂T and P̂E, highlighting the impact of
geometry and anchor placement. In REGULAR, anchors 70–77
provide very good coverage, yielding a small average dis-

tance (8 cm) between location samples and very small vari-
ations overall (99th ≤ 15 cm). In NARROW, the irregular
placement of anchors 50–65 in the longer, narrower area
yields higher average distance (23 cm) and variations (99th ≤

50 cm). The CDF aggregated over both areas is dominated by
NARROW, due to the larger number of samples. Next, we inves-
tigate to what extent these results hold in practice.

2) REAL TRAJECTORY
We run experiments where a person carrying a DW1000-
equipped platform walks in RECEPTION along a path similar to
the simulated one (Fig. 11a). The target position is acquired
by TALLA, a system enabling TDoA localization across large,
multi-hop anchor deployments. The difference 1ti in the RX
timestamps of packets, sent by the target, at a given anchor i
w.r.t. a reference one represents the equation of a hyperbola.
The actual position is determined by solving a NLLS problem
minimizing the squared difference between the measured and
theoretical 1ti estimates. Details about the TDoA solver and
the overall system design are in [34]. We obtain P̂T and P̂E
by running the TALLA solver with true and estimated anchor
positions on the same experiment traces.
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FIGURE 13. Simulation: CDF of the distance between the estimated
positions P̂T and P̂E in Fig. 11 using X and X̂, respectively, in RECEPTION.

Fig. 11b visually compares the resulting trajectories.
As mentioned, we do not have accurate ground truth for
the mobile target and therefore analyze only the distance
between the target positions in P̂T and P̂E, whose CDF is
shown in Fig. 14. Similar to our simulation results, P̂E follows
P̂T closely and with a slight difference in the two areas.
In REGULAR, the average of the distance ||P̂E − P̂T|| (8 cm)
and its variability (99th ≤ 18 cm) are nearly the same as in
simulation. In NARROW, the average distance (26 cm) and its
variability (99th ≤ 84 cm) are slightly higher, arguably due to
the impact of real-world conditions exacerbated by geometry
and the high sensitivity tomeasurement errors of TDoA local-
ization. As in the simulated case, the CDF aggregated over
the whole RECEPTION is dominated by the more challenging
NARROW area; REGULAR accounts for only 104 (∼10%) of the
1079 total samples.

Overall, our results with real trajectories (Fig. 14) are
in good agreement with those in simulation (Fig. 13).
This points to the fact that, were target mobility ground truth
available in the former, one could expect very good accuracy,
similar to Fig. 12.

VII. DISCUSSION
We summarize our findings, reflect on their immediate appli-
cability, and concisely highlight lessons learned and limita-
tions that may orient future work on the topic.

A. MAIN FINDINGS AND APPLICABILITY
Our quantitative analysis in multiple real-world, large-
scale, multi-hop deployments shows that the self-localization
approach we considered and embodied in our system
introduces only a relatively small anchor positioning error
(§VI-B). Moreover, our analysis of the impact of this error on
localization (§VI-C) shows that the difference between target
positions acquired with true and estimated anchor positions
is similarly small. In both cases, the error magnitude depends
on the geometry of the target area, the connectivity among
anchors, and the environmental conditions affecting the accu-
racy of the ranging estimates among anchors used as input.
For instance, Fig. 14 shows that, even in the same RECEPTION

testbed, different areas (top vs. bottom) introduce a different
bias on the resulting trajectory (8 vs. 26 cm on average).

At first sight, these values may seem high, relative to the
decimeter-level ranging accuracy typically associated with
UWB. However, two observations hold. First, we showed

FIGURE 14. TALLA: CDF of the distance between the estimated positions
P̂T and P̂E of a mobile node using X and X̂, respectively, in RECEPTION.

that, in practice, the latter accuracy can be worse depending
on the environment (§VI-A4). Second, even with the extra
bias induced by self-localization, the overall, absolute error
remains in line with the requirements of many applications
exploiting localization [1], [2], [3], [4], for which sub-meter
accuracy is enough, in contrast with the coarse, meter-level
one offered by other RF-based localization technologies [4].

For these applications, the findings in this paper reassert
the role of self-localization as a practical tool to facilitate
the deployment of UWB-based localization systems by dra-
matically reducing the time and effort to setup the anchor
infrastructure, specifically focusing on the large-scale, multi-
hop settings that require an automated approach.

