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The synergy between the accurate trajectories ofered by ultra-wideband (UWB) systems and techniques to extract higher-level

mobility patterns is largely unexplored. We study whether staple techniques designed for systems with coarser resolution

apply to UWB, investigating quantitatively the quality of the ine-grained analyses enabled by the latter. To this end, we

contribute a novel family of metrics suited to the high UWB spatio-temporal resolution and use them to conigure and ascertain

the quality of representative techniques along several dimensions. We focus on the well-known stop-move pattern and derive

our indings from a real museum setting with the use case of capturing visits to exhibits. We acquire UWB trajectories in both

controlled (in vitro) and uncontrolled (in vivo) conditions, along with ground truth. Despite exhibits being very close to each

other, our results show that stops near them can be correctly identiied and associated in the vast majority of cases and with

very small spatio-temporal error. These positive results from real-world experiments, along with our technical contributions,

open new opportunities in exploiting UWB for mobility analyses.

CCS Concepts: · Networks → Location based services; · Human-centered computing → Ubiquitous and mobile

computing.

Additional Key Words and Phrases: Ultra-wideband (UWB), trajectory, mobility pattern, stop-move detection

1 Introduction

The pervasiveness of positioning technologies facilitates the collection of spatial trajectories [41, 49] sampling
the movement of an entity (e.g., a person, animal, or vehicle) in a target space. These trajectories are sequences
� = ⟨(p1, �1) . . . (p�, ��)⟩ of units (p� , �� ) associating a position p� = (�� , �� ) of the entity with the corresponding
timestamp �� . Once eiciently processed [14, 15, 51], spatial trajectories enable the extraction of mobility patterns
describing the behavior of individuals at a higher level of abstraction [34, 47]. In turn, these form the basis of
semantic trajectories [27, 34, 41, 43], further enriching mobility patterns with contextual information (e.g., points
of interest, POIs) directly providing actionable information to domain experts.
Stops and their detection. In this respect, the stop-move [36] pattern is one of the most popular, key to
many applications. Broadly, we deine a stop event as the abstraction capturing the permanence of an entity
in a representative position for a time interval determining the stop duration; a move event captures instead a
transition between stops. For instance, a stop event may capture the dwelling of a person in front of an item (POI)
in a store, and a move event the travel to reach the item from the previous stop. Stop-move detection techniques
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2 • F. Hachem et al.

extract each stop and move event in a trajectory � as a sub-sequence � = ⟨(p� , �� ) . . . (p�+� , ��+� )⟩ ⊆ � , called
segment. As these techniques partition a trajectory into alternating, temporally disjoint stop and move segments,
they are often referred to as stop-move segmentation techniques [4, 47].
In this paper, we focus our attention only on stop events, extracted from the corresponding segments. Given

a stop segment � identiied by the stop detection technique (ğ2), the corresponding stop event is captured as
� = ⟨p, [�start, �end]⟩; the position p is computed as the centroid of the set of positions {p� . . . p�+� } belonging to
the units in � , while its interval is the one extending from the irst unit timestamp in � until the last one, i.e.,
[�start, �end] = [�i, �i+k] in our example.
Moreover, in many applications, a set � = {�1, . . . , ��} of spatial objects representing POIs is known a priori

and must be associated to stops, e.g., to capture which museum exhibit a visitor has stopped in front of. This
application-dependent, contextual information is captured by augmenting stops with a semantic annotation
expressing the association of a stop � to a spatial object � . A stop event becomes then a triple � = ⟨p, [�start, �end], �⟩,
where the spatial object � = ⟨�, q⟩ is denoted by a label � and position q. A sequence of these stop events constitutes
a semantic trajectory, enabling domain experts to analyze data directly at their level of abstraction.

Existing techniques for stop-move detection focus on large-scale, outdoor settings germane to Global Navigation
Satellite Systems (GNSS) where their application is widespread but yields trajectories with coarse spatio-temporal
resolution. Stops typically represent the home range of migrating animals, lasting months over a large area [9],
or capture the visits of people to relevant places (e.g., home, workplace, or tourist locations), lasting hours [34].
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Fig. 1. Distance resolution vs. bandwidth.

Ultra-wideband. Still, GNSS are not the only option. A recent techno-
logical wave targets sub-meter position accuracy, a powerful enabler
in several applications notably including indoor ones [45, 46]. Leading
this wave, ultra-wideband (UWB) radios enable communication and
accurate localization. UWB signals are characterized by a bandwidth
≥500 MHz or a fractional bandwidth ≥20% during transmission. In mod-
ern impulse radio (IR-UWB) systems, this large bandwidth is achieved
via narrow pulses (≤2 ns) that better separate the signal from multipath
components and, crucially, provides excellent time resolution (Fig. 1).
This enables UWB devices to precisely estimate the signal time of light
� and, after multiplying by the speed of light � , estimate their distance
� = �� with decimeter-level accuracy, signiicantly better than the meter-level one typically ofered by narrowband
radios like WiFi and Bluetooth [45]. The increasing role of UWB is witnessed by the many Real-Time Location
Systems (RTLS) based on it and its recent inclusion in smartphones where, however, public APIs currently focus
on device-to-device proximity rather than localization.
Motivation and research questions. We observe an obvious synergy between mobility pattern analyses and
UWB-based positioning. Compared to GNSS, UWB ofers trajectories with much higher spatial resolution and
temporal frequency, in principle enabling ine-grained analyses capturing stop events a few decimeters apart and
lasting only a few secondsÐa far cry from the large areas (m to km) and durations (hours to months) targeted by
current approaches.

Unfortunately, mobility analyses exploiting UWB trajectories are largely unexplored and stop-move detection
is no exception. This leaves unanswered the two crucial and intertwined questions we address in this work:

i) Are existing stop-move techniques applicable to UWB trajectories, and
ii) to what quantitative extent does this synergy enable accurate detection with ine-grained spatio-temporal

resolution?
A positive answer to the irst question would enable the use of the ample literature using GNSS positioning to

exploit the new opportunities ofered by UWB. Although we focus on representative techniques for stop-move
detection (ğ2), our indings could inspire advancements for other techniques or mobility patterns. Still, this
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question cannot be separated from the second one about quantifying the beneits of UWB and exploring its
limits. Indeed, the increased spatio-temporal density of UWB positions, along with errors induced by indoor
environments, could clash with the mechanics of existing techniques, ultimately severely limiting the expected
ine-grained quality of their output.
Real-world use case and deployment. These questions cannot be investigated in a vacuum. They must be
grounded in realistic requirements and investigated experimentally in a real-world setting against the yardstick of
ground truth. We satisfy these goals via a collaboration with the MUSE science museum (Trento, Italy), interested
in analyzing the fruition of their exhibits by visitors. This is hardly a novel topic [31]; however, state-of-the-art
works [5, 23, 30, 44] rely on Bluetooth and are therefore limited to coarse, room-level spatial resolution. Instead,
our target area contains exhibits placed only few decimeters apart from each other, and curators focus on stops
as short as tens of seconds. This demands a ine-grained spatio-temporal resolution, hard if not impossible to
achieve with Bluetooth, but in principle achievable with UWB. To this end, we track users wearing UWB tags via
a time-diference-of-arrival (TDoA) localization system [40] we deployed in the area.

1.1 Methodological challenges

Crucial to the practical use of stop-move detection techniques is a clear understanding of their performance, both
to compare them and inform their coniguration. However, for reliable results, their output must be quantitatively
compared against ground truth. This goal poses several challenges. Before discussing them, we irst introduce
some basic notation, used throughout the paper, to capture precisely the concepts under consideration.
Notation and deinitions. Table 1 ofers a summary of the notation used throughout the paper. Given a stop
event � = ⟨p, [�start, �end], �⟩, we access its components via the functions pos(�), int(�), and obj(�); the stop duration
is computed as |int(�) |. Similarly, we use label(�) and pos(�) to access the components of a spatial object � = ⟨�, q⟩.

When the stop event is computed from a segment� = ⟨(p� , �� ) . . . (p�+� , ��+� )⟩ determined by the stop detection
technique, then pos(�) = P(� ) and int(�) = I(� ), where P(� ) and I(� ) are the functions computing the
centroid and interval from the units in � , as mentioned earlier. As for the association of spatial objects to stop
events, it is computed as obj(�) =O(�), where O(�) encodes a notion of proximity and yields the object �� ∈�
whose position pos(�� ) is closest to the position of the stop event, pos(�). The speciic deinition of O and the
geometrical modeling of the objects in� (e.g., points, lines, polygons) are application-dependent; we later provide
instantiations for our use case. Finally, a stop event can occur anywhere and possibly far from all spatial objects
(e.g., a visitor moving away from museum exhibits to answer a phone call), a case we denote with pos(�) =∅.

Finally, hereafter we refer to stop events simply as stops, for readability.
How to establish a reliable and accurate ground truth? The answer is non-trivial. Ideally, the ground truth
should be constituted by the exact position pos(�) and interval int(�) for each stop � performed by the entity being
tracked. In practice, when these entities are mobile this is possible only with, e.g., a motion capture system [32]
ofering mm-level accuracy. However, these systems are very expensive, sufer from occlusions, and require
subjects to wear special markers in diferent points of the body; consequently, they are not applicable to our
context.

Therefore, we resort to the following methodology and setup. First, we perform experiments where the subjects
being tracked stop near a museum exhibit and remain immobile for some time before moving to another exhibit
along a path of their choosing. The stop positions are predeined and known, while the stop durations are
recorded by the subject via a custom smartphone application as well as derived from the video footage from
cameras we temporarily deploy in the target area (ğ4). This highly-controlled łin-vitrož setup trades realism
for very accurate ground truth, and is key in verifying the feasibility of stop-move detection with UWB and
accurately quantify its quality in the target while minimizing behavioral biases. However, this stylized subject
behavior is hardly representative of actual visitors, and is therefore insuicient to conirm the applicability of our
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Table 1. A summary of notation.

� = ⟨ (p1, �1 ) . . . (p� , �� ) ⟩ generic trajectory as a sequence of units (position, timestamp)
� = ⟨ (p� , �� ) . . . (p�+� , ��+� ) ⟩ generic segment of � units in� , representing either a move or a stop
P(� ), I(� ) functions yielding the position and interval of a stop segment
� = ⟨�, q⟩, � ∈ � spatial object (POI) as a tuple ⟨label, position⟩, belonging to a predeined set of objects
� = ⟨p, [�start , �end ], � ⟩ generic stop event � as a tuple ⟨position, [start timestamp, end timestamp], object (POI)⟩
pos(� ) , int(� ) , |int(� ) | , obj(� ) functions to access the position, interval, duration, and object (POI) associated to the stop �
O(�̂ ) function mapping an estimated stop �̂ to an object � (POI), based on proximity

�real ∈ �real , � ∈ � , �̂ ∈ �̂ real, true, estimated stops (Fig. 2) and their respective sets

� minimum duration of relevant stops (for all techniques)
D(�,Π, � ) stop detection (segmentation) operation, whose parameters Π (below) depend on the technique
�, � SeqScan parameters (max. distance of units from core point, min. number of units in a cluster)
� SPD parameter (max. distance of units from the irst unit of the stop)
� KBV parameter (speed threshold)

(�, �̂, �,W) bipartite graph for computing the optimal match
�� � = (�� , �̂ � ) ∈ � edge between true and estimated stops, denoting a potential matching
W(�� � ) weight function combining temporal and spatial similarities into the overall stop similarity
W� (�� � ) , W� (�� � ) temporal-only and spatial-only weight functions
� ∈ [0, 1] relative weight of spatial and temporal components, e.g., � = 1 ⇒ W(�� � ) = W� (�� � )
W� (�� � ) weight function enforcing matching POIs, i.e., obj(�� ) = obj(�̂ � )
� optimal matching set maximizing the sum of W(�� � )

