
Applying social norms to implicit negotiation
among Non-Player Characters in serious games

Marco Robol
Department of Information Engineering

and Computer Science
University of Trento

Trento, Italy
Email: marco.robol@studenti.unitn.it

Paolo Giorgini
Department of Information Engineering

and Computer Science
University of Trento

Trento, Italy
Email: paolo.giorgini@unitn.it

Paolo Busetta
Delta Informatica SpA

Trento, Italy
Email: paolo.busetta@deltainformatica.eu

Abstract—Believable Non Player Characters (NPCs), i.e. arti-
ficial characters simulating rational entities, are a great addition
to videogames, no matter if used for entertainment or serious
reasons. Especially NPCs that represent people in realistic set-
tings need to show plausible behaviors; to this end, one of main
issues to be tackled is coordination with other participants, either
other NPCs or human players, when performing everyday tasks
such as crossing doors, queuing at an office, picking the first
free object up from a set, and so on. Much of this coordination
happens silently and is driven by social norms that may vary
according to culture and context. In this paper, we propose an
approach to represent social norms in autonomous agents and
enable implicit coordination driven by observations of others’
behavior. Our approach does not use central coordinators or a
coordination protocol, but rather let each agent take its own
decision so to support more realistic interactions with human
players. A software architecture and initial experimental results
are presented and discussed.

I. INTRODUCTION

In current videogames, with highly realistic graphics pro-
viding an immersive experience, believable NPCs representing
humans or other rational entities are an important and largely
expected feature. Immersive videogames are increasingly ex-
ploited for serious purposes, such as training, where the issue
of believability and plausibility of behaviours becomes more
relevant than when the objective is pure entertainment.

Smart NPCs represent the evolution of their pre-
programmed, context-insensitive older versions. Smart NPCs
require sophisticated behavioral models with many facets,
including perception elaboration, a decision system, emotions
representation, and other aspects driven by cognitive models.
Their implementation can be very complex, particularly when
they need to interact with other NPCs and, even worse,
with human players. Among other abilities, NPCs must use
basic coordination mechanisms that are commonly adopted
by humans and that could be the result of the application of
cultural- and context-sensitive social norms.

This paper reports on the work done within the PRESTO [1]
project for NPCs coordination. PRESTO’s main objective
is the creation of middleware for the support of rational
behaviour in videogames. We apply a distributed approach to
coordination, called Implicit Negotiation Coordinating Agents
(INCA); the idea is to make NPCs aware of social norms and

able to interpret and follow them. Specifically, INCA adopts
social norms to rule the order of engagement of resources,
so that each agent can autonomously reason and implicitly
coordinate with others without the need of negotiations. Com-
mon examples of situations where INCA is suitable include
pedestrians crossing doors or gates, people queuing in front
of automatic vending machines, drivers selecting a tollbooth
among those at the entrance of a highway, and so on. The
ability of silently using social norms is especially important
when one of the characters involved is not an NPC but the
avatar of a human player.

After a short introduction to PRESTO (Sec. II), we outline
our approach (Sec. III), then present some of our current
technical choices (Sec. IV) and a few examples (Sec. V). We
exploit disjunctive logic to rapidly investigate the representa-
tion of social norms in different scenarios; we discuss how this
logic-based approach will become the base for implementation
in an imperative language, required for practical deployment
on commercial systems (Sec. VII). Theoretical underpinning
in multi-agent research is discussed in Sec. VIII.

II. BASELINE - PRESTO

PRESTO1 is a suite of development tools and run-time facil-
ities for artificial intelligence in games, focusing in particular
on cognitive simulation [1]. PRESTO interfaces a number of
game engines, including Unity2, to compute the perceptions
of NPCs and control their behavior by means of autonomous
agents developed with PRESTO’s own DICE framework.