On the other hand, the errors above, however small, may be
unacceptable in applications that demand the highest accu-
racy possible enabled by UWB, e.g., drone navigation [40]
or detection of fine-grained human mobility patterns [41], for
which manual anchor localization may remain the only viable
option.

B. SELF-LOCALIZATION IN 3D
In this study, we considered only 2D localization, common
to many applications including those typically run in our
testbeds, whose anchors are consequently all placed on the
ceiling at the same or very similar height. In contrast, 3D
localization requires diversity in the positioning of anchors
along the z-axis.

If a proper anchor configuration is deployed, the algorithm
in §IV can directly output the 3D coordinates of the unknown
positions based on the distance matrix D̂. Still, its ability
to accurately estimate the height of the unknown anchors
depends on the z-axis resolution, generally poor due to the
low spread of anchors along that axis compared to the (x, y)
plane. Nonetheless, we observe that the true height of each
anchor can be easily, reliably, and independently measured,
e.g., with a LDM. These true heights can also be incorporated
in the MDS algorithm as in [9].

C. ROLE OF KNOWN ANCHORS
The selection of anchors whose positions Xa are known is
key for accurate self-localization (§VI-A); a poor selection
may result in large positioning errors (Fig. 2). Known anchors
should be at the boundary of the target area, enclosing
unknown positions. In our testbeds, a minimum of 4 known
anchors at the boundary are required for acceptable accu-
racy; a higher number, which increases manual effort, yields
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only marginal improvements. However, deployments with
different geometries and/or across even larger areas may
benefit frommore known anchor positions. Moreover, known
anchors should also be well-connected (i.e., with several
neighbors), providing enough distance d̂i,j estimates as input
to the algorithm.

Finally, their selection should privilege anchors that enjoy
LoS connectivity. For instance, our initial experiments in
RECEPTION relied on anchor 65 as a known one, chosen purely
from geometrical considerations on the map (Fig. 11), and
achieved very poor results. Visual inspection evidenced that
this anchor is placed on an area of the ceiling hampering LoS
with all neighbors; selecting it as a known anchor forces the
algorithm to treat inaccurate NLoS distance information as
reliable, with detriment to accuracy.

D. NLoS DETECTION AND ERROR MITIGATION
More generally, we have shown in §VI-A4 and §VI-B3 that
the performance of self-localization strongly depends on the
ranging error. In the TWR variants we used, this is caused
mainly by an incorrect time-of-arrival (ToA) estimation,
which adds a significant offset to ranging estimates in NLoS
conditions. We have shown that these cannot be detected
based on simple indicators of the UWB transceiver. How-
ever, the latter also provides sophisticated RX information in
the form of the measured channel impulse response (CIR).
Existing works [27], [28] exploit CIR information combined
with machine learning and deep learning techniques to detect
whether a link is in NLoS and even estimate and mitigate the
resulting errors. Enhancing our system with NLoS detection
andmitigation is outside the scope of this paper, although part
of our future work. On the other hand, in-field inspection of
the target area in many cases can help identify NLoS links
between anchors and down-weight or discard the correspond-
ing measurements.

VIII. CONCLUSION
The widespread adoption of UWB-based localization sys-
tems hinges on the ease of deploying them quickly and
reliably. This clashes with the current practice of carefully
positioning localization anchors via manual measurements,
a labor-intensive and error-prone process whose drawbacks
are exacerbated when many anchors must be deployed across
large and complex areas.

This paper concretely and quantitatively shows that
an alternate, automated approach in which the system
self-localizes anchors is practically applicable to these large-
scale, multi-hop scenarios. To this end, we i) integrate state-
of-the-art techniques hitherto evaluated only via simulation
or small-scale setups into a full-fledged system that covers
the entire gamut from in-field, in-band acquisition of distance
information via UWB to the output of estimated anchor
positions, and ii) evaluate the resulting system in three large,
multi-hop real-world testbeds with different characteristics,
eliciting quantitatively the impact of the information input to

self-localization (e.g., ranging errors and anchor connectiv-
ity) on the accuracy of the output anchor position estimates.

Our results show that manual estimation of only a handful
of anchor positions is sufficient to estimate large numbers of
unknown ones quickly and accurately, minimizing manual
labor without significant detriment to the accuracy of the
localization system relying on them. We argue that the latter
accuracy is in linewith the requirements ofmanyUWB-based
localization systems, for which the significant reduction in
human labor is a crucial factor currently hampering their
adoption in large-scale settings.