�̂TP , �̂FP , �FN set of true positive (TP), false positive (FP), and false negative (FN) stops
F-score, S-score correctness and spatio-temporal similarity of matched stops in�
Δ�,Δp temporal and spatial error between matched stops
fake, split, short, missing, merged, mislabeled nature of false detections

techniques in a real-world, practical setting. To this end, we perform a second set of łin-vivož experiments where
we track volunteer visitors moving arbitrarily inside the target area. This setup allows us to ascertain whether
the results derived in the controlled, limited in-vitro setting still hold in this real-world, uncontrolled setting; a
positive answer would provide solid grounds for the exploitation of our results in operational systems targeting
large-scale, longitudinal campaigns. The price to pay for realism, however, is a slight reduction in ground-truth
information because, unlike in vitro, the precise position of stops is not known. However, the exhibit (POI) visited
and the stop interval can still be reliably derived from the video footage.
How and what to compare against ground truth? Fig. 2 illustrates the methodological challenge. Subjects are
tracked by the UWB localization system deployed in the target area, yielding a trajectory for each of them. In
the simpliied view of Fig. 2, we show a portion of a UWB trajectory in which the subject stops near a spatial
object � (POI). In principle, the position p and interval [�start, �end] of this real stop �real and its association to the
object � are all accurately and directly captured by ground-truth information, and not computed via segmentation.
However, as discussed above, this is the case only in vitro; in vivo, the stop position is not available. Still, the fact
that the exact stop interval int(�real) and associated object obj(�real) are known from ground truth allows us to
deine a true stop as � = ⟨P(� ), int(�real), obj(�real)⟩ where P(� ) is computed as the centroid on the sub-sequence
� = ⟨(pstart, �start) . . . (pend, �end)⟩ ⊆ � , i.e., the one delimited by the ground-truth interval. The stop � is łtruež
because int(�) = int(�real) and obj(�) = obj(�real) hold by construction, yet it does not coincide with the łrealž stop
as their positions are slightly diferent, i.e., pos(�) ≠ pos(�real). The reason is that the UWB positioning error 1○,
albeit signiicantly smaller w.r.t. GNSS, cannot be neglected as its magnitude is comparable to the ine-grained
stop resolution we target.
True stops are the result of the best segmentation that can be extracted from UWB trajectories alone, given

ground-truth intervals. In practice, however, segmentation induces an error 2○ between the true stop � and the
estimated stop, �̂; a real technique may incorrectly estimate a duration int(�̂) ≠ int(�), consequently misplacing
its position pos(�̂) ≠ pos(�).
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Finally, the combination of the spatial error induced by UWB positioning 1○, ∥pos(�real) − pos(�)∥, with the
one induced by segmentation 2○, ∥pos(�) − pos(�̂)∥, yields the overall spatial error 3○, ∥pos(�real) − pos(�̂)∥.
However, as already mentioned, this cannot be quantiied in general, as the exact, ground-truth position pos(�real)
is available only in-vitro. For this reason in our analyses (ğ7śğ9) we always compare estimated stops �̂ with true
stops � , and analyze separately (ğ6) the UWB positioning error present in true stops vs. real stops �real . This allows
us to retain a common analysis framework across the in-vitro and in-vivo campaigns and, it is also better aligned
with real setups where, like in vivo, the real position is not available and the concern is to choose/conigure the
techniques to minimize the additional error they introduce w.r.t. the pure UWB trajectories. On the other hand, the
overall spatial error 3○ afects also semantic annotations by potentially yielding an association obj(�̂) ≠ obj(�real)
to an incorrect object, e.g., �̂ in the igure. We do consider this aspect, key to domain experts, in our analyses.

1.2 Contributions

These concerns received scarce attention in literature, where they are addressed only qualitatively or by using
unit-centric metrics [2, 27], whose expressiveness is insuicient to capture the complexity above. Indeed, these
metrics quantify the mismatch induced by stop-move detection at the level of individual units, e.g., computing
the fraction correctly labeled as belonging to a stop among all units in a trajectory. Nevertheless, this low
level of abstraction hampers analyses capturing the multi-unit nature of stops as a whole, e.g., to identify cases
where a true stop is estimated as several ones or, dually, when several true ones are estimated as a single one.

POI     

Estimated

Real and true

3

Trajectory unit

1

1 Real vs. true

2 True vs. estimated

3 Estimated vs. real

Stop spatial error:

Estimated

Real

POI     

True

Stop position:

2

Stop intervals

Fig. 2. Estimated (red) vs. ground-truth (green) stops. The tracked subject stops near a spatial object (POI) � . The accurate

position, time interval, and associated object of this real stop are captured as �real = ⟨p, [�start , �end ], �⟩. However, the precise
values for these components can be determined only in vitro. In vivo, a true stop � approximates the real one by computing

the position from UWB traces, inducing a spatial error 1○; still, the time interval [�start , �end ], determining the stop segment

� used to compute the centroid P(� ), and the associated object � are the same as in the real one. A true stop represents

the best possible output for segmentation techniques. In practice, however, they output an estimated stop �̂ inducing a

spatio-temporal error 2○ w.r.t. the true stop � and, along with the error from UWB positioning 1○, an overall spatial error 3○

w.r.t. the real stop �real , potentially yielding an incorrect association with the object �̂ .
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Similarly, unit-centric techniques are oblivious to the association of POI to stops, since these are not directly
captured. In contrast, we ofer a novel family of metrics (ğ3) that i) adopts a stop-centric perspective directly
capturing the mismatch between estimated and true ii) quantiies separately spatial and temporal errors, whose
relative importance can be tailored to the requirements at hand, and iii) connects directly segmentation quality
to the semantic application context relevant to domain experts (e.g., POIs), by reuniting the two into a single
methodological framework. This higher-level stop-centric perspective is more expressive and intuitive, and
characterizes quality directly via the irst-class notion of stop utilized by domain experts, rather than low-level
units composing them.
Crucial to our study (ğ1.1) is the collection of datasets in controlled conditions (in vitro) and with real

visitors (in vivo), consisting of 70,090 positions (209 stops) and 219,937 positions (550 stops), respectively. These
datasets (ğ5) are a contribution per se, as indoor mobility traces are scarce in the literature, especially for UWB.
We release them publicly [17], enabling others to reproduce and build upon our results.

We input both datasets to representative segmentation techniques (ğ2) and quantitatively analyze their
output along several dimensions. This serves simultaneously as a validation of our metrics as well as concrete
evidence of the stop detection accuracy and resolution enabled by UWB.We begin with the in-vitro dataset
and an accurate characterization (ğ6) of the UWB positioning error (Fig. 2, 1○) before distilling our indings (ğ7).
We conirm the higher expressiveness and accuracy of our stop-centric approach vs. unit-centric ones, then
compare techniques after selecting their best coniguration. We quantify the impact of raw UWB trajectories as
input vs. those łsmoothedž via Kalman ilters, exploit our metrics to analyze the nature of false detections, and
quantify spatio-temporal errors and the ability to correctly associate estimated stops to ground-truth POIs. Despite
the challenges of our environment, the quality of the best technique is very high (F-score=0.947). Stop durations
are estimated with an average error of only 3.7 s. Regarding positions, UWB localization is the main source
of spatial error (46 cm), increased only to a small extent (3.2 cm) by segmentation. Finally, their combination
afects only marginally the association of estimated stops to ground-truth POIs. These results are conirmed in
vivo (ğ8); despite the unpredictable visitor movement and the more complex exhibit setup, we observe only a
small degradation in quality (F-score=0.911). In these uncontrolled experiments, we also showcase the expressive
power and versatility of our metrics by applying them to quantify the quality of the higher-level notion of visit
obtained by aggregating consecutive stops around the same exhibit (ğ9).

Our survey of related eforts (ğ10) shows that our work is the irst studying stop-move detection on UWB-based
trajectories and, importantly, ofering an evaluation against systematically-acquired ground truth in a real-world
environment. Our earlier work [16] irst provided evidence of the feasibility of our approach in a controlled,
in-vitro environment. This paper builds upon these early results but also goes beyond them by:

• Eliciting and deining practical notions of ground-truth (ğ1.1) to reconcile the diferent constraints and
opportunities arising when moving from an in-vitro setup to an in-vivo one.

• Redesigning the quality metric, originally based solely on temporal information. Here, we improve its
deinition and generalize it into a new family of metrics that characterize both temporal and spatial errors
and connects them to the semantic application context (POIs) in a uniied conceptual framework. As a
consequence, although our in-vitro indings (ğ7) are based on the original dataset in [16], the analysis has
been entirely redone and expanded to account for the new deinition of metrics and the new dimensions
they capture.

• Providing evidence of real-world applicability. Our in-vivo indings (ğ8) are not simply another evaluation.
On the contrary, they ill the gap between i) the mere feasibility of our techniques and more generally of a
UWB-based approach, assessed in [16] in the unrealistic yet fully controlled in-vitro setup where subjects
stop by remaining immobile in a designated point, and ii) the actual applicability in a real context where
visitors exhibit real stop-move patterns as theymove of their own volition. These real patterns also prompted
us to capture the frequent case of several stops around the same POI in the new concept of visits, whose

ACM Trans. Sensor Netw.



Fine-Grained Stop-Move Detection with UWB: uality Metrics and Real-World Evaluation • 7

(a) SPD. The stop starts with the or-

ange unit and is spatially delimited by

a circle of radius � . The stop segment

ends at the first unit (possibly an out-

lier) with distance >� from the orange

unit.

(b) SeqScan. A core point (orange) has

at least � units within an � radius. A

cluster includes all the neighbors of

core points and, transitively, those of

connected core points.

(c) KBV. Stops are defined as low-speed

segments, whose units have a velocity

<� (blue arrows), based on the Kalman

filter. A stop segment ends at the first

unit with velocity ≥� (red arrows).

Fig. 3. Stop detection techniques and their parameters. The minimum stop duration � is the same and not shown. Units

belonging to a stop are denoted by green/orange dots; move units are instead white.

quality we show can be assessed using the same family of metrics above (ğ9). Finally, our in-vivo campaign
resulted in a dataset 3× larger than the in-vitro one (ğ5.2).

Overall, our technical, methodological, and experimental contributions ofer positive, quantitative answers
to our research questions, pushing the applicability of mobility analysis to an unprecedented ine-grained
spatio-temporal resolution, as mentioned in our concluding remarks (ğ11).

2 Stop Detection: Problem Formulation and Techniques

The stop detection problem consists of extracting from a trajectory � the sequence of estimated stop events
⟨�̂1 . . . �̂�⟩, where �̂� = ⟨p� , [�start, �end]� , ��⟩. This segmentation process is performed by a detection technique
that can be abstractly denoted as D(�,Π, �), where � is the input trajectory and Π is the set of coniguration
parameters speciic to each technique and described in the following. Instead, � indicates the minimum allowed
duration of estimated stops; a stop �̂� for which |int(�̂� ) | < � is ignored. The value of � is application-dependent
and set based on domain knowledge. For instance, in our case the value of � is tied to the minimum stop denoting
visitor attention; after consultation with the museum curators, we set � = 10 s. We use this value for all techniques
under consideration, to enable their comparison.

The speciic techniques we chose, embodying the detection function D, are representative of state-of-the-art
approaches (ğ10) with diferent complexity and tradeofs. They are illustrated in Fig. 3 and can be summarized as
follows:

• Using spatial distance between units: SPD. The Stay Point Detection (SPD) technique [48] identiies
stops in GPS trajectories. It relies on a distance threshold � representing the maximum spatial extent allowed
between the irst unit belonging to a stop and the other units belonging to the same stop; this threshold
is the only coniguration parameter, Π = {�}. Speciically, a stop segment � = ⟨(pstart, �start) . . . (pend, �end)⟩
contains all time-consecutive units (p� , �� ) ∈� whose spatial distance from the irst segment unit is within
the threshold, ∥pstart − p� ∥ < � . This technique is commonly used due to its simplicity. However, it is not
well-suited when stops have diferent spatial size or are afected by outlier units, e.g., due to positioning
noise, making it diicult to deine a one-size-its-all value for � .

• Using unit density: SeqScan. These limitations can in principle be mitigated via density-based clustering.
For instance, in DBSCAN [12] a core point in some abstract space has at least � neighbors within distance � ;
a cluster contains these points and, transitively, those of neighboring core points. A direct application of
this approach to stop detection maps the abstract space on the physical space associated to trajectories and
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clusters the position of their units. This yields stops as the inal output clusters, whose properties above
allow for outlier units temporarily escaping beyond � . On the other hand, this naive approach alone cannot
guarantee the temporal separation of the clusters representing stops except when spatially far from each
other, as time is not considered; repeated stops (e.g., at the same exhibit but at diferent times) become
indistinguishable. SeqScan [8] overcomes this limitation by using the same coniguration parameters
Π = {�, � } of DBSCAN, but deining a stop as a cluster of units ⟨(p� , �� ) . . . (p� , � � )⟩ where ⟨p� . . . p� ⟩ is a
DBSCAN cluster. Therefore, SeqScan clusters i) have arbitrary spatial shape and are robust against noise,
unlike SPD, and ii) have disjoint time intervals [�i, �j], unlike DBSCAN.

• Using user velocity from Kalman ilters. Another way to look at stops is when the velocity of the
tracked subject is (nearly) zero. Velocity can be derived from UWB trajectories; however, their noisy
raw positions induce unacceptable velocity jitter if used directly. Interestingly, trajectories are commonly
improved [45] via Kalman ilters (ğ4) whose operation already entails hidden state variables representing
the velocity associated with units (p� , �� ). Segmentation then simply consists of identifying as stop segments
those containing consecutive units whose velocity is below a threshold � ; the latter constitutes the only
coniguration parameter,Π = {� }. This Kalman-based velocity technique, KBV hereafter, is to our knowledge
novel in stop-move detection and relevant here as a computationally cheap approach reusing the iltering
commonly applied to trajectories.

3 uality Metrics for Fine-Grained Stop Detection

Ideally, the set �̂ of estimated stops output by stop detection techniques coincides with the set � of true stops; in
practice, this is rarely the case. We illustrate the family of metrics we deine to ascertain and compare the quality
of stop-detection techniques. As mentioned (ğ1.1), hereafter we consider true stops rather than real stops, as
using the latter would prevent us from separating and quantifying the error 2○ induced by segmentation from
the error 1○ intrinsic in UWB positioning, analyzed later (ğ6).