Figure 1 shows a simplified anatomy of PRESTO. Its core
provides services such as perception elaboration (Situation
Awareness (SA)) and low-level control of the entities in the
Virtual Reality (VR). An ontology provides the conceptual-
ization required to make behavioral models and scripts inde-
pendent of the specificities of a simulation, game or rendering
engine [2], [3]. A script engine controls the overall evolution of
a simulation, while the DICE multi-agent framework is used
for building complex NPC models as an assembly of roles,

1Plausible Representation of Emergency Scenarios for Training Operations
(PRESTO), a R&D project by Delta Informatica Spa.

2unity3d.com, (2016). Unity Technologies [Accessed 26 Feb. 2016].

23



goals that have to be satisfied by a role and behavioral models
implementing the tactics required to achieve goals [1].

Fig. 1. PRESTO

Work is in progress within PRESTO to allow a human
player to become the strategic controller of an agent, del-
egating low level procedures to the latter. This offers the
advantages of enabling the construction of cognitive-level
GUIs and, internally, of uniformly represent and perceive
humans and NPCs.

A. DICE

Delta Infrastructure for Cognition and Emotion (DICE) is
a framework to implement autonomous agents capable of
controlling NPCs of a VR in real time. It integrates the fa-
cilities of PRESTO with AOS’ JACK R© [4], an agent-oriented
development environment built on top of, and integrated with,
the Java programming language.

DICE adds a number of facilities to JACK, including a high-
level interpreted language and mechanisms to push goals to an
agent from the outside, e.g. scripts and GUIs.

DICE takes control of a JACK agent with a scheduler
implementing a cyclic process, inspired by the classic OODA
loop [5]. Such approach guarantees synchronization with the
simulation cycle typical of Computer Graphic (CG) engines.
In its first step, called SA Drilling Down, the scheduler
cycle processes the perceptions coming from the VR; then, it
generates intentions in reaction to perceptions; finally, it gives
control to the current main intention (plan) that runs until it
decides to yield. During the period in which the plan runs
(called “cognitive step”) incoming perceptions are queued but
not processed by DICE.

Introspection is a general term covering the ability of an
agent to reflect upon his own cognitive functions [6]; DICE
supports introspection over both goals and intentions. While
meta-level reasoning in JACK is limited to choosing, from a
pool of applicable plans (intentions), the one to be executed
to achieve a goal, DICE supports richer meta-level reasoning
thanks to its introspection and attitude manipulation facilities.

III. METHODOLOGICAL APPROACH

INCA is the distributed approach that we propose here to
improve the interaction and coordination abilities of NPCs
with each other (and potentially with human players). Specifi-
cally, INCA handles the question: “what actions, and in which
order, should each actor performs to tidily engage shared

resources and minimize eventual conflicts?”. INCA tackles this
coordination problem by reasoning on these concepts: (i) the
actors, who are the performers of some coordinated actions
toward some resources; (ii) the resources, as the representa-
tions of something that only a limited number of actors at a
time can/have to engage; (iii) the order of engagement on the
various resources that actors have to follow; (iv) the actions to
be performed by the actors to carry on with the coordination
process and finally engage the resources.

INCA focuses on coordination by implicit negotiation,
which is very common in people’s everyday activities. Each
actor computes an order of engagement of resources by itself,
without communicating with any of the participants or a
central coordinator. This is possible thanks to social norms pre-
shared between all the participants, allowing them to generate
coherent queues.

Note that agents are autonomous and can therefore decide
to break rules; for example, if an agent realizes to be late it
could decide to not respect its turn and overcome others actors
in the same queue, resulting in a non coordinated behavior.

To apply INCA, we need to identify and give semantics
to the actions performed by the actors related to a coordi-
nation process. We have identified four actions that actors
necessitate and are required to perform in order to coordinate
and access resources. Adopting a BDI-inspired terminology,
they are called approaching, waiting, engaging and engaged.
For example, an actor that wants to enter a room and needs
to pass through a narrow door, first gets close to that door
(approaching), then, if there are others attempting to pass,
waits until those who arrived earlier are gone (waiting),
then walks toward the door (engaging) and finally crosses it
(engaged).