Finally, to enable researchers and practitioners to immedi-
ately build upon, improve, or replicate our results, we pub-
licly release our system implementation as open source,
along with the datasets of the experimental campaigns we
described.

REFERENCES
[1] UWB Alliance. Applications. Accessed: Feb. 27, 2023. [Online]. Avail-

able: https://uwballiance.org/applications/
[2] FiRa Consortium. UWB Use Cases. Accessed: Feb. 27, 2023. [Online].

Available: https://www.firaconsortium.org/discover/use-cases
[3] I. V. Bourne, ‘‘The rise of indoor positioning: A 2016 global research

report on the indoor positioning market,’’ IndoorAtlas, Oulu, Finland,
Tech. Rep., 2016. [Online]. Available: https://www.indooratlas.com/wp-
content/uploads/2016/09/A-2016-Global-Research-Report-On-The-
Indoor-Positioning-Market.pdf

[4] F. Zafari, A. Gkelias, and K. K. Leung, ‘‘A survey of indoor localization
systems and technologies,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2568–2599, 3rd Quart., 2017.

[5] D. Lymberopoulos and J. Liu, ‘‘The Microsoft indoor localization com-
petition: Experiences and lessons learned,’’ IEEE Signal Process. Mag.,
vol. 34, no. 5, pp. 125–140, Sep. 2017.

[6] Leica 3D Disto. Accessed: Feb. 27, 2023. [Online]. Available: https://
shop.leica-geosystems.com/learn/laser-distance-measuring/3d-disto

[7] E. Varriale, P. Corbalán, T. Istomin, and G. P. Picco, ‘‘PLaNS: An
autonomous local navigation system,’’ in Proc. 31st Int. Tech. Meeting
Satell. Division Inst. Navigat. (ION GNSS), Oct. 2018, pp. 1722–1727.

[8] M. Ridolfi, J. Fontaine, B. V. Herbruggen, W. Joseph, J. Hoebeke, and
E. D. Poorter, ‘‘UWB anchor nodes self-calibration in NLOS conditions: A
machine learning and adaptive PHY error correction approach,’’ Wireless
Netw., vol. 27, no. 4, pp. 3007–3023, May 2021.

[9] C. Di Franco, M. Marinoni, E. Bini, and G. C. Buttazzo, ‘‘Dynamic
multidimensional scaling with anchors and height constraints for indoor
localization of mobile nodes,’’ Robot. Auto. Syst., vol. 108, pp. 28–37,
Oct. 2018.

[10] IEEE Standard for Local and Metropolitan Area Networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs), Standard IEEE
802.15.4-2011, 2011. [Online]. Available: https://ieeexplore.ieee.org/
document/6012487

[11] Y. Jiang and V. C. M. Leung, ‘‘An asymmetric double sided two-way
ranging for crystal offset,’’ in Proc. Int. Symp. Signals, Syst. Electron.,
Jul. 2007, pp. 525–528.

[12] D. Neirynck, E. Luk, and M. McLaughlin, ‘‘An alternative double-sided
two-way ranging method,’’ in Proc. 13th Workshop Positioning, Navigat.
Commun. (WPNC), Oct. 2016, pp. 1–4.

[13] L. Doherty, K. S. J. Pister, and L. El Ghaoui, ‘‘Convex position estimation
in wireless sensor networks,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2001, pp. 1655–1663.

[14] P. Corbalán and G. P. Picco, ‘‘Ultra-wideband concurrent ranging,’’ ACM
Trans. Sensor Netw., vol. 16, no. 4, pp. 1–41, 2020.

[15] J. A. Costa, N. Patwari, and A. O. Hero III, ‘‘Distributed weighted-
multidimensional scaling for node localization in sensor networks,’’ ACM
Trans. Sensor Netw., vol. 2, no. 1, pp. 39–64, Feb. 2006.

[16] Z. Yang, Z. Zhou, and Y. Liu, ‘‘From RSSI to CSI: Indoor localization via
channel response,’’ ACM Comput. Surv., vol. 46, no. 2, p. 25, Dec. 2013.

29724 VOLUME 11, 2023



P. Corbalán et al.: Self-Localization of Ultra-Wideband Anchors: From Theory to Practice

[17] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, ‘‘Localization from
mere connectivity,’’ in Proc. 4th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., Jun. 2003, pp. 201–212.