3.1 Rationale and Novelty

The problem of deining metrics to compare stop-move detection techniques against ground truth has received
surprisingly little attention in the literature, where it is often addressed only qualitatively. An exception are recent
works [2, 27] proposing metrics to quantify quality at the unit level, based on the binary stop-move classiication
of trajectory units induced by segmentation. A unit �� = (p� , �� ) labeled as łstopž, i.e., belonging to an estimated
stop �̂ , is a true positive (TP) if it belongs also to a true stop �; otherwise, �� is a false positive (FP). Similarly, a
unit �� labeled as łmovež, i.e., not belonging to an estimated stop �̂ , is a true negative (TN) if it also does not
belong to a true stop �; otherwise, �� is a false negative (FN).

Unfortunately, these unit-centric approaches are oblivious to the segmentation structure. By focusing on which
units fall into the time interval of true stops, they do not capture properties of the estimated stops these units
belong to. Even simple measures, e.g., the number of correctly identiied stops, are lost in the lat, unit-centric
view.

In contrast, the novel metrics we propose are based directly on the notion of stop, and aim atmatching estimated
stops �̂ and true stops � . The correctness of the matching can then be deined directly and intuitively based on
stops rather than units, accounting also for a notion of spatio-temporal similarity among stops that is intrinsically
precluded to unit-centric approaches and is also useful to quantify how well an estimated stop matches a true one.
We provide domain experts with the lexibility to deine diferent instantiations of the metrics striking a custom
balance between the spatial and temporal aspects. Moreover, our rich and expressive deinition yields precious
information about the nature of incorrect detections and is also applicable to the association between stops and
POIs, reuniting this higher-level, semantic layer into the same methodological framework of basic stops.
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time

true stops

estimated stops

Fig. 4. An (artificial) example of segmentation. � is the set of of true stops, �̂ the one for estimated stops. For graphical

illustration, only the time intervals int(�� ) and int(�̂� ) associated to the stops are shown.

We argue, and conirm quantitatively (ğ7.1), that the change from units to stops in the łlensž used to analyze
segmentations increases expressiveness and practical relevance.

3.2 A Family of Stop-centric Metrics: Core Concepts
0.6

0.350.26

0.09
0.27
0.21

0.13

Optimal
assignment

0.90
0.71

Fig. 5. Finding the matching set in

Fig. 4 based on temporal similarity.

Our metrics revolve around the notion of matching estimated stops against true
ones. We describe how this key notion is deined in our metrics.
Matching estimated and true stops. Consider the artiicial example in Fig. 4,

where � and �̂ are the sets of true stops and estimated stops, respectively. Our
goal is to establish a one-to-one matching relationship between true stops � ∈ �

and estimated stops �̂ ∈ �̂ , based on the intuition that if they represent the same
stop, their time intervals must overlap and their centroids be close. Compared
to unit-centric approaches, ours directly captures the quality of segmentation
by quantifying how many true stops are correctly relected in estimated ones.
Still, due to errors (Fig. 2), an estimated stop may overlap in time and/or be close
in space with multiple true stops and vice versa. How to perform matching?

We cast the problem as an unbalanced assignment optimization over the bipartite graph (�, �̂, �,W) where �
is the set of edges �� � = (�� , �̂ � ) denoting a potential match between a true stop �� and an estimated one �̂ � , and W
is a stop similarity function assigning a weight to the edges in �.

W is key to capture the spatio-temporal nature of segmentation quality and tailor the metric to application
requirements. Applications focusing on spatial proximity may privilege spatial accuracy w.r.t. the temporal one;
those focusing on dwelling time may privilege the opposite; inally, others may require the evaluation of both.
We reconcile these concerns with the following deinition:

W(�� � ) =

{

0 if int(�� ) ∩ int(�̂ � ) = ∅

�W� (�� � ) + (1 − �)W� (�� � ) otherwise

If the true and estimated stops are temporally disjoint the overall similarity is set to zero to avoid considering
nonsensical cases, e.g., nearby stops occurring at entirely diferent times. Otherwise, W is a linear combination
of the temporal similarity W� and spatial similarity W� , whose relative importance is controlled by � ∈ [0, 1].
The temporal similarity

W� (�� � ) =
|int(�� ) ∩ int(�̂ � ) |

|int(�� ) ∪ int(�̂ � ) |

is inspired by the Jaccard index over the time intervals for true and estimated stops, and quantiies the overlap
between the two.

Instead, the spatial similarity

W� (�� � ) =
1

1 + ℎ ∥pos(�� ) − pos(�̂ � )∥

ACM Trans. Sensor Netw.
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is inversely related to the Euclidean distance between their centroids, multiplied by a scaling factor ℎ that enables
tuning the metric w.r.t. the spatial resolution required by the application and the magnitude of positioning errors.

Formally, the problem is to determine the optimal assignment yielding the matching set � ⊆ � such that:

� = argmax
�� ⊆�

︁

��

W(�� � )

subject to:
�� � ∈ � ⇒ W(�� � ) ≠ 0 ∧ �� | ��� ∈ � ∧ �� | �� � ∈ �,∀�, �, �, � | � ≠ �, � ≠ �

i.e., maximizing the aggregated stop similarity of all non-zero links and ensuring each stop is matched at most
once.

Fig. 5 illustrates how these concepts are applied, based on the example in Fig. 4 and exploiting only temporal
similarity (�=1). The optimal assignment yields

� = {(�1, �̂1), (�2, �̂4), (�4, �̂6), (�5, �̂7), (�7, �̂8), (�8, �̂9)}.

Quantifying (in)correct detections (F-score). The matching set � captures which estimated stops best
approximate the true stops while maximizing their similarity. An ideal segmentation would yield a one-to-one

correspondence between each estimated stop �̂ ∈ �̂ and each true stop � ∈ � , yielding a bijection between � and �̂ .
In practice, some estimated stops may not have a correspondent true stop, and some true stops may go undetected.
To ascertain the quality, it is essential to quantify this mix of correct and incorrect detections, which we achieve
with the following deinitions.

Given the sets of estimated stops �̂ ∈ �̂ and true stops � ∈ � , and a matching set� , the set �̂TP ⊆ �̂ contains the

estimated stops belonging to� , �̂TP = {�̂ � ∈ �̂ | ∃�� : (�� , �̂ � ) ∈�}, i.e., the estimated stops that have a corresponding

true stop, indicating successful detection; we refer to the stops in �̂TP as true positives (TP). Along the same lines,

we deine the set �̂FP ⊆ �̂ of false positives (FP) as �̂FP = {�̂� ∈ �̂ | �� � : (� � , �̂� ) ∈�}, i.e., the estimated stops for which
a corresponding true stop does not exists. Finally, the set �FN ⊆ � of false negatives (FN), contains the true stops
that do not have a corresponding estimated stop, �FN = {�� ∈ � | ��̂ � : (�� , �̂ � ) ∈�}. These three sets are disjoint; in

our example, �̂TP = {�̂1, �̂4, �̂6, �̂7, �̂8, �̂9}, �̂FP = {�̂2, �̂3, �̂5}, �FN = {�3, �6}. Moreover, by construction, the number of
true positives is equal to the number of true stops in the matching set, which in turn is equal to the number of

elements in it: |�̂TP | = |� | = |{�� | ∃�̂ � : (�� , �̂ � ) ∈�}|.
Based on these deinitions, we evaluate the aggregate quality of estimated stops via the following well-known

metrics:

• Precision is the fraction of estimated stops that match true stops: � =
|� |

|�̂ |
=

|�̂TP |

|�̂ |
=

|�̂TP |

|�̂TP |+|�̂FP |
.

• Recall is the fraction of true stops matched by estimated stops: � =
|� |
|� | =

|�̂TP |
|� | =

|�̂TP |

|�̂TP |+|�FN |
.

• F-score is the harmonic mean � = 2�×�
�+� of � and �, and serves as a concise indicator capturing both.

These metrics capture concisely the quality of stop detection performance by combining the number of
correct and incorrect detections. Their values range in [0, 1]; an ideal segmentation with a perfect one-to-one
correspondence between true and estimated stops would yield � =� = � = 1. In our example, � = 0.67, � = 0.75,
and � = 0.71.
Determining the nature of false detections. A distinguishing aspect of our approach is that the nature of

incorrect detections in �̂FP and �FN can be inferred from the relationship between the time intervals associated to
an estimated stop �̂� and a true one � � . This expressive feature enables a deeper understanding of the limitations
of stop detection techniques and a further point of comparison among them.

A false positive �̂� ∈ �̂FP can be either:
• A fake stop if it does not overlap in time with any true stop � � , �� � ∈ � | int(�̂� ) ∩ int(� � ) ≠∅ (e.g., �̂3 in Fig. 4);
a stop has been detected where no true one exists.
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• A split stop if it overlaps in time with a true stop, ∃� � ∈ � | int(�̂� )∩int(� � ) ≠∅∧ (�� , �̂ � ) ∉� . This error occurs
when the correspondence between true and estimated stops is one-to-many, resulting in the detection of
one or more extra estimated stops; indeed, as �̂� is a FP, it does not match any � � but some other �̂� ≠ �̂� , � ≠ �

must, otherwise the assignment would not be optimal. In our example, �4 overlaps with both �̂5 and �̂6 but
is matched only by �̂6.

• A special case is a short stop, when the duration of � � is <� (i.e., irrelevant, ğ2) but the one of �̂� is not
(e.g., �̂2). In many use cases this is a łbenignž FP as segmentation correctly identiies the stop, incorrectly
estimating only its duration.

Similarly, a false negative � � ∈ � can be either:

• A missing stop if it does not overlap in time with any estimated stop, ��̂� ∈ �̂ | int(�̂� ) ∩ int(� � ) ≠ ∅, as in
the case of �6.

• A merged stop if it overlaps in time with an estimated stop, ∃�̂� ∈ �̂ | int(�̂� ) ∩ int(� � ) ≠∅∧
(�� , �̂ � ) ∉� . This happens when two or more true stops are estimated as a single one. Indeed, � � is not
matched by �̂� although they overlap; thus, �̂� must match another �� ≠ � � , � ≠ � otherwise, again, the
assignment would not be optimal. In our example, �3 is lumped into the same estimate �̂4 matched to �2.

• As with false positives, a false negative short stop could in principle capture a true � � incorrectly estimated
by �̂� with duration <� . However, these are automatically iltered by segmentation techniques (ğ2).

Quantifying the similarity of matched stops (S-score). In our running example, � contains both (�1, �̂1)
and (�2, �̂4), whose temporal overlapping between estimated and true stops is remarkably diferent (Fig. 4). Still,
another segmentation yielding the same� but with (�1, �̂1) and (�2, �̂4) perfectly aligned temporally would yield
the same F-score. This indicator is therefore an expressive measure of the correctness of the segmentation, but
does not capture how similar in space and time the individual matched stops are. To this end, we complement
the F-score with the

S-score =
1

|� |

︁

�� � ∈�

W(�� � )

The S-score plays a key role with diferent � values, highlighting diferences in the spatio-temporal features of
the segmentation, e.g., focusing on how accurately stop durations (� = 1) or positions (� = 0) are estimated. This
lexibility is useful when the target application is concerned with only one of the two dimensions, as mentioned
earlier, or when the acquisition process for the ground truth of one of them is not as dependable as the other;
intermediate conigurations of the metric are also possible by properly setting � . In this respect, we note that if
both temporal and spatial data are accurate, the diference in stop similarity with diferent � should be small;
when this is not the case, the metric allows one to unveil critical issues in either the system under study or the
acquired ground truth.

3.3 Incorporating Ground-truth Semantic Annotations

Themetrics above ascertain segmentation quality w.r.t. true stops with input data fromUWB trajectories. However,
when ground truth is available for stops near POIs, as in both our setups, the stop-centric metric can be extended
to answer a question of practical relevance: Can we correctly associate the POI visited by the user based on the
estimated stop position? This is not obvious, as the combination of segmentation and positioning errors may be
large enough to jeopardize the association between estimated stop and POI (Fig. 2) and therefore the usefulness
of segmentation.

The association is application-dependent and encoded in the function O (ğ1.1). However, in many scenarios it
consists simply of determining the POI closest to the estimated stop. The notion of proximity encoded in the
mapping function O is therefore the Euclidean distance between an arbitrary stop �̂ and the spatial objects � ∈� ,
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true stops
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Fig. 6. Revisiting Fig. 4 with semantic annotation of stops (POIs).

overlapping with
a          true stop

not overlapping with
a          true stop
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an estimated stop
not overlapping with

an estimated stop
overlapping with

false negative

merged mislabeled missing

Fig. 7. A taxonomy of false detections.

as

O(�̂) =

{

argmin�∈� ∥pos(�̂) − pos(�)∥ if ∥pos(�̂) − pos(�)∥ ≤ �

∅ otherwise
(1)

where � is an application-dependent threshold deining the distance beyond which a stop can no longer be
considered łnearž the object. The above can be easily generalized via a proper redeinition, e.g., to the case where
the object is a polygon and proximity is determined by the Euclidean distance between pos(�̂) and the polygon
sides. Finally, for true and real stops, the object obj(�) = obj(�real) is deined by ground truth and not by O (ğ1.1).
True vs. estimated annotations. Even this simple deinition of proximity is challenging with ine-grained
stop-move detection; our scenario is no exception, due to i) POIs close to each other, and ii) non-negligible UWB
positioning error. Nevertheless, we can easily adapt our metrics to the problem of ascertaining quality w.r.t. the
ground-truth semantic annotations in true stops. To this end, we redeine the weights determining matching as

W� (�� � ) = �W(�� � ), � =

{

1 if obj(�) = obj(�̂)

0 otherwise
(2)

This restricts purely spatio-temporal weights by allowing in the matching set� only the edges whose true and
estimated stops are annotated with the same spatial object.