The agent in control of an NPC reasons on the information
it has about the current coordination context, which includes
other NPCs involved in the coordination and their current
actions, and tries to compute a solution that represents an order
of engagement by applying context-specific social norms.

It is worth to stress that information is constrained to what
the agent has perceived, and so could be incomplete. Also,
the assumption that others are following the same norms is
not always valid, thus it is necessary to handle unexpected
behaviors (e.g. somebody applying different social norms or
even ignoring them because of a strong emotion, such as,
panic).

A. Architecture

Figure 2 illustrates the integration of INCA within a single
agent controlling a NPC in a VR, thus the represented archi-
tecture is repeated for each NPC in a game. In short, social
norms for coordination are integrated into each autonomous
agent thanks to a meta-level where they are evaluated by an
intention deliberation process.

1) Agent domain-level: The domain level is concerned with
engaging some specific resources in coordination with others.
A coordination desire is achieved by executing intentions
performing coordination actions appropriate for the specific

24



Fig. 2. INCA anatomy

domain of application. Which action, and so which intention,
to execute and in which order are decisions taken by the meta-
level, which reasons about the coordination independently of
the domain.

2) Agent meta-level: Coordination reasoning is performed
at meta-level, to keep it separated from the specific domain of
application. The meta-level does not make the agent execute
any action but operates only on the agent’s internal state,
controlling intention deliberation thanks to introspection.

To this end, the meta-level evaluates social norms with
respect to the current context. These social norms are not
built into INCA but provided by the agent when formulating
its domain-level coordination desire. Norms may have been
selected by a process influenced by different factors, such as
a cognitive model that can affect coordination by replacing
commonly applied social norms with others that reflect the
current emotional state of the agent. For example, if a person
is panicking and thus acting irrationally, she does not care
to adopt or follow a socially accepted behavior and simply
decides to overcame all the other participants and puts herself
at the top of the queue.

B. Social norms development and test with DLV

To provide a fast and effective development environment,
we opted for a meta-language to represent and reason on social
norms.

The meta-language is based on DLV 3, a disjunctive logic
language that allows Knowledge Representation and Reason-
ing (KR&R), being one of the best implementation of a
Disjunctive Logic Programming (DLP) language [7].In DLP
languages, facts describe an initial situations on which the
application of disjunctive rules generates different models.

The coordination reasoner takes in input a Knowledge
Base (KB) containing all the information about the context
of coordination, the actors and the resources, which could
be partial because of the limited information available to the
agent. A queue engine computes all possible combinations
of actors in the queues and generates a model for each
configuration. Then a set of social norms is applied to filters
the solutions, at best, up to one. Finally, an instructions
engine computes the instructions that each actor should follow.

1) Social norms in DLV: With social norm we intend a
filtering criteria of the configurations of actors in the queues, as
computed by the queue engine. They are represented, in DLV,
as weak constraint rules that rate each configuration giving a
weighted penalty to the ones that does not respect them. DLV
returns the solution that minimize the number of weighted
penalties.

In the example of individuals that want to pass through a
door, social norms describe commonly adopted rules to define
the order of access; for instance, in normal conditions in a
Western country, well-behaving adults respect their order of
arrival. In DLV this can be obtained with a weak constraint
rule that gives a penalty to each configuration where a person
X, who has arrived after Y, is in the queue before the latter:
:∼ next(X,Y), queue(X,C), queue(Y,C), waiting-before-than-
for-queue(Y,X,C). The “next(X,Y)” fact encodes that “Y” will
access the resource after “X”; “next” facts are generated for
each person to define his queuing order relation with respect to
all other people in his own queue. As another example consider
the case of multiple queues, where people tend to spread so to
minimize the time of access. Such a norm can be expressed by
a weak constraint that gives higher penalties to configurations
with more people in the same queue: :∼ next(X, Y). A long
queue is a valid candidate that generates a penalty. Assume
that there are two persons and two queues: a configuration
in which people are distributed between the queues does not
receive any penalty, while a configuration where they are in a
single queue gets one penalty.