[18] X. Ji and H. Zha, ‘‘Sensor positioning in wireless ad-hoc sensor networks
using multidimensional scaling,’’ in Proc. IEEE INFOCOM, Mar. 2004,
pp. 2652–2661.

[19] MDEK1001 Kit User Manual Module Development & Evaluation Kit for
the DWM1001, Decawave, Dublin, Ireland, 2017.

[20] M. Hamer and R. D’Andrea, ‘‘Self-calibrating ultra-wideband
network supporting multi-robot localization,’’ IEEE Access, vol. 6,
pp. 22292–22304, 2018.

[21] C. M. Almansa, W. Shule, J. P. Queralta, and T. Westerlund, ‘‘Autocalibra-
tion of a mobile UWB localization system for ad-hoc multi-robot deploy-
ments in GNSS-denied environments,’’ in Proc. Int. Conf. Localization
GNSS (ICL-GNSS), 2020, pp. 1–11.

[22] A. Vashistha, A. Gupta, and C. L. Law, ‘‘Self calibration of the anchor
nodes for UWB-IR TDOA based indoor positioning system,’’ in Proc.
IEEE 4th World Forum Internet Things (WF-IoT), Feb. 2018, pp. 688–693.

[23] Q. Shi, S. Zhao, X. Cui, M. Lu, and M. Jia, ‘‘Anchor self-localization
algorithm based on UWB ranging and inertial measurements,’’ Tsinghua
Sci. Technol., vol. 24, no. 6, pp. 728–737, Dec. 2019.

[24] A.D. Preter, G. Goysens, J. Anthonis, J. Swevers, andG. Pipeleers, ‘‘Range
bias modeling and autocalibration of an UWB positioning system,’’ in
Proc. Int. Conf. Indoor Positioning Indoor Navigat. (IPIN), Sep. 2019,
pp. 1–8.

[25] M. McLaughlin and B. Verso, ‘‘Asymmetric double-sided two-way
ranging in an ultrawideband communication system,’’ U.S. Patent
15 500 633, Mar. 1, 2018. [Online]. Available: https://patents.google.com/
patent/US10488509B2/en

[26] I. Dotlic, A. Connell, and M. McLaughlin, ‘‘Ranging methods utilizing
carrier frequency offset estimation,’’ in Proc. 15th Workshop Positioning,
Navigat. Commun. (WPNC), Oct. 2018, pp. 1–6.

[27] I. Güvenc, C.-C. Chong, F. Watanabe, and H. Inamura, ‘‘NLOS identi-
fication and weighted least-squares localization for UWB systems using
multipath channel statistics,’’ EURASIP J. Adv. Signal Process., vol. 2008,
no. 1, Dec. 2007, Art. no. 271984.

[28] K. Bregar and M. Mohorčič, ‘‘Improving indoor localization using con-
volutional neural networks on computationally restricted devices,’’ IEEE
Access, vol. 6, pp. 17429–17441, 2018.

[29] Scikit-learn. Multi-Dimensional Scaling (MDS). Accessed:
Nov. 21, 2019. [Online]. Available: https://scikit-learn.org/stable/modules/
manifold.html#multidimensional-scaling

[30] J. De Leeuw, ‘‘Applications of convex analysis to multidimensional scal-
ing,’’ in Recent Developments in Statistics, J. R. Barra, F. Brodeau,
G. Romier, and B. Van Cutsem, Eds. North Holland Publishing Company,
1977, pp. 133–146.

[31] J. D. Leeuw and P. Mair, ‘‘Multidimensional scaling using majorization:
SMACOF in R,’’ J. Stat. Softw., vol. 31, no. 3, pp. 1–30, 2009.

[32] DW1000 Data Sheet, Decawave, Dublin, Ireland, 2016.
[33] P. Corbalán, T. Istomin, andG. P. Picco, ‘‘Poster: Enabling Contiki on ultra-

wideband radios,’’ in Proc. 15th Int. Conf. Embedded Wireless Syst. Netw.
(EWSN), 2018, pp. 171–172.

[34] D. Vecchia, P. Corbalan, T. Istomin, and G. P. Picco, ‘‘TALLA: Large-scale
TDoA localization with ultra-wideband radios,’’ in Proc. Int. Conf. Indoor
Positioning Indoor Navigat. (IPIN), Sep. 2019, pp. 1–8.