Fig. 6 revisits the example in Fig. 4 by considering also the semantic annotations. The matching set in this case
becomes � = {(�2, �̂4), (�4, �̂6), (�5, �̂7)} where, compared to the one in ğ3.2, the three edges (�1, �̂1), (�7, �̂8) and
(�8, �̂9) have been removed. In the irst case, the best spatio-temporal match places the true and estimated stops
near diferent spatial objects; in the other two, either the true or estimated stop is not near to any spatial object.

Revisiting the nature of false detections. Based on the matching set, we can determine the sets �̂TP={�̂4, �̂6, �̂7},

�̂FP={�̂1, �̂2, �̂3, �̂5, �̂8, �̂9}, �FN={�1, �3, �6, �7, �8} and the nature of false detections. However, annotations induce new
cases w.r.t. those in ğ3.2. A FP estimated stop overlapping with a true one is a split stop only if both stops are
annotated with the same object; otherwise, the FP is a mislabeled stop (�̂1, �̂8, �̂9 in Fig. 6). Dually, a FN true stop
is a merged stop only if it overlaps with an estimated one at the same object; otherwise, is a mislabeled stop
(�1, �3, �6, �7, �8). The taxonomy of false detections (Fig. 7) witnesses the expressiveness of our metric.
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4 Tracking Visitors in a Science Museum

Before applying our quality metrics to the UWB datasets from our real-world museum use case we ofer a
description of the hw/sw infrastructure that enabled their collection.
UWB localization system. Each user wears a necklace with a UWB tag on the chest, a common deployment
option. The position of the tag is the one actually recorded by UWB localization, for which we use Talla [40], a
state-of-the-art system based on time-diference-of-arrival (TDoA).

Tags and localization anchors are battery- and mains-powered, respectively; both are Qorvo MDEK1001 devices
hosting the popular DW1000 UWB radio [10]. Anchors are deployed in a 25×15 m2 area (Fig. 8). Each anchor
is connected via USB to a Raspberry Pi, relaying TDoA data to the localization server. The RPi is hidden in the
false ceiling and connected to power and Ethernet via the existing PoE infrastructure. UWB devices are instead
attached externally to the ceiling, to avoid its signal obstruction, via existing metallic supports hosting other
equipment. This solution reuses the pre-existing cabling infrastructure and makes anchors visually non-invasive.
The anchor position is chosen based on commonplace criteria for localization systems, to maximize the accuracy
in tracking the tag position. The anchors placed on the perimeter fully include the target area and guarantee good
geometrical properties, i.e., low geometric dilution of precision (GDOP). These would in principle be suicient for
localization; nevertheless, we placed two additional anchors near the center to mitigate the impact of radio signal
occlusions by providing more opportunities for a clear line of sight between the tag and a suicient number of
anchors.

We conigured Talla with 4 Hz time synchronization and 12 Hz position update rate, and the UWB radio with
channel 5, 64 MHz PRF and 128 �s preamble.
Improving position estimates via Kalman ilters. UWB position errors yield noisy trajectories commonly
łsmoothedž via Kalman ilters [45]. Noise occurs for both moving and stationary tags; ilters are usually optimized
for either case. Still, stop-move detection requires eicient noise reduction in both cases and a fast switch between
them to accurately determine a stop start/end times. Therefore, we combine two Unscented Kalman ilters (UKF)
representing the tag mode (stopped or moving) in the framework of Interacting Multiple Models (IMM) [3]. The
output position is a linear combination of both ilter estimates, weighted by the probability of each ilter to match
the current mode, i.e., tag behavior. The state of each ilter includes 2D coordinates and the related velocity and
acceleration. The IMM coniguration�IMM , along with the process noise � and measurement noise � covariance
matrices were determined experimentally:

� = diag(�� , �� ) �� =

[

5�−5 1.25�−4 1.67�−4
1.25�−4 3.33�−4 5�−4
1.67�−4 5�−4 1�−3

]

� =
[

0.046 0
0 0.057

]

�IMM =
[

0.97 0.03
0.03 0.97

]

The IMM mode transition probabilities in�IMM were set to favor the current mode of the system, with initial
probabilities set to 0.5. The ilter for the mobile mode uses the coniguration above, while the one for stationary
mode sets � = 0 to imply that, in this case, measurements are the only source of uncertainty. Hereafter, we refer
to the trajectories output by Talla as raw and to those post-processed via IMM-UKF as iltered. Fig. 9 exempliies
their diference, whose impact on stop positions (ğ6) and segmentations (ğ7) we analyze later.

5 Experimental Setup: In vitro vs. In Vivo

Ascertaining quantitatively the quality of stop-move detection entails conlicting dimensions we reconcile via two
experimental campaigns with diferent goals. First, characterizing error sources (Fig. 2) is crucial to understand
the attainable quality, the best conigurations enabling it, and the related tradeofs. Still, reliable indings require
an in-vitro setup with known stop-move patterns and key variables fully captured by accurate ground truth.
Second, an in-vivo setup with visitors moving of their own volition is crucial to ascertain, albeit with slightly less
accurate ground truth, whether the results above hold in a realistic setting, enabling a practical application of our
indings and techniques.
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(a) In vitro. The dots on the map mark the coordinates of the

uni-dimensional point in front of each exhibit, representing the

POI.
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(b) In vivo. In the same area, the diferent layout of exhibits

delimited by large colored tiles (top), implies a linear represen-

tation of POIs (botom).

Fig. 8. Museum target area (top) and map (botom) during the two experimental campaigns. The crosses in the maps mark

the position of the UWB anchors placed on the ceiling.
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Fig. 9. Raw (white) vs. filtered (gray) trajectory. The colored points in the

later fall in ground-truth stop time intervals.

Fig. 10. Spatio-temporal view of the filtered

trajectory in Fig. 9.

5.1 Data Collection Methodology and Ground Truth

The target area contains a large globe in the center, surrounded by 6 tables hosting exhibits, whose layout was
changed by the museum between the two campaigns. This prevents direct comparison of indings in vitro vs. in
vivo, yet enables us to showcase the versatility of our metric.
In vitro. The tables host 44 exhibits of small size. Therefore, in this controlled campaign, we chose to model spatial
objects (POIs) as points (Fig. 8a) that coincide with the ground-truth position where the user stops. Members of
the research team emulate visitor behavior by alternating movement in the area with stops at given POIs, based
on a known, pre-deined sequence. Each POI is visited only once.
Even in this highly controlled setup, collecting reliable ground truth is challenged by mobility. We obtained

accurate spatial data by placing loor stickers near all designated POIs and acquiring their position with a laser
meter. As for temporal ground truth, a smartphone application enables users to record arrival/departure times
�start , �end at each POI. We synchronized the smartphone and Talla clocks, obtaining a common time reference for
the timestamps in both ground truth and UWB trajectories. Moreover, we placed 2 tripod-mounted cameras with
180◦ angle on opposite sides covering the entire area, whose videos enabled cross-validation with the smartphone
data.
In vivo. In between the two campaigns, the museum refurbished the target area, now containing 35 exhibits
delimited by colored rectangular tiles of variable size. This setup is more challenging, as tiles are often adjacent
and rather large; POIs can no longer be modeled as points. However, tiles are meant to be observed by visitors
from only one side (Fig. 8b); therefore, we modeled them as a linear spatial object.
We gather trajectories from real visitors recruited as volunteers by the museum and external to the research

team. Informed consent and other standard procedures in place at MUSE for this type of studies were properly
followed. The volunteers, who were all visiting the area for the irst time, were given no constraints about their
movement and asked to behave as they normally would during a museum visit. Therefore, unlike in vitro, people
did not stop at designated coordinates, but anywhere in the target area. This unconstrained behavior also implies
that a visitor may stop away from all exhibits, e.g., to talk with a friend or answer a phone call. To model this
situation, we set the spatial object associated to a true stop to null (obj(�) = obj(�real) =∅, ğ1.1) whenever the
distance ∥pos(�) − pos(�)∥ between the true centroid from UWB trajectories and the POI exceeds the same
threshold � = 2 m in Eq. (1), derived from empirical considerations based on the area layout.
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(a) In vitro: Stop durations.
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(b) In vivo: Stop durations.
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(c) In vitro: Adjacent POIs.
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(d) In vivo: Adjacent POIs.
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(e) In vitro: Consecutive stops.
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(f) In vivo: Consecutive stops.

Fig. 11. Spatio-temporal characteristics of the dataset. In this figure and following ones, dashed lines represent the mean

and doted lines the median.

Importantly, visitors were not involved in the gathering of ground truth. This was extracted solely from
the videos recorded by the two cameras already exploited in the in vitro campaign, without the user-operated
smartphone application. As a consequence of this and the fact that visitors are not supposed to be in a designated
position as in the in-vitro case, temporal information is based on visual inspection, determining the time a visitor
is near the exhibit tile. On the other hand, this setup greatly increases realism by minimizing the impact on the
visitor behavior.

5.2 Dataset Description and Characterization

UWB trajectories, the input for segmentation, contain units in the form (p� , �� ). For each timestamp �� we collect
both raw and iltered positions p� = (�� , �� ) (Fig. 9). The set � of true stops is a sequence of stops � = ⟨p, [�start, �end], �⟩
whose position pos(�) is derived as the centroid of the trajectory units within the real interval [�start, �end], and
whose associated POI is the real one (Fig. 2, ğ1.1).
In vitro.We collected 9 trajectories of similar duration (∼11 mins) for a total of 70,090 units over 100.03 mins. The
number of true stops, known a priori, difers across trajectories and ranges from 11 to 29, for a total of 209 stops.
Fig. 11a shows temporal features via the cumulative distribution function (CDF) of true stop durations. In all

the charts in Fig. 11 and in the rest of the paper, the mean and median are denoted by a dashed and dotted line,
respectively. Our dataset deliberately contains very short stops, with a median of 12.4 s. The red line marks the
threshold below which their duration is irrelevant for the application (ğ2), set to �=10 s based on requirements
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by the museum curators. The 10 stops (<5%) below � should not be detected, leaving 199 true stops as the ideal
segmentation output (ğ2).

As for spatial features, POIs are very close (Fig. 8a). Fig. 11c shows that 80.6% of adjacent POIs are within 1 m
from each other, and 1.59 m at most, demanding high spatial resolution in discerning stops with segmentation.
Still, the distance between consecutive stops within a trajectory varies signiicantly (Fig. 11e) as exhibits are not
necessarily visited in order. Fig. 10 ofers an example by showing the same spatial information of the iltered
trajectory in Fig. 9, this time augmented with temporal information. From this combined spatio-temporal view, we
can see that the subject, mimicking visitors, mixes short strides to adjacent exhibits with longer ones, including
one around the central globe.
In vivo. We tracked 10 volunteers across two rounds of 15 minutes each, yielding 219,937 units in the resulting
20 trajectories. Unlike in-vitro experiments, volunteers moved of their own volition, yielding more stops below
�=10 s. Overall, trajectories contain between 11 and 29 true stops, for a total of 392. Of these, 366 are associated
to a POI, while the other 26 are not and therefore labeled as null (∅).
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POI length [m]
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Fig. 12. In vivo: POI length.

Fig. 11b shows the CDF of true stop durations, slightly longer w.r.t. in vitro,
with a 17 s median and 303 s maximum. As for spatial features, in-vivo POIs
are lines instead of points; their length ranges between 0.4 m and 2.7 m with
a median of 1.09 m (Fig. 12). As a consequence of this relatively large size of
POIs w.r.t. the tables hosting them (Fig. 8b), the distance between POIs is even
smaller than in vitro. Adjacent POIs lay at a distance between 0 and 47 cm with a
median of 8 cm (Fig. 11d), an order of magnitude lower than the median in vitro
(81 cm). The distance between consecutive stops is also smaller in vivo, with a
median of 14 cm (Fig. 11f) vs. 196 cm in vitro (Fig. 11e), due to closer adjacent
POIs combined with real visitors often looking at nearby exhibits in sequence.

6 UWB Localization Error

Before delving into our indings, we exploit the controlled setup and accurate ground truth from the in-vitro one
to ascertain the magnitude of the UWB positioning error, i.e., the distance ∥pos(�real) − pos(�)∥ between the real
stops and the true ones derived as centroids from UWB trajectories, 1○ in Fig. 2.
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Fig. 13. In vitro: Positioning error.