IV. TOOLSET SUPPORT FOR INCA

INCA has been implemented within the DICE framework
described in Sec. II. Its API is currently used by the behav-
ioral models controlling navigation to coordinate the passage
through doors, gates and other restrictions along a path. In the
following we briefly illustrate the interplay between INCA and
BDI domain-specific models.

To allow the automatic recognition of actions performed by
other NPCs, INCA exploits the ability offered by PRESTO of
dynamically tagging entities in the VR with labels taken from

3Dlvsystem.com, (2016). DLVSYSTEM S.r.l. [Accessed 25 Feb. 2016]

25



its ontology. INCA uses tagging to publish the fact that an
NPC is interested in accessing a certain resource and which
action it is currently performing. This is required because
intention recognition, an innate capability in humans and many
animals, is computationally hard if not impossible in a VR
given the insufficient level of details corresponding to the clues
used by real people.4

Initiating coordination on a set of resources (e.g. one or
more doors to go from a room to another) can be decided
by any behavioral model of the agent. For instance, a plan of
the navigation model will start coordination when a door is
perceived along the current path. Worth noticing is that the
navigation model also exploits PRESTO’s dynamic tagging
to reduce dependencies from a specific classification of the
entities in the VR; a “has crossability” relation can be attached
as a so-called PRESTO quality on anything that restricts a path
and requires coordination with NPCs arriving from the same
or from the opposite direction.

The model invokes INCA to get access to an internal object
which contains: (i) a state of the coordination representing
the action to perform plus additional parameters, set by INCA
itself to drive the domain-level; (ii) the resources to coordinate
on and the policy to adopt, which is a set of the social norms
valid for the specific domain selected by the model itself at
the beginning. This object is passed to a coordination goal
that is started by the model itself. A coordination goal is a
domain-specific goal (e.g., “door passed”) tagged so that the
introspection facilities can identify it as controlled by INCA;
the goal is achieved when the coordination is concluded (in
our example, when the NPC crossed one of the doors).

The BDI plans that are invoked to satisfy the coordination
goal are the domain-specific implementations of the generic
coordination actions (Sec. III), i.e. approaching, waiting, en-
gaging and engaged. In our navigation example, “approaching”
moves the NPC from wherever it is to a certain distance from
the door, “waiting” is the (model-chosen) orderly queuing
behind the door or crowding in front of it, “engaging” the
final move from wherever the NPC is to a distance where
it can finally open the door and cross it (“engaged”). INCA
first chooses what is the right action to perform then, if a
new action is required, uses DICE’s introspection API to force
the termination of the current action plan and let the normal
BDI retry logic to select the appropriate plan given the chosen
action (specified in the INCA internal object described above).

INCA exploits the SA step of the DICE scheduler to keep
track of what all other NPCs are doing from perception
updates; the KB for a coordination goal is built from this
data. The SA step is used also to start and monitor an external
process executing DLV to compute the resource-access queues
and decide which action to take next.

Management of surprises and stalemates arising from con-
flicting norms is left to future work.

4This implies that, in order to achieve NPC / human coordination, players
should control avatars at a cognitive level and let their underlying DICE mod-
els perform low-level actions requiring coordination, rather than controlling
their avatars as puppets as commonly done in videogames.

V. EXAMPLES

This section illustrates a few examples of application of
INCA. The first ones extend what has been presented in
Sec. IV, concerning the crossing of doors during navigation.
They show how agents adopt INCA to coordinate access to
a single resource, with typical cultural variants captured by
social norms. In the last example, concerning a situation of
simultaneous emergencies to be tackled with urgency, agents
adopt INCA to silently distribute their workload as it would
be expected e.g. by a well trained team; this is obtained by
modeling the phenomena as multiple resources to be engaged.