[35] J. Tiemann, F. Eckermann, and C. Wietfeld, ‘‘ATLAS—An open-source
TDOA-based ultra-wideband localization system,’’ in Proc. Int. Conf.
Indoor Positioning Indoor Navigat. (IPIN), Oct. 2016, pp. 1–6.

[36] T. Winter, RPL: IPv6 Routing Protocol for Low-Power and Lossy Net-
works, document RFC 6550, Mar. 2012.

[37] F. Pedregosa, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn.
Res., vol. 12, no. 10, pp. 2825–2830, Jul. 2017.

[38] Decawave ScenSor EVB1000 Evaluation Board, Decawave, Dublin,
Ireland, 2013.

[39] DW1000 User Manual—Version 2.18, Decawave, Dublin, Ireland, 2017.
[40] J. Tiemann and C. Wietfeld, ‘‘Scalable and precise multi-UAV indoor

navigation using TDOA-based UWB localization,’’ in Proc. Int. Conf.
Indoor Positioning Indoor Navigat. (IPIN), Sep. 2017, pp. 1–7.

[41] F. Hachem, D. Vecchia, M. L. Damiani, and G. P. Picco, ‘‘Fine-grained
stop-move detection in UWB-based trajectories,’’ in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom), Mar. 2022, pp. 111–118.

PABLO CORBALÁN (Member, IEEE) received
the M.Eng. degree in telecommunication engi-
neering from the Miguel Hernández University of
Elche, Spain, in 2014, and the Ph.D. degree in
information and communication technology from
the University of Trento, Italy, in 2020. He is
currently a Software System Engineer with NXP
Semiconductors, where he works on the design of
UWB solutions for mobile systems and actively
contributes to UWB standardization efforts. His

research interests include low-power wireless communications and local-
ization. His research has received several awards, including the Best Paper
Award from EWSN, in 2018, and IPIN, in 2019; and the Best Poster Award
from EWSN, in 2016.

GIAN PIETRO PICCO (Senior Member, IEEE) is
currently a Professor with the Department of Infor-
mation Engineering and Computer Science (DISI),
University of Trento, Italy. His research interests
include software engineering, middleware, and
networking, and currently oriented toward wire-
less sensor networks, the Internet of Things and
cyber-physical systems, mobile computing, and
large-scale distributed systems. The research per-
formed in his group combines theoretical study

and in-field validation in real-world applications, and has led to several
awards, including the Most Influential Paper from ICSE’07 (for a paper
published a decade earlier) and the Best Paper Awards from IPSN, in 2009,
2011, and 2015; PerCom, in 2012; EWSN, in 2018; and IPIN, in 2019. He is
anAssociate Editor ofACMTransactions on Sensor Networks (TOSN), IEEE
TRANSACTIONSON SOFTWARE ENGINEERING (TSE), and the Pervasive andMobile
Computing Journal. He is also the founding Co-Editor-in-Chief of the ACM
Transactions on Internet of Things (TIOT).

MARTIN COORS received the Diploma degree
in electrical engineering from RWTH Aachen,
Germany, in 1997, and the Ph.D. degree in elec-
trical engineering, in 2004. From 1997 to 2002,
he was a Research Assistant with RTWH Aachen.
In 2002, he joined Bosch Engineering GmbH,
Abstatt, Germany. He is currently with the Bosch
Research and Technology Center, Sunnyvale,
USA, in the area of wireless systems research and
UWB indoor localization.

VIVEK JAIN (Senior Member, IEEE) received the
bachelor’s degree in electronics and communica-
tion engineering from the Indian Institute of Tech-
nology Roorkee, in 2002, and the Ph.D. degree in
computer science and engineering from the Uni-
versity of Cincinnati, in 2007. In 2006, he joined
Bosch and brings in extensive domain knowledge
and research experience in automotive, indus-
trial, building, and residential networking applica-
tions. He is currently an Lead Expert with Bosch

Research, where he leads research on ML/AI models for wireless, RF local-
ization and sensing, intelligent connectivity, cooperative wireless networks,
and lightweight implementation. He has created and led several innovations
with Bosch, including the perfectly keyless product for which he received the
Robert Bosch Innovation Award, in 2019. He was served as a reviewer/TPC
for more than 40 diverse international journals and conferences. He has also
served as a Judge for CES 2022 Innovation Awards and ‘‘Create the Future’’
design contest by SAE Media Group, from 2020 to 2022.

Open Access funding provided by ‘Università degli Studi di Trento’ within the CRUI CARE Agreement

VOLUME 11, 2023 29725