Each UWB trajectory contains several positions for a stop segment (Fig. 9,
in color), i.e., falling inside the interval [�start, �end] whose ground-truth value
is reliably determined via smartphone and cameras. Ideally, the UWB centroid
pos(�) matches exactly the real position pos(�real) near a POI; in practice, this
is not the case. In vitro, the pos(�real) is manually measured very accurately,
with a laser meter in a ixed and known position; pos(�) is determined as the
centroid of unit positions for a moving tag and with larger UWB errors. Their
main source is the user body, creating non-line-of-sight (NLOS) conditions
between the tag on the chest and the anchors behind the back. This is crucial
when one of these anchors serves as time reference; manually changing it when in NLOS reduces the mean
positioning error by 25%. NLOS mitigation techniques, an active research topic, could be incorporated in Talla

and yield improvements. Notable approaches are i) the collection of multiple measurements, e.g., to estimate the
noise distribution and incorporate it into the localization process [11], ii) NLOS detection, to dynamically select
the best available anchors [39], and iii) error correction, to prevent NLOS from afecting localization in the irst
place. Detection and correction often exploit machine learning methods based on the channel impulse response
(CIR) obtained from the radio [1, 21, 37]. Small models with short runtime have been recently proposed [13],
which could be integrated in Talla without compromising its scalability. Nonetheless, the actual improvement
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they would unlock in our speciic scenario is unclear, as most solutions target NLOS from walls or furniture. Few
works have explored NLOS due to human occlusion speciically (e.g., [6, 25]), with promising results; however,
their evaluation in the museum context is beyond the scope of this paper.
Nevertheless, the error between pos(�real) and pos(�) (Fig. 13) remains sub-meter in 96.2% of the cases, i.e.,

signiicantly better than techniques based on WiFi and BLE, plagued by errors of several meters [45]. For both
raw and iltered trajectories, the median and mean error are 42 cm and 46 cm, respectively; the commonly-used
75th percentile is 57 cm in both cases. Interestingly, these metrics are within few percents, i.e., the smoothing
induced by Kalman ilters does not afect the position of the true stops.

7 Findings from In-vitro Experiments

We study the quality of reference stop detection techniques (ğ2) against the yardstick of our novel metric (ğ3.2)
in the controlled, in-vitro setup (ğ5) to distill quantitative indings eliciting the tradeofs between coniguration
parameters and expected detection quality. Hereafter, we set equal weight of spatial and temporal dimensions,
� = 0.5, unless otherwise noted.

7.1 Novel Metric: Is It Worth?

We begin by conirming the higher expressiveness of our stop-centric metric w.r.t. unit-centric ones, observing
that segmentations with the same stop-centric quality can have diferent unit-centric quality, and vice versa. For
illustration only, we focus on SeqScan segmentations of sample trajectories.

Fig 14 shows the quality of two segmentations, obtained using diferent coniguration parameters, of the same
portion of a trajectory; the bottom pictures show the spatio-temporal views (akin to Fig. 10) for a sample stop.
The unit-based metric assigns a higher F-score to ⟨20, 36⟩; one could infer that it detects more stops than ⟨10, 36⟩.
Instead, both detect 21 true stops with one FN, as correctly captured by our metric by assigning the same F-score.
The sample stop illustrates the reason; ⟨20, 36⟩ detects a few more units matching the true stop, increasing F-score.
However, this unit-centric perspective is misleading, as it mixes the correct association of estimated and true stops
with their similarity. When considered separately, as in our metric, the overall quality of the two segmentations
is the same, both for F-score and S-score. Further, with a purely temporal metric (� = 1, not shown) the S-score is
actually marginally higher for ⟨10, 36⟩, accounting for the slightly more accurate overlapping between estimated
and true stops exempliied in Fig 14.

Fig. 15 illustrates the dual situation on another trajectory and diferent segmentations; in each spatio-temporal
view, diferent colors denote diferent stops. In this case, the unit-centricmetric assigns them the same F-score = 0.90;
yet, the spatio-temporal views, this time for the entire trajectory, show that their quality is very diferent. Segmen-
tation ⟨15, 24⟩ correctly detects all 28 true stops. Instead, ⟨15, 12⟩ lumps 8 distinct true stops into 2 large estimated

Stop-centric Unit-centric
⟨�, � ⟩ TP FP FN F-score S-score TP FP FN F-score
⟨10, 36⟩ 21 0 1 0.98 0.90 4348 483 1228 0.84
⟨20, 36⟩ 21 0 1 0.98 0.90 5375 718 201 0.92

true ⟨10, 36⟩ ⟨20, 36⟩

Fig. 14. Same stop properties, diferent unit quality. The figures represent the spatio-temporal view of a trajectory portion.

Points with diferent colors represent units belonging to the true stop (green), or to the estimated ones (blue) determined

with diferent SeqScan parameters; gray points are move units.

ACM Trans. Sensor Netw.



Fine-Grained Stop-Move Detection with UWB: uality Metrics and Real-World Evaluation • 19

Stop-centric Unit-centric
⟨�, � ⟩ TP FP FN F-score S-score TP FP FN F-score
⟨15, 24⟩ 28 0 0 1.00 0.88 4953 932 80 0.90
⟨15, 12⟩ 22 0 6 0.88 0.85 5013 1087 20 0.90

true ⟨15, 24⟩ ⟨15, 12⟩

Fig. 15. Diferent stop properties, same unit quality. The figures represent the spatio-temporal view of a trajectory portion,

showing the true stops and two sets of estimated stops determined with diferent SeqScan parameters. In each picture,

points with diferent colors are units belonging to diferent stops; same colors across pictures do not denote an association of

stops across them; gray points are move units.

ones, representing incorrectly the user behavior. The unit-centric metric is oblivious to structure, considering
whether individual units belong to any stop. Conversely, our stop-centric metric accounts for the 6 FN in ⟨15, 12⟩
with a lower F-score than ⟨15, 24⟩.

The higher expressiveness we concretely illustrated has practical implications. For instance, in our museum
context, some analyses focus on how many exhibits are visited, others on how long each visit is. Our metric
captures and sharply separates the two via F-score and S-score, guiding the choice of the most appropriate
technique and/or coniguration.

7.2 Segmentation: Configuration anduality

We dissect segmentation techniques through the lens of our stop-centric metrics, investigating at once the best
coniguration of each technique and the attainable quality.
Which parameters for what quality? We ascertained the impact on quality of several conigurations for
each technique; Table 2 shows a relevant subset for iltered trajectories. The highlighted best ones are those
with highest F-score, e.g., ⟨10, 12⟩ and ⟨15, 24⟩ for SeqScan. Again, alternative criteria striking diferent quality
tradeofs are possible.
All methods yield good quality. KBV has the lowest and is the most sensitive to its � parameter; yet, it is

the cheapest computationally (ğ2). At the other extreme, SeqScan yields highest quality and its two-parameter
coniguration increases lexibility. Table 2 also reports the unit-centric metric, conirming its lower expressiveness.
This is evident for KBV, whose highest unit-centric F-score is obtained with � = 100 that i) detects only 123 out
of 199 true stops, yet ii) has nearly the same unit-centric F-score of the best SPD coniguration, detecting 189.
Therefore, hereafter we report only the results obtained with our stop-centric metric.
Raw vs. iltered trajectories: Does it matter? We irst validate the behavior of IMM-UKF ilters by inspecting
the IMM mode probabilities and KF velocity in relation to true stop intervals. As expected, the predominant IMM
mode in between stops is łmovingž (Figure 16); instead, during a stop this probability rapidly drops and the KF
velocity approaches zero.
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Fig. 16. IMM behavior on a trajectory excerpt. True stop intervals are highlighted.

Filtered trajectories reduce spatial jitter vs. raw ones (Fig. 9) yet induce the same stop-move structure (Fig. 11e).
This is to be ascribed to the fact that most localization errors are due to NLOS. These typically causes a group of
consecutive UWB units to spatially shift away signiicantly from previous ones, in a way that KF ilters cannot
correct; hence, similarly incorrect positions appear in both types of trajectories. Nonetheless, the łsmoothingž
induced by iltered trajectories may facilitate stop detection and provide better segmentation quality. To ascertain
this, we performed for raw trajectories the same parameter exploration of Table 2, except for KBV. Table 3 shows
how the best conigurations for SPD and SeqScan respectively detect 8 and 10 fewer TP with an increase in
FN. However, SPD requires a higher distance, � = 80, accounting for the higher position dispersion. In contrast,
⟨� = 15, � = 24⟩ remains the best coniguration in SeqScan, therefore more robust w.r.t. parameter sensitivity.
Overall, these results conirm that iltered trajectories yield higher quality, although the diference is not dramatic.
What is the nature of false positives and negatives?Our metric ofers further insights on quality by capturing
the type of false detections (ğ3.2).
The analysis of best segmentations (Table 2) shows that SPD detects nearly as many true stops as SeqScan

(more, on raw trajectories) but with more false positives, lowering precision and F-score. Table 3 clearly shows
that the culprit are split stops, a known weakness of the method. Also, all techniques are equally sensitive to
stops with duration shorter than � = 10 s; this is actually the main source of mis-detection in SeqScan. However,
this type of FP is particular and often benign (ğ3.2). At the other extreme, fake stops are rare, even absent with
KBV.
Dually, missing stops are the main source of FN for all techniques. SeqScan and SPD achieve similar results;

the latter is more sensitive to spatial resolution. In SPD, a smaller � does not afect split and merged stops but
increases missing ones; with � = 20, they become the only source of FN. In contrast, the two-parameter structure
of SeqScan achieves high quality with similar or even lower spatial resolution � , slightly increasing merged stops
in other conigurations less performant than the one shown. Finally, the many missing stops in KBV are due to its
reliance on velocity rather than distance, frequently changing around the threshold � . This parameter crucially
afects the nature of FN, dominant in KBV (Table 2); a value of 100 cm/s yields a majority (40) of merged stops,
while 10 cm/s yields all missing stops.
What is the spatio-temporal error? The S-score is as a concise indicator of similarity between true and
estimated stops. However, it does not account for the actual error in their temporal alignment and position,
analyzed here.

Given an estimated stop �̂ and a true stop � , we compare their intervals
int(�̂) = [�ŝ,start, �ŝ,end] and int(�) = [�s,start, �s,end] by considering the errors in start time �end = �ŝ,start − �s,start , end
time �end = �ŝ,end − �s,end , and duration
Δ� = |int(�̂) | − |int(�) |. Moreover, we consider the spatial error Δp= ∥pos(�̂) −pos(�)∥, 2○ in Fig. 2. Table 3 reports
their mean � and standard deviation � in the best conigurations; Fig. 17 shows the CDFs of Δ� and Δp of iltered
trajectories only.
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Table 2. Exploring segmentation parameters and resulting quality for filtered trajectories; � and � are in cm, � in cm/s.

Stop-centric Unit-centric
TP FP FN Precision Recall F-score S-score F-score

�, � SeqScan
10, 12 186 8 13 0.959 0.935 0.947 0.891 0.871
15, 12 176 11 23 0.941 0.884 0.912 0.866 0.872
20, 12 165 13 34 0.927 0.829 0.875 0.842 0.869
10, 24 176 8 23 0.957 0.884 0.919 0.893 0.842
15, 24 187 9 12 0.954 0.940 0.947 0.883 0.870
20, 24 177 11 22 0.941 0.889 0.915 0.866 0.871
10, 36 166 6 33 0.965 0.834 0.895 0.893 0.824
15, 36 183 8 16 0.958 0.920 0.938 0.886 0.859
20, 36 178 10 21 0.947 0.894 0.920 0.871 0.869

� SPD
20 117 16 82 0.880 0.588 0.705 0.837 0.630
30 161 16 38 0.910 0.809 0.856 0.873 0.777
40 175 19 24 0.902 0.879 0.891 0.882 0.822
50 181 19 18 0.905 0.910 0.907 0.885 0.835
60 189 18 10 0.913 0.950 0.931 0.871 0.854
70 187 21 12 0.899 0.940 0.919 0.855 0.850
80 187 18 12 0.912 0.940 0.926 0.847 0.850
90 183 17 16 0.915 0.920 0.917 0.835 0.849
100 176 22 23 0.889 0.884 0.887 0.820 0.849
110 173 24 26 0.878 0.869 0.874 0.803 0.847
130 161 26 38 0.861 0.809 0.834 0.772 0.840
150 155 21 44 0.881 0.779 0.827 0.756 0.833

� KBV
10 31 4 168 0.886 0.156 0.265 0.783 0.42
20 110 6 89 0.948 0.553 0.698 0.853 0.658
30 154 4 45 0.975 0.774 0.863 0.870 0.719
40 168 11 31 0.939 0.844 0.889 0.875 0.801
50 175 10 24 0.946 0.879 0.911 0.873 0.831
60 168 10 31 0.944 0.844 0.891 0.849 0.844
70 162 9 37 0.947 0.814 0.876 0.826 0.846
80 142 7 57 0.953 0.714 0.816 0.798 0.847
90 129 9 70 0.935 0.648 0.766 0.768 0.851
100 123 11 76 0.918 0.618 0.739 0.751 0.855

Table 3. In vitro: uality of segmentation. The true stops are 199, plus 10 short ones (duration <10 s) that should not be

detected.