A. Crossing doors

PRESTO’s navigation subsystem is designed so that agents
handle any crossable entity on their path by coordinating
access with others and engaging the entity with an appropriate
plan (e.g. opening a door, move across it, closing).

To illustrate how this works, consider an NPC “A” that
arrives in front of a door. It realizes that the door needs to
be crossed and that nobody else is in front, so it approaches
the door and engages it. An NPC “B” arrives just after “A”
and realizes that “A” was first, so it waits before engaging the
door.

In PRESTO, as mentioned above, doors, gates and so on
are ontologically tagged as open or closed with the quality
“has crossability”. Given this, the navigation model in DICE
is able to identify a door on the NPC’s current path from
the stream of perceptions generated by the PRESTO situation
awareness module. As a consequence, the model invokes
INCA and gives itself a goal for crossing the door. This goal
is tagged as a coordination goal, so that the meta-level is able
to recognize it and take its control as discussed in the previous
section. Its applicable plans deal with the specific sequences
of actions required to implement the current coordination
action determined by INCA (initially approaching the door
until it is necessary to wait for those in front to cross it, then
moving to the distance required to finally open and cross the
door). INCA continuously collects and processes data from
the agent’s memory and incoming perceptions. In the case
of the agent B above, at some point INCA decides that it is
necessary to wait for A, so, by introspection, the approaching
plan is terminated and the state of coordination updated to
“waiting”, causing the BDI logic to select the related plan to
attempt to achieve the coordination goal. Observe that waiting
can be implemented in various ways, according to cultural
or emotional factors; the simplest option is just stopping the
NPC at its current location, without attempting e.g. to queue
it behind those in front or getting as close as possible along
the shortest path, as required by more realistic modeling. It
is left to the agent programmer when developing, selecting or
configuring the navigation model for a specific NPC to set it
up according to the desired behaviour. Worth noticing is that,
as part of its introspection facilities, DICE allows to read the
current emotions and to dynamically change the behavioural
model concerning a specific capability (“role” in DICE terms),

26



such as navigation, to select one appropriate for the current
state of the character in the simulation.

Let us revisit the case of passage through doors by applying
a more sophisticated social norm, based not simply on the
arrival order alone but on the socially expected behavior of
letting an elderly person pass first (and maybe providing help).
To obtain this, the same policy adopted by INCA in the case
above is modified to consider these exceptions. Assuming that
“B” arrives later as above but represents an elder character,
“A” will let it pass first because it determines that this is the
correct behavior while “B” passes through the door without
waiting because it is also aware of the same rule.

Let us consider a third case of passage through a door, an
emergency situation in which the agent-controlled NPCs are
in panic. Agents could decide to ignore any social norm by
not even invoking INCA and thus attempting to go through the
same door. In this case the NPCs move relying only on the
physic to handle movement and path conflicts. This recreates a
typical situation of panic. Note that this is the same behaviour
that is obtained when no coordination mechanisms is applied
(even in calm situations), which is one of the reasons for
simple simulations to appear not realistic to the observer.

B. Extinguishing fires
PRESTO is being used for emergency training and simula-

tion; a typical problem in this domain is fire management. Let
us consider the case of two agent-controlled NPCs, “A” and
“B”, which could be e.g. firefighters, that need to extinguish a
number of fires in a building and need to coordinate in order
to decide who tackles which fire.

INCA can be used as in the case of the door above. Each
character declares on which resources it wants to coordinate
(in this case, a set of fires). INCA automatically manages the
allocation of a specific resource among those available when
there are many resources and many users applying any desired
policy (e.g., the arrival order discussed above), no matter what
a “resource” is engaged for.

In our example, if “A” arrives first in the building, its
INCA will choose the first perceived fire. When “B” arrives,
it perceives “A” engaged with one of the fires and thus,
automatically, chooses the first non-engaged one. Once A is
done with its chosen fire, it will restart coordination on the set
of remaining fires, and so on until all fires are extinguished.