Technique Dataset
Best

conig. TP F-score S-score

Nature of false detection Spatio-temporal errors
FP FN �start (s) �end (s) Δ� (s) Δp (cm)
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SeqScan
iltered ⟨15, 24⟩ 187 0.947 0.8833 2 6 1 5 7 -2.13 5.46 1.54 1.34 3.67 5.58 3.22 4.53
raw ⟨15, 24⟩ 176 0.921 0.8725 1 5 1 8 15 -3.37 5.50 1.63 2.30 5.00 6.24 5.76 32.63

SPD
iltered 60 189 0.931 0.8709 10 7 1 3 7 -0.67 4.29 1.32 3.93 1.99 6.63 4.09 6.07
raw 80 181 0.903 0.8619 13 7 1 5 13 -0.97 4.64 1.36 4.34 2.32 7.38 4.52 6.33

KBV iltered 50 175 0.911 0.8726 5 5 0 7 17 -0.17 6.81 1.53 2.63 1.71 7.97 4.19 8.08

All techniques perform well, with errors of few seconds and centimeters, and small relative diferences. KBV is
the most accurate temporally, with a mean error �=1.71 s. Yet, its mean spatial error Δp is the highest among
iltered trajectories and close to SPD, whose median is signiicantly worse. At the other extreme, SeqScan yields
the worst duration estimates; � is nearly twice w.r.t. KBV, although the absolute diference is <2 s. Still, it is the
most accurate spatially, a counterintuitive result explained by several factors: i) SeqScan is robust to outliers by
design, intrinsically reducing spatial noise ii) temporal precision (�) is the highest iii) �start is underestimated and
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Fig. 17. In-vitro: Duration and spatial error for filtered trajectories.

(a) True and estimated stops.

stop ID start end

True

23 11:26:21:.047 11:26:35.972

24 11:26:36.043 11:27:01.965

25 11:27:02.037 11:27:15.962

26 11:27:16.033 11:27:28.959

Estimated

13 11:26:19.976 11:27:29.709

(b) Stop durations.

Fig. 18. The spatio-temporal weight � may afect matching.

(a) True and estimated stops.

Estimated stop ID

. . . 6 7
. . . . . . . . . . . .
5 . . . 0.22 0.78

True
stop
ID

6 . . . 0 0.25

(b) The weight function W (�� � ) with �=0

yields a single match and F-score = 0.703.

Estimated stop ID

. . . 6 7
. . . . . . . . . . . .
5 . . . 0.88 0.97

True
stop
ID

6 . . . 0 0.51

(c) The weight function W (�� � ) with �=1

yields two matches and F-score = 0.757.

Fig. 19. The spatio-temporal weight � may afect the F-score.

�end overestimated, both in median (not shown) and mean, by nearly the same amount that tends to center the
true stop inside the estimated one, reducing the distance between their centroids (Fig. 2).
Fig. 17a also shows that SPD often severely underestimates stop duration, likely the culprit for the many

stop splits (Table 3). Nevertheless, its performance in terms of Δ� and Δp does not change signiicantly when
moving from iltered to raw trajectories. This is not the case for SeqScan, whose metrics for the latter (Table 3)
are nonetheless heavily afected by a single outlier, caused by the merging of distant stops, whose removal yields
�=3.82 cm and �=7.74 cm for Δp. Anyway, this is in line with false detections (Table 3); while SPD is prone to
stop splitting, SeqScan is to merging.
Sensitivity to the spatio-temporal weight � .We analyze the impact of values other than � = 0.5, used until
now, to weigh the spatial and temporal dimensions. Recall that � does not afect segmentation techniques and
their intrinsic quality, but only their evaluation via our metrics (ğ3.2).
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Table 4. In vitro: uality of segmentation when associating estimated stops to POIs (filtered trajectories).

Technique
Best

conig. TP F-score S-score

Nature of false detection Spatio-temporal errors
FP FN �start (s) �end (s) Δ� (s) Δp (cm)
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SeqScan ⟨15, 24⟩ 180 0.911 0.883 8 0 6 2 11 1 7 -2.12 5.46 1.64 1.74 3.76 5.67 3.14 4.54

SPD 60 177 0.872 0.872 14 6 8 2 15 0 7 -0.78 4.56 1.33 3.65 2.11 6.64 4.08 6.20

KBV 50 168 0.875 0.873 8 2 6 1 13 1 17 -0.11 6.75 1.82 2.87 1.93 7.93 4.23 8.20

In our datasets, we observed two efects. First, � may change the matching between estimated and true stop. In
Fig. 18, a small area contains multiple true stops. The purely spatial metric (�=0) matches the estimated stop
to true stop #26. Instead, the purely temporal metric (�=1) matches it to #24, the one with the largest temporal
overlapping. In this case, � afects the S-score, by capturing a diferent spatio-temporal similarity, but not the
F-score, as the number of matches is unaltered. However, by afecting matching weights, � may also afect the
F-score. In Fig. 19, the spatial metric yields an optimal assignment with a single match between the true stop #5
and the estimated one #7, with F-score=0.703 (Fig. 19b). Instead, the temporal metric yields two matches (true
stops #5 and #6 with estimated ones #6 and #7, respectively) and a higher F-score=0.757 (Fig. 19c).
Interestingly, when using the best segmentation conigurations, these efects are very limited; only 1 change

in matched stops for SeqScan, 0 for SPD, 3 for KBV, and an unchanged F-score. Instead, when using other
conigurations (Table 2) we see signiicant changes in our metrics and in matched stops, up to 9 for SeqScan,
13 for SPD, and 19 for KBV.

This conirms at once the soundness of our metrics and the good quality of the segmentation techniques
evaluated through them. Indeed, an ideal segmentation would always ind the same matches between estimated
and true stops, yielding the same F-score irrespective of � . Dually, a marked change in F-score when changing �
means that it swings matching across many candidates with wildly diferent spatio-temporal quality, possible
only due to issues with true stops (e.g., poor temporal ground truth, high positioning noise) or estimated ones
(e.g., poor segmentation).

Consequently, spatio-temporal errors are also largely unafected when using best conigurations. Switching
between purely temporal and spatial metrics yields diferences in Δ� and Δp of less than a second or centimeter,
respectively. Still, as expected, these are always coherent with the dimension chosen, e.g., Δ� is always lower
with a temporal metric.

We observe that our approach, albeit motivated by the ine-grained spatio-temporal nature of UWB, is general
and applicable to other positioning systems, likely afected by higher noise; however, this is outside the scope of
this paper.

7.3 Associating Estimated Stops to POIs

We now close the circle and investigate the quality of segmentation techniques in correctly associating their
estimated stops to the POIs represented as spatial objects with semantic annotations (ğ3.3). The mapping between
stop and spatial objects is encoded by the O function in Eq. (1) that, once incorporated in the weight function
W� of Eq. (2), extends matching to account for semantic annotations. Note how, in the in-vitro campaign, a null
association (obj(�) or obj(�̂) is ∅) never occurs in the pre-deined mobility pattern.

Table 4 reports the quality achieved by the best conigurations with iltered trajectories. Quality remains very
high: the best technique, SeqScan, correctly detects and associates 180 of the 199 true stops (90.5%) despite the
challenges of i) POIs close to each other (Fig. 11c) and ii) non-negligible UWB positioning error (Fig. 13). Even
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(a) True stops: The visitor dwells in front of

5 exhibits.

(b) Estimated stops: Visits to two adjacent

exhibits are lumped into a single one (top let).

Fig. 20. In vivo: Challenges of the POI layout. The numbers denote POIs, numbered from 1 to 6, representing exhibits on a

table; the colored dots represent true and estimated stops.

KBV, the simplest, correctly detects 168 stops (84.4%). In all cases, quality is marginally lower w.r.t. Table 3; SPD
shows a highest decrease in TP (−12) w.r.t. SeqScan and KBV (−7). As expected, mislabeling plays a big role in
false detections, although its incidence is very limited. Finally, spatio-temporal errors are in line with those in
Table 3.

8 Findings from In-vivo Experiments

We ascertain to what extent our indings hold in the realistic in-vivo setup where users move of their own volition.

8.1 Challenges

The in-vivo setup poses signiicant challenges. First, the unconstrained user movement yields a signiicantly
higher fraction of true stops with duration <10 s, to be discarded by segmentation. Compared to our in-vitro setting,
where these accounted for 4.7% of the total (10 out of 209), in vivo they account for 28.7% (158 out of 550). When
these are detected as estimated stops (with an incorrect duration ≥10 s) a FP occurs, albeit relatively benign. The
question is whether this order-of-magnitude increase degrades quality with a corresponding increase in short FP.

Second, the layout of POIs, close to each other and of linear shape (ğ5.2), signiicantly complicates stop detection.
Fig. 20 ofers an example from our dataset, where the visitor true stops occur in front of 5 exhibits (Fig. 20a).
Segmentation correctly estimates 3 of them; however, it lumps the other 2 into a single stop, yielding a false
negative. A related issue afects the semantic matching of stops to POIs. For instance, the stop near POI #5 in the
bottom left is correctly estimated (Fig. 20b); still, even a small spatial error could bring it closer to #4 or even #6,
causing a mislabeled FP or FN error. These situations occur in reality, as visitors are not necessarily immobile
when visiting an exhibit and the inherent noise from UWB localization further łspreadsž trajectory units. True
stops and their association to POIs can be manually identiied based on ground truth, a luxury that cannot be
aforded by automated segmentation techniques.

8.2 Segmentation: Configuration anduality

Given these challenges, a crucial question is: Can the shift to a real-world, uncontrolled scenario be tackled with
the same conigurations determined for the controlled one? A positive answer would witness the robustness of
segmentation techniques to input data, and validate our parameter tuning methodology.

The answer depends on the technique. Table 5 reports the top three conigurations for each, ranked based on
our metrics, for both in vitro and in vivo. SeqScan is very robust; its best conigurations are the same with minor
diferences in F-score and S-score afecting only the ranking among conigurations. Notably, ⟨15, 24⟩ was also
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Table 5. In vitro vs. In vivo: Top three configurations for each reference technique, in the same conditions as Table 2.

Dataset Technique Conigurations F-score S-score

In
vitro

SeqScan ⟨10, 12⟩,⟨15, 24⟩,⟨15, 36⟩ 0.947, 0.947, 0.938 0.891, 0.883, 0.886
SPD 60,80,70 0.931, 0.926, 0.919 0.871, 0.846, 0.855
KBV 50,60,40 0.911, 0.891, 0.889 0.873, 0.848, 0.875

In
vivo

SeqScan ⟨15, 24⟩,⟨15, 36⟩,⟨10, 12⟩ 0.913, 0.909, 0.908 0.890, 0.896, 0.893
SPD 130,120,100 0.834, 0.833, 0.825 0.833, 0.838, 0.852
KBV 50,60,70 0.837, 0.821, 0.803 0.825, 0.824, 0.798

Table 6. In vivo. uality of segmentation. The true stops are 392, plus 158 short ones (duration <10 s) that should not be

detected.

Technique
Best

conig. TP F-score S-score

Nature of false detection Spatio-temporal errors
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SeqScan ⟨15, 24⟩ 343 0.913 0.890 10 5 1 37 12 -2.68 7.63 1.06 9.40 3.75 12.27 7.31 9.11
SPD 130 362 0.834 0.833 59 53 2 30 0 -2.08 10.19 0.45 11.79 2.52 15.43 11.61 13.83
KBV 50 329 0.837 0.825 54 9 2 34 29 2.59 13.6 -1.31 12.86 -3.91 19.81 10.34 12.10

Table 7. In vivo: uality of segmentation when associating estimated stops to POIs (filtered trajectories).

Technique
Best

conig. TP F-score S-score

Nature of false detection Spatio-temporal errors
FP FN �start (s) �end (s) Δ� (s) Δp (cm)
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SeqScan ⟨15, 24⟩ 309 0.823 0.890 37 7 5 1 51 20 12 -3.25 9.48 0.73 9.24 3.98 12.98 7.39 12.62
SPD 130 319 0.735 0.832 61 41 53 2 57 16 0 -2.86 14.15 -0.81 13.05 2.05 18.94 11.71 14.90
KBV 50 289 0.735 0.833 53 41 9 2 56 18 29 1.48 13.79 -2.18 12.60 -3.66 19.55 9.75 12.11

the best one when using raw trajectories (Table 3); hence, it is the most versatile among those tested and the one
we use hereafter. KBV is also afected only marginally, with two conigurations providing the best results in both
cases. In contrast, none of the best SPD in-vitro conigurations remain the same in vivo. SPD is very sensitive to
the łsmoothnessž of trajectories and requires an increase in the distance � , already evident with raw trajectories
and exacerbated here: the best in-vivo SPD coniguration doubles the value of � w.r.t. the in-vitro one.
Table 5 also directly compares quality that, as expected, degrades in vivo, yet remains very good. Again,

SeqScan is the most robust, with only a minor F-score decrease (−3.6%). Instead, SPD shows a much higher
decrease (−10.4%), making KBV (−8.1%) the second best technique.

Table 6 focuses on the best in-vivo conigurations, where false detections ofer interesting observations. First,
despite the order-of-magnitude increase in true short stops, the short FP with estimated duration ≥�=10 s do not
follow the same trend. Indeed, for SeqScan and KBV the absolute number of short FP remains nearly the same as
in vitro; however, relative to the 158 true in-vivo short stops, these misdetections are a small fraction, 3.1% and
5.7%, respectively. The reason is that the (real) distribution of the duration of true short stops in vivo is more
uniform, with durations ≪10 s; instead, the (artiicial) in-vitro durations of true short stops are very close to
the threshold, thus easier to estimate incorrectly. In contrast, SPD is very sensitive to short FP; the increase in
misdetections (from 7 to 53) mirrors the order-of-magnitude increase in true short stops.

As for the other misdetections, fake FP remain very low, comparable to in vitro despite the twofold increase in
true stops: estimated stops that did not actually happen are extremely rare in practice. Dually, true stops are rarely
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Table 8. Breakdown of the mislabeled errors in Table 7.

FP

Technique
Same table

Other table Either is ∅Same side
Opposite side

Adjacent Non-adjacent
SeqScan 32 (86.49%) 0 2 (5.4%) 2 (5.4%) 1 (2.7%)

SPD 52 (85.24%) 1(1.64%) 2 (3.28%) 4 (6.56%) 2 (3.28%)

KBV 43 (81.13%) 0 5 (9.43%) 2 (3.77%) 3 (5.66%)

FN

Technique
Same table

Other table Either is ∅Same side
Opposite side

Adjacent Non-adjacent
SeqScan 45 (88.23%) 0 2 (3.92%) 3 (5.88%) 1 (1.97%)

SPD 50 (87.72%) 3 (5.26%) 1 (1.75%) 1 (1.75%) 2 (3.51%)

KBV 47 (83.93%) 1 (1.78%) 5 (8.93%) 1 (1.79%) 2 (3.57%)

missed by stop-move detection. For SeqScan and KBV, the increase in missing FN (from 5 to 12 and from 17 to 29,
respectively) almost directly mirrors the twofold increase in true stops, but is very small in absolute: only 3% and
7.4% of true stops are missed; missing stops are even absent with SPD.

This is not the case for split FP and merged FN. In the former case, SPD sufers from a 6× increase in
misdetections, second only to the 10× of KBV. In SeqScan, despite the 5× increase the 10 split FP are a negligible
fraction w.r.t. the 392 true stops, much smaller than the other techniques, in line with earlier indings (ğ7). As for
merged FN, all techniques behave similarly, in line with in vitro albeit again with more errors. In both cases, the
increase of these misdetections is likely due to the challenging layout (Fig. 20).
The slight decrease in quality afects the F-score but also the S-score, as relected in spatio-temporal errors

(Table 6). The average values � remain similar to in vitro, apart from the spatial error Δp which shows a marginal
increase, more marked for SPD and KBV. The standard deviation � is instead 2ś3 times higher, likely the culprit
for the slight quality decrease in POI association, discussed next.

As for the impact of the spatio-temporal weight � , the indings in vitro are conirmed, with negligible changes
in metrics, spatio-temporal errors, and matched stops: 2 for SeqScan, 9 for SPD, and 5 for KBV, out of 392 true
stops.

8.3 Associating Estimated Stops to POIs

Table 7 shows the results of our analysis, analogous to the one in vitro (ğ7.3). At irst, quality appears slightly
worse, in line with the decrease above. In terms of F-score, SeqScan remains the best technique and the one with
the smallest decrease (−9.6%); in contrast, both SPD and KBV degrade signiicantly (around −16% in both cases).
The culprit is clearly the increased number of mislabeled FP and FN; however, this aspect deserves further

investigation. Table 8 analyzes the fraction of mislabeled FP and FN in Table 7 and diferentiates the nature of
mislabeling by distinguishing the cases where true and estimated POIs are i) adjacent ii) non-adjacent but on
the same side iii) on diferent sides but on the same table iv) on diferent tables v) null (∅) in either case. For all
techniques, the vast majority (between 81.1% and 88.2%) of mislabeled detections are to be ascribed to adjacent
POIs. This is coherent with POIs being very close to each other (ğ5.2, Fig. 8b), leading segmentation techniques
to mistake one for the other. Arguably, situations where a visitor stands across two exhibits (e.g., Fig. 20) are
sometimes ambiguous even for a human observer.
Adjacent POIs aside, the content of the other columns shows that the fraction of grossly mislabeled POIs is

negligible across all techniques. This is remarkable, given the practical relevance of associating stops with POIs
in stop-move applications, for which our use case is no exception.
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Table 9. In vivo. uality of segmentation when applied to detecting visits. The true visits are 310, of which 24 associated to a

null POI.

Technique conig. TP F-score S-score

Nature of false detection Temporal errors
FP FN �start (s) �end (s) Δ� (s)
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SeqScan ⟨15, 24⟩ 264 0.874 0.873 24 2 3 1 35 0 11 -2.59 11.84 0.95 13.77 3.54 17.76
70 270 0.840 0.838 38 12 11 2 32 0 8 -1.00 10.00 -1.13 13.77 -0.13 17.22

SPD
130 266 0.799 0.834 38 7 43 2 44 0 0 -3.92 12.60 1.49 13.52 5.41 18.60
60 250 0.821 0.834 31 4 12 2 44 0 16 -0.48 12.34 1.18 14.37 1.65 19.12

KBV
50 250 0.820 0.837 35 5 8 2 39 0 21 1.06 12.48 -1.50 13.31 -2.56 18.27

9 From Stops to Visits

In vivo, we often noticed visitors making consecutive stops at the same POI, e.g., observing an exhibit from
diferent points. Detecting these individual stops, our focus thus far, is useful for many analyses. However, when
focusing on the time visitors continuously spend at a POI, e.g., to ind the most engaging exhibits, individual stops
are less relevant; the overall, higher-level visit is instead key. This intuitive notion is useful beyond our museum
use case, e.g., in retail and recommender systems [27, 48]. Visits can be obtained via a simple aggregation of stops.
Our contribution is to show that i) we can apply the same metrics deined for stops also to visits, and ii) ascertain
the quality of the visit detection obtained with the reference segmentation techniques.
Modeling visits and their quality. Given a generic sequence of stops � = ⟨�1, . . . ��⟩, we deine a visit
� = ⟨�start . . . �end⟩ ⊆� as a sequence of consecutive stops at the same spatial object � , ∀�� ∈ � | obj(�� ) =� . A visit at
a spatial object � is captured as � = ⟨�, [�start, �end]⟩, where the time interval extends from the beginning of the
irst stop �start in the visit to the end of the last stop �end . This applies to true and estimated stops, yielding true
visits and estimated visits.

A visit can be regarded as a higher-level stop aggregating many others, where their stop centroids are replaced
by the single POI associated to the visit. Crucially, this means that the POI-annotated version of our metric can
be directly applied to the problem of matching true and estimated visits, including the quantitative measure of
quality and the ability to determine the nature of false detection, both investigated next.
Quality of visit detection. Table 9 shows the results. For each technique, we report the best coniguration
used for stop detection (Table 7) along with the one yielding the best results for visit detection; notably, the two
coincide for SeqScan, once again the most robust to parameter selection.
Interestingly, the quality of visit detection is generally higher than stop detection (Table 7). The reason is

twofold. First, incorrectly fragmented stops (split FP) are now likely to be re-aggregated into a visit. Dually,
i) merged stops are now part of the same visit, and ii) it is unlikely that a visit, typically much larger than a stop,
is merged with another; merged FN are indeed absent for most conigurations across segmentation techniques.
Temporal errors are also entirely in line with those for stop detection. Note how we do not report the spatial
error as it is meaningless in this context, as position is already abstracted away by the POI.
Mislabeled false detections are again the main error contributor, although signiicantly fewer w.r.t. stops.

For instance, when moving from stops to visits in SeqScan, mislabeled FP and FN decrease by −35% and −31%,
respectively. Table 10 shows that these are dominated by POIs adjacent to the correct one, conirming our earlier
observations (ğ8.3).
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Table 10. Breakdown of the mislabeled errors in Table 9.

FP

Technique Conig.
Same table

Other
table

Either
is ∅

Same side Opposite
sideAdjacent Non-adjacent

SeqScan ⟨15, 24⟩ 21 (87.5%) 0 0 2 (8.33%) 1 (4.17%)

70 26 (68.42%) 0 8 (21.05%) 2 (5.26%) 2 (5.26%)
SPD

130 30 (78.95%) 1(2.63%) 2 (5.26%) 3 (7.89%) 2 (5.26%)

60 22 (70.97%) 0 6 (19.35%) 1 (3.23%) 2 (6.45%)
KBV

50 27 (77.14%) 0 5 (14.29%) 1 (2.86%) 2 (5.71%)

FN

Technique Conig.
Same table

Other
table

Either
is ∅

Same side Opposite
sideAdjacent Non-adjacent

SeqScan ⟨15, 24⟩ 32 (91.43%) 0 0 2 (5.71%) 1 (2.86%)

70 28 (87.5%) 0 1 (3.12%) 2 (6.25%) 1 (3.12%)
SPD

130 39 (88.64%) 2 (4.54%) 0 1 (2.27%) 2 (4.54%)

60 39 (88.64%) 2 (4.54%) 2 (4.54%) 0 1 (2.27%)
KBV

50 33 (84.61%) 1(2.56%) 2 (5.13%) 1(2.56%) 2 (5.13%)

10 Related Work

Stop-move detection. Segmentation has been applied to GPS trajectories for a long time [22]. Here, we considered
techniques (ğ2) representative of mainstream classes: criteria-based deine stops based on, e.g., distance, time
duration, velocity, as in SPD, KBV and e.g., [4, 22]; cluster-based include SeqScan and, e.g., [20, 29, 33]. Others are
based on statistical models [2] or do not even rely on segmentation [27, 28, 50]. Our focus is not on exhaustive
comparison, rather on enabling a methodologically grounded comparison by quantifying the quality attainable
when applying stop-move techniques to UWB and, via our novel metrics, elicit tradeofs and challenges.
Semantic enrichment of trajectories. Often, stop-move detection is used as part of a larger process known as
semantic enrichment [34], enhancing trajectory data with POIs and/or other context-dependent information,
enabling higher-level analyses for outdoor trajectories, e.g., from GPS [18, 43]. Indoor trajectories are generally
deemed problematic due their low quality [27]. We ill this gap by exploiting the higher-level accuracy of UWB
for the semantic enrichment based on small-size POIs. The stops output, or their aggregation into visits, can
supply the input for, e.g., symbolic trajectories [15].
Quality metrics. The evaluation of stop-move patterns vs. ground truth is hindered by the complexity induced
by mobile targets. Validation is often only qualitative, e.g., through visual inspection of trajectories or simple
metrics like the number of stops [19, 33]. This may suice over large-scale areas with well-separated stops, but is
challenging when stops are close in space and time, as in our setup.

In [2], units are assigned a stop/move label; detection quality is evaluated against ground-truth labels manually
derived from GPS trajectories. However, due to the unit-centric binary labeling, the metric is oblivious to the
number of stops. The use of F-score on stops instead of units was also proposed in [20, 29] but without specifying
how true stops are accrued, likely deferring to qualitative considerations.

In these works, the relation to spatial objects, enabling the semantic dimension, is not considered. In contrast,
the work in [27] deines a metric based on the percentage of units correctly labeled in indoor trajectories. Labels
contain the event type along with the room containing the unit. In addition to this coarse granularity, the temporal
extent of stop/move patterns are ignored, along with the impact of false observations. Similarity metrics have
also been proposed [26] compare the movement of two individuals, e.g., based on event ordering; instead, we
exploit a diferent notion of similarity focusing on segmentation correctness.
Stop-move detection in museums and beyond. Understanding the behavior of visitors is crucial in museums:
the number, location, and duration of the visitors’ stops are indicators of attention and hence interest [35]. This
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was recognized as early as 1935, when Melton [31], an experimental psychologist, pioneered the practice of
łtiming and trackingž, a systematic observation of visitors by an external observer manually recording their
movements. Simple and accurate, this practice is still used today [24, 42], but the signiicant human efort needed
for large areas or visitor numbers limits the analyses building atop it.
Recently, sensors enabled automation and scalability at the price of accuracy. Reported experiences rely on

Bluetooth, whose meter-level positioning [45] forces coarse spatio-temporal granularity, room-level and with
uncertain timing. The overall stay (hours) and frequency of visits to key areas of the Louvre is analyzed in [44];
others analyzed the stay in a room [5] or łhotspotsž and other macro-indicators [30]. These approaches extract
spatio-temporal features from the Bluetooth signal, increasing complexity and yielding coarse accuracy. In
contrast, we showed quantitatively how the higher accuracy of UWB directly yields much greater spatio-temporal
resolution in discriminating stops, achieving automation and accuracy at once.
Finally, although our experimental evaluation focuses only on a museum scenario due to the prohibitive

administrative, logistic, and deployment efort to replicate it elsewhere, any other domain where measuring the
presence of an individual with near POIs is important could beneit from our work. Among these, retail [7] is an
obvious example bearing a strong resemblance to museums; the quantitative insights ofered by ine-grained
stop-move detection near products on display, akin to visitors of museum exhibits, once combined with results
by consumer research [38] would provide store owners with actionable information about their customers.

11 Conclusions

The high spatio-temporal accuracy of UWB localization intuitively enables ine-grained detection of stop-move
patterns, key to many applications. Yet, this opportunity has not been studied, let apart quantitatively and
experimentally. This is our goal, exploiting two experimental campaigns with diferent characteristics in a
museum deployment with accurate ground truth, also rare in the literature.
Key to our contribution is a novel, expressive family of metrics whose stop-centric view is signiicantly more

expressive than the state of the art. We provide deinitions and methods enabling automated quantitative analysis
and interpretation of false detections. Moreover, we encompass both the temporal and spatial aspects of stops,
their semantic enrichment based on association to spatial objects, and the corresponding higher-level notions of
visit, reuniting all relevant dimensions in a single methodological framework.

We apply these metrics to conigure and compare representative segmentation techniques originally targeting
coarser-grained scenarios. We show that, when used with UWB trajectories, they induce spatio-temporal errors
of only few centimeters and seconds, enabling very high correspondence of estimated and true stops despite the
inevitable UWB positioning error.