VI. EVALUATION - SCALABILITY TEST

We evaluate the scalability of the DLV coordination rea-
soner, which is the active component of INCA, with respect to
the execution time over two factors of complexity: the number
of actors and the number of resources. A fixed and simple
policy has been adopted for all the tests.

1) Method of execution: The tests have been ran on a
machine equipped with an Intel(R) Core(TM) i7-5500U @
2.4Ghz and 8GB of RAM. A KB is sistematically generated,
then the DLV process is ran 5 times, for each combination of
the factors of complexity, and the execution times is measured.
From the 5 measures, of the same combination, the higher and
the lower are removed, then the remaining 3 are averaged.

2) Results interpretation and conclusion: Figure 3 shows
the execution time as a function of the number of resources.
Figure 4 shows the execution time as a function of the number
of actors.

Fig. 3. Execution time with respect to the number of resources

Fig. 4. Execution time with respect to the number of actors

The execution time of a single run of the reasoner increases
with the increment of both the number of resources or the
number of actors; in the first case the increment is linear, while
in the second is exponential. This is due to the increasing num-
ber of possible combinations of the actors in the coordination
queue.

VII. FROM DISJUNCTIVE LOGIC TO PROCEDURAL CODE

The implementation discussed in the previous sections has
the great merit of enabling easy experimentation with different
policies. DLV is excellent at expressing constraints in a con-
densed way, easy to understand and to modify. Further, the data
shown in the previous section demonstrate that, for practical
purposes, the performance of the current implementation is
acceptable at least with up to a few tens of characters. Still, it
is not realistic to deploy such an architecture on state-of-the-art
personal computers for use by a casual gamer.

We are currently exploring techniques for (automatically or
semi-automatically) converting the queue engine and social
norms implemented in DLV to a procedural form, suitable
for implementation in Java or other common imperative
languages. Mimicking the current implementation, a non-
optimized procedure would consist of two major steps: com-

27



puting possible queue configurations and applying weights to
order them.

The queue engine, explained in Section III, computes all
possible combinations of actors in the queues, which represent
alternative configurations to handle the coordination. Proce-
durally, the same can easily be obtained with nested loops or
recursion over the list of actors producing lists representing
queue configurations.

At this point INCA needs to apply a policy, a set of
social norms, to select one among all the available con-
figurations. Social norms are represented in INCA as DLV
weak constraints, which are weighted penalties assigned to
configurations given a matching criteria on the characteristics
of actors and their order in the configuration. The more
a configuration is penalized, the more it is less likely to
be the one to be chosen to handle the coordination. An
implementation in an imperative language should go through
all the queue configurations computed in the previous step
and apply all possible matching criteria, incrementing the
configuration penalty score every time a match occurs. The
winning configuration is the one with the lowest penalty score.

The obvious but important fact to be stressed is that, while
in DLV policies are easily represented as weak constraints and
new policies can be added at any time, even dynamically (thus
supporting learning, for instance), ad-hoc code must be written
for each new type of policy to be procedurally supported.

VIII. RELATED WORK

This section presents some research works about social
norms and the problem of coordination in Multi-Agent Sys-
tems (MASs).

1) Social norms and autonomous agents: Wooldridge in
[8] defines social norms as an established expected pattern
of behaviors, which can be exploited to define coordination
mechanisms between agents. Deliberative normative agents
are agents that have an explicit knowledge about the enacted
norms in a multi-agent environment and can make a choice
whether to obey the norms or not[9]. Dignum et al. in [10]
propose enhancement of BDI architectures by incorporating
social norms, allowing a rich spectrum of social behaviors to
be described in a single framework.

2) Coordination approaches in MAS: For Wooldridge in
[8] the coordination problem is that of managing inter-
dependencies between the activities of agents.A basic ap-
proach to coordinate multiple agents is to restrict their ac-
tivities in a way which enables them to achieve their goals
while not interfering with other agents [11]. Coordination
can adopt implicit negotiation, where agents do not explicitly
communicate, but negotiation is embedded in a pre-existing
context [12].