This high quality shows only marginal diferences between the controlled in-vitro setting and the uncontrolled
in-vivo one. This conirms that stop-move detection can be successfully exploited towards the ine-grained
resolution enabled by UWB. Of course, our indings are limited to a given museum use case and speciic
environment; the efort to gather ground truth with real visitors is daunting. Nevertheless, we hope that our
technical and methodological contributions inspire similar studies in other application domains and environments,
ultimately helping pave the way to a new generation of mobility analysis techniques seizing the new opportunities
ofered by UWB, a goal we also facilitate by releasing our datasets publicly [17].

Acknowledgments

We are grateful to M. Lanzingher, Director of MUSE, and V. Cozzio, Head of IT services, for making this study
possible, and to D. Dal Piaz and D. Tombolato for their support. At our institutions, we thank A. Bacchiega,
M. Fenu, A. Giovannone, T. Istomin, and D. Molteni for their help on technical and experimental issues. This
work is partially supported by the Italian government via the NG-UWB project (MUR PRIN 2017), and by the

ACM Trans. Sensor Netw.



30 • F. Hachem et al.

project SERICS (PE00000014) and the ICSC National Research Centre for High Performance Computing, Big Data
and Quantum Computing (CN00000013), both under the NRRP MUR program funded by the NextGenerationEU.
The views and opinions expressed are however those of the authors only and do not necessarily relect those of
the European Union or the Italian MUR. Neither the European Union nor the Italian MUR can be held responsible
for them.

References

[1] S. Angarano, V. Mazzia, F. Salvetti, G. Fantin, et al. 2021. Robust ultra-wideband range error mitigation with deep learning at the edge.

Engineering Applications of Artiicial Intelligence 102 (2021), 104278.

[2] L. Bermingham and I. Lee. 2018. A Probabilistic Stop and Move Classiier for Noisy GPS Trajectories. Data Mining and Knowledge

Discovery 32, 6 (2018), 1634ś1662.

[3] H. A. Blom and Y. Bar-Shalom. 1988. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coeicients.

IEEE Transactions on Automatic Control 33, 8 (1988), 780 ś783.

[4] M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. 2011. Segmenting trajectories: A framework and algorithms using spatiotemporal

criteria. Journal on Spatial Information Science 3 (2011), 33ś63.

[5] P. Centorrino, A. Corbetta, E. Cristiani, and E. Onofri. 2021. Managing Crowded Museums: Visitors Flow Masurement, Analysis,

Modeling, and Optimization. Journal of Computational Science 53 (2021), 101357.

[6] Y. Chen, J. Wang, and J. Yang. 2024. Exploiting anchor links for NLOS combating in UWB localization. ACM Transactions on Sensor

Networks 20, 3 (2024), 1ś22.

[7] FIRA Consortium. 2024. Smart Retail. https://www.iraconsortium.org/discover/use-cases/smart-retail. Last access: November 1, 2024.

[8] M.L. Damiani, F. Hachem, H. Issa, N. Ranc, et al. 2018. Cluster-based Trajectory Segmentation with Local Noise. Data Mining and

Knowledge Discovery 32 (2018), 1017ś1055.

[9] M.L. Damiani, H. Issa, G. Fotino, M. Heurich, et al. 2016. Introducing ‘Presence’ and ‘Stationarity Index’ to Study Partial Migration

Patterns: an Application of a Spatio-temporal Clustering Technique. International Journal of Geographical Information Science 30, 5

(2016), 907ś928.

[10] DecaWave Ltd. 2017. DW1000 Data Sheet, version 2.19.

[11] C. Di Franco, A. Prorok, N. Atanasov, B. Kempke, et al. 2017. Calibration-free Network Localization Using Non-line-of-sight Ultra-

wideband Measurements. In Proc. of ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).

[12] M. Ester, H.P. Kriegel, J. Sander, and X.Xu. 1996. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proc. of ACM International Conference on Knowledge Discovery & Data Mining (KDD).

[13] M. Gallacher, M. Stocker, M. Baddeley, K. Römer, et al. 2023. InSight: Enabling NLOS Classiication, Error Correction, and Anchor

Selection on Resource-Constrained UWB Devices. In Proc. of International Conference on Embedded Wireless Systems and Networks

(EWSN). Association of Computing Machinery.

[14] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, et al. 2000. A foundation for representing and querying moving objects. ACM

Transactions on Database Systems (TODS) 25, 1 (2000), 1ś42.

[15] R.H. Güting, F. Valdés, and M.L. Damiani. 2015. Symbolic trajectories. ACM Transactions on Spatial Algorithms and Systems (TSAS) 1, 2

(2015), 1ś51.

[16] F. Hachem, D. Vecchia, M.L. Damiani, and G.P. Picco. 2022. Fine-grained Stop-Move Detection in UWB-based Trajectories. In Proc. of

IEEE International Conference on Pervasive Computing and Communications (PerCom).

[17] F. Hachem, D. Vecchia, M.L. Damiani, and G.P. Picco. 2025. UWB Trajectories and Fine-grained Stop-move Detection: A Museum

Dataset. Zenodo. doi:10.5281/zenodo.14918763 Version 1.

[18] Y. Hu, S. Ruan, Y. Ni, H. He, et al. 2021. SALON: A Universal Stay Point-Based Location Analysis Platform. In Proc. of International

Conference on Advances in Geographic Information Systems (SIGSPATIAL).

[19] S. Hwang, C. Evans, and T. Hanke. 2017. Detecting Stop Episodes from GPS Trajectories with Gaps. In Seeing Cities Through Big Data:

Research, Methods and Applications in Urban Informatics. Springer, 427ś439.

[20] S. Hwang, C. VanDeMark, N. Dhatt, S. V. Yalla, et al. 2018. Segmenting human trajectory data by movement states while addressing

signal loss and signal noise. International Journal of Geographical Information Science 32, 7 (2018), 1391ś1412.

[21] C. Jiang, J. Shen, S. Chen, Y. Chen, et al. 2020. UWB NLOS/LOS classiication using deep learning method. IEEE Communications Letters

24, 10 (2020), 2226ś2230.

[22] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello. 2004. Extracting places from traces of locations. In Proc. of ACM International

Workshop on Wireless Mobile Applications and Services on WLAN Hotspots.

[23] A. Kontarinis, K. Zeitouni, C. Marinica, D. Vodislav, et al. 2021. Towards a semantic indoor trajectory model: application to museum

visits. Geoinformatica 25, 2 (2021), 311ś352.

ACM Trans. Sensor Netw.

https://www.firaconsortium.org/discover/use-cases/smart-retail
https://doi.org/10.5281/zenodo.14918763


Fine-Grained Stop-Move Detection with UWB: uality Metrics and Real-World Evaluation • 31

[24] D. Kosmopoulos and K. Tzortzi. 2021. Visitor Behavior Analysis for an Ancient Greek Technology Exhibition. In Proc. of IFIP International

Conference on Artiicial Intelligence Applications and Innovations.

[25] V. A. Minh Le, M. Trobinger, D. Vecchia, and G. P. Picco. 2022. Human Occlusion in Ultra-wideband Ranging: What Can the Radio Do

for You?. In Proc. of International Conference on Mobility, Sensing and Networking (MSN).

[26] A. L. Lehmann, L. O. Alvares, and V. Bogorny. 2019. SMSM: A similarity measure for trajectory stops and moves. International Journal

of Geographical Information Science 33, 9 (2019), 1847ś1872.

[27] H. Li, H. Lu, G. Chen, K. Chen, et al. 2020. Toward Translating Raw Indoor Positioning Data into Mobility Semantics. ACM Transactions

on Data Science 1, 4 (2020), 1ś32.

[28] Z. Li, J. Han, M. Ji, L. Tang, et al. 2011. MoveMine: mining moving object data for discovery of animal movement patterns. ACM

Transactions on Intelligent Systems and Technology (TIST) 2, 4 (2011), 1ś32.

[29] T. Luo, X. Zheng, G. Xu, K. Fu, et al. 2017. An Improved DBSCAN Algorithm to Detect Stops in Individual Trajectories. ISPRS International

Journal of Geo-Information 6, 3 (2017), 63.

[30] C. Martella, A. Miraglia, J. Frost, M. Cattani, et al. 2017. Visualizing, Clustering, and Predicting the Behavior of Museum Visitors.

Pervasive and Mobile Computing 38 (2017), 430ś443.

[31] A. Melton. 1935. Problems of Installation in Museums of Art. American Association of Museums (1935).

[32] OptiTrack. 2024. OptiTrack. https://optitrack.com. Last access: October 16, 2024.

[33] A. Palma, V. Bogorny, B. Kuijpers, and L.O. Alvares. 2008. A Clustering-based Approach for Discovering Interesting Places in Trajectories.

In Proc. of ACM Symposium on Applied Computing.

[34] C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, et al. 2013. Semantic trajectories modeling and analysis. ACM Computing Surveys

(CSUR) 45, 4 (2013), 1ś32.

[35] B. Serrell. 1997. Paying Attention: The Duration and Allocation of Visitors’ Time in Museum Exhibitions. Curator: The Museum Journal

40, 2 (1997), 108ś125.

[36] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, et al. 2008. A conceptual view on trajectories. Data & Knowledge Egineering

65, 1 (2008), 126ś146.

[37] M. Stocker, M. Gallacher, C.-A. Boano, and K Römer. 2021. Performance of support vector regression in correcting UWB ranging

measurements under LOS/NLOS conditions. In Proc. of Workshop on Benchmarking Cyber-Physical Systems and Internet of Things.

[38] P. Underhill. 1999. Why We Buy: the Science of Shopping. Simon & Schuster.

[39] B. Van Herbruggen, J. Fontaine, and E. De Poorter. 2021. Anchor pair selection for error correction in Time Diference of Arrival (TDoA)

Ultra Wideband (UWB) positioning systems. In Proc. of IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[40] D. Vecchia, P. Corbalán, T. Istomin, and G. P. Picco. 2019. TALLA: Large-scale TDoA Localization with Ultra-wideband Radios. In Proc.

of International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[41] S. Wang, Z. Bao, J.S. Culpepper, and G. Cong. 2021. A Survey on Trajectory Data Management, Analytics, and Learning. ACM Computing

Surveys (CSUR) 52, 2 (2021), 1ś36.

[42] S. Yalowitz and K. Bronnenkant. 2009. Timing and Tracking: Unlocking Visitor Behavior. Visitor Studies 12, 1 (2009), 47ś64.

[43] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, et al. 2011. SeMiTri: A Framework for Semantic Annotation of Heterogeneous

Trajectories. In Proc. of International Conference on Extending Database Technology (EDBT).

[44] A. Yoshimura, A. Krebs, and C. Ratti. 2017. Noninvasive Bluetooth monitoring of visitors’ length of stay at the Louvre. IEEE Pervasive

Computing 16, 2 (2017), 26ś34.

[45] F. Zafari, A. Gkelias, and K. K. Leung. 2019. A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys &

Tutorials 21, 3 (2019), 2568ś2599.

[46] F. Zafari, I. Papapanagiotou, and K. Christidis. 2015. Microlocation for Internet-of-Things-Equipped Smart Buildings. IEEE Internet of

Things Journal 3, 1 (2015), 96ś112.

[47] Y. Zheng. 2015. Trajectory Data Mining: An Overview. ACM Transactions on Intelligent Systems and Technology 6, 3 (2015), 1ś41.

[48] Y. Zheng, L. Zhang, Z. Ma, X. Xie, et al. 2011. Recommending Friends and Locations Based on Individual Location History. ACM

Transactions on the Web (TWEB) 5, 1 (2011), 1ś44.

[49] Y. Zheng and X. Zhou. 2011. Computing with spatial trajectories. Springer.

[50] Y. Zhuang, J. Yang, Y. Li, L. Qi, et al. 2016. Smartphone-based indoor localization with Bluetooth Low Energy beacons. Sensors 16, 5

(2016), 596.

[51] E. Zimányi and M. Sakr. 2020. MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database

Systems 45, 4 (2020), 1ś42.

Received 20 February 2024; revised 3 March 2025; accepted 27 April 2025

ACM Trans. Sensor Netw.

https://optitrack.com

	Abstract
	1 Introduction
	1.1 blackMethodological challenges
	1.2 Contributions

	2 Stop Detection: Problem Formulation and Techniques
	3 Quality Metrics for Fine-Grained Stop Detection
	3.1 Rationale and Novelty
	3.2 A Family of Stop-centric Metrics: Core Concepts
	3.3 Incorporating Ground-truth Semantic Annotations

	4 Tracking Visitors in a Science Museum
	5 Experimental Setup: In vitro vs. In Vivo
	5.1 Data Collection Methodology and Ground Truth
	5.2 Dataset Description and Characterization

	6 UWB Localization Error
	7 Findings from In-vitro Experiments
	7.1 Novel Metric: Is It Worth?
	7.2 Segmentation: Configuration and Quality
	7.3 Associating Estimated Stops to POIs

	8 Findings from In-vivo Experiments
	8.1 Challenges
	8.2 Segmentation: Configuration and Quality
	8.3 Associating Estimated Stops to POIs

	9 From Stops to Visits
	10 Related Work 
	11 Conclusions
	Acknowledgments
	References