3) Coordination by social norms: Shoham et al. in [13]
ask themselves why not adopt a convention, or, as we would
like to think of it, a social law, according to which if each
agent obeys the convention, there will be avoided a lot of
interactions, creating an implicitly coordinated social behavior

without any need for either a central arbiter (to be avoided in
MAS) or negotiation (also complex in MAS).

4) Semantic negotiation: Garruzzo et al. in [14] propose a
method to form clusters of agents with similar characteristics,
or semantically homogeneous, based on semantic negotiation.
In comparison to our work it is worth noticing that we do not
apply any explicit protocol; rather, an implicit group formation
happens by stating interest on a resource and performing
actions coherent with what is supposed to be a shared norm.

IX. CONCLUSION

In this paper, we proposed INCA, a distributed approach to
improve the coordination abilities of agent controlled NPCs.
INCA integrates social norms into autonomous agents with
a meta-level architecture. This allows agents to implicitly
coordinate by reasoning and following these social norms.
INCA also provides an environment of development and test
of these norms based on the DLV language. INCA can be
therefore exploited to simulate people implicit coordination
mechanisms. An INCA supporting tool-set has been imple-
mented in PRESTO where, in order to evaluate its performance
in complex scenarios, we performed scalability tests. As future
work, we will work on the implementation of a version of
INCA not dependent on DLV.

REFERENCES

[1] P. Busetta and M. Dragoni, “Composing Cognitive Agents from Be-
havioural Models in PRESTO,” in Proceedings of the 16th Workshop
”From Objects to Agents” (WOA-2015), 2015.

[2] M. Dragoni, C. Ghidini, P. Busetta, M. Fruet, and M. Pedrotti, “Using
Ontologies For Modeling Virtual Reality Scenarios,” in Proceedings of
ESWC 2015, 2015.

[3] P. Busetta, M. Fruet, P. Consolati, M. Dragoni, and C. Ghidini, “De-
veloping an ontology for autonomous entities in a virtual reality: the
PRESTO experience,” in Proceedings of MESAS 2015 workshop, 2015.

[4] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-components for intelligent agents in java,” AgentLink News
Letter, vol. 2, no. 1, pp. 2–5, 1999.

[5] J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis, A. Consoli, and
G. Phillips-Wren, “Innovations in multi-agent systems,” Journal of
Network and Computer Applications, vol. 30, no. 3, pp. 1089–1115,
2007.

[6] K. Konolige, “A Computational Theory of Belief Introspection,” in
IJCAI, vol. 85, 1985, pp. 503–508.

[7] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The DLV system for knowledge representation and reasoning,”
ACM Trans. Comput. Logic, vol. 7, no. 3, pp. 499–562, 2006.

[8] M. Wooldridge, Introduction to MultiAgent Systems. Hoboken, NJ,
USA: Wiley, 2002.

[9] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur, “Deliberate
Normative Agents: Principles and Architecture,” Intelligent Agents VI,
vol. LNAI 1757, pp. 364–378, 2000.

[10] F. Dignum, D. Morley, E. Sonenberg, and L. Cavedon, “Towards so-
cially sophisticated BDI agents,” in Proceedings of Fourth International
Conference on MultiAgent Systems, 2000, pp. 111–118.

[11] Y. Shoham and M. Tennenholtz, “On social laws for artificial agent
societies: off-line design,” Artificial Intelligence, vol. 73, pp. 231–252,
1995.

[12] F. Scharpf, “Games Real Actors Could Play: Positive and Negative Co-
ordination in Embedded Negotiations,” Journal of Theoretical Politics,
vol. 6, no. 1, pp. 27–53, 1994.

[13] Y. Shoham and M. Tennenholtz, “On the synthesis of useful social laws
for artificial agent societies,” in AAAI-92 Proceedings, 1992.

[14] S. Garruzzo and D. Rosaci, “Agent clustering based on semantic
negotiation,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 3, no. 2, p. 7, 2008.

28


