
Modeling and Verification of ATM
Security Policies with SecBPMN

Mattia Salnitri
University of Trento

Trento, Italy
Email: mattia.salnitri@disi.unitn.it

Paolo Giorgini
University of Trento

Trento, Italy
Email: paolo.giorgini@disi.unitn.it

Abstract—High Performance Computing (HPC) techniques
are essential in complex systems such as Socio-Technical Sys-
tems (STSs), where humans and organizations are elements
of the same system along with technical infrastructures and
hardware/software components. For example, several HPC ap-
proaches have been successfully applied to support and facil-
itate distribution or aggregation of computation power among
independent and atomic components (e.g., smart meters to solve
and/or simulate complex models). However, HPC techniques have
to be studied and developed without underestimating the problem
of security that, given the interaction-centric nature of STSs, has
to be considered not only from the single component perspective
but for the system as a whole. In our previous work, we have
proposed SecBPMN, a framework to support the design of secure
STSs. It is used to model the interaction design and security
policies of a STS and it supports their verification through a
querying engine. In this paper, we describe how SecBPMN has
been successfully used for the study of security in an Air Traffic
Management (ATM) system, and we show how it can result also
an efficient support when of HPC techniques when applied in
complex and heterogeneous environments.

Keywords—Secure System Design; Secure Monitoring and
Management

I. INTRODUCTION

Socio-Technical Systems (STSs) are a well know type of
systems composed by independent components (both humans
and hardware/software) that interact one another to solve
complex and distributed tasks. For example, in smart grid
systems, end points smart meters, power stations and data
management systems are independent nodes that exchange
information and work together to distribute energy among
users. Literature on HPC techniques offers a wide range of
solutions for STSs that have been successfully applied in
many different fields, such as energy, healthcare and smart
environments where complex models are solved aggregating
computational power of single independent units [6].

In STSs, security is a crucial problem that cannot be studied
only from a technological perspective (i.e., analyzing and
finding security threats and security solutions in terms of
the adopted technologies), but rather it has to be analyzed
from a wider perspective taking into account how independent
components socially interact one another [5]. This socio-
technical view allows for a more comprehensive analysis of

security and a better understanding of the vulnerabilities of
the system.

Security requirements impose a number of restrictions on
HPC techniques that have to be properly addressed in the
design of a STS. To identify such restrictions, a STS can be
conceptualized as a complex organization where interactions
among its operative units are represented as business processes
and security policies are used to regulate or prevent unde-
sired behaviors. Although, Business Process Modelling and
Notation (BPMN) is the de-facto standard for representing
the interaction among components of complex systems, it
does not allow for representing security restrictions. Moreover,
literature on BPMN does not offer any effective solution to
easily verify whether a given business process is compliant or
not with desired security policies.

In [10], we have introduced SecBPMN, a framework com-
posed of a language for modeling business processes including
security concerns, called SecBPMN-ml (SecBPMN- modeling
language), a query language for specifying security policies,
called SecBPMN-Q (SecBPMN-Query) and a software which
permits to verify whether a SecBPMN-Q security policy is
satisfied by a SecBPMN-ml business process. In this paper,
we illustrate the application of SecBPMN to the SWIMa ATM
case study. We use SecBPMN-ml and SecBPMN-Q to model,
respectively, the business processes and security policies of
the SWIM ATM STS, and the SecBPMN software to verify
the identified SWIM ATM security policies.

The paper is structured as follows: Section II introduces
SecBPMN framework, Section III describes the case study.
Section IV details the application of SecBPMN to the case
study while Section V describes the verification process we
used to maintain security policies satisfied. Section VI contains
the conclusions and the plans for future work.

II. SECBPMN

SecBPMN [10] is framework for modeling business pro-
cesses with security aspects, to model security policies and
to verify if such security policies are satisfies by the business
processes. It is composed by: SecBPMN-ml, SecBPMN-Q and
a software components.

aThe System Wide Information Management (SWIM) [1]

Figure 1. Example of a business process modeled using SecBPMN-ml

BPMN is the de-facto standard for modeling business pro-
cesses. It is an effective means for expressing the interaction
between components in complex information systems, but it
does not offer the possibility to represent security concepts
in such processes. Various extensions of BPMN for security
were proposed, for example SecureBPMN [2] or the extension
proposed by Rodriguez at al. [8], but such languages constrain
designers to use a fix set of security policies. Other approaches,
for example Liu et al. [7] and Rushby [9], consist in formal
languages and frameworks to verify custom security policies.
But this type of approaches are not usable with real case
scenarios because of the high complexity of the languages.

SecBPMN-ml, overcomes this limitation extending BPMN
with security concepts about information assurance and secu-
rity defined in [3]. Figure 1 shows part of a SecBPMN-ml
model of a business process used in an airport information
system where users can use different web-interfaces to select
the best option for a flight, buy tickets and perform most of
the bureaucratic processes required to take the flight.

SecBPMN-ml models are enriched with a set of security
annotations (i.e. icons with a solid orange circle), that repre-
sent security aspects defined in [3]. Each security annotation
is detailed by a predicate which specifies further details on the
security aspects of the business process.

SecBPMN-Q is a graphical query language which permits
to define security policies in terms of SecBPMN-ml elements.
Figure 2 shows an example of the textual policy “The visa
document must be authenticated and it must be sent through
a secure channel, which assures the information will not be
sniffed or modified by third parties”, modeled with SecBPMN-
Q. The graphical security policy is composed by two activities
labeled with “@X” and “@Y”, “@” symbol is used to match
any activities. The activities are linked with a path relation
(the arrow with two slashes) which matches all the business
processes where the first activity is executed before the second
activity. The security policy is enriched with a message flow
(represented as a dashed arrow) which exchange a data object
called “Visa”. This security policy will match any message
flow between two activities which exchange the “Visa” data
object. The confidentiality annotation requires the commu-
nication channel to assure the data object will be received

Figure 2. Example of a SecBPMN-Q security policy

only by authorized users. Moreover, the “Visa” data object
has to be protected by unauthorized modifications and its
originality has to be provable, specified by authenticity and
integrity annotations. Details on the security annotations can
be expressed using predicates, but are not reported in this paper
for the sake of brevity.

The SecBPMN-Q security policy in Figure 2 is satisfied by
any path, i.e., any sequence of activities, from “Web interface
service - inputData” to “Visa check service” of the business
process shown in Figure 1. This is because: (i) “Web interface
service - inputData”, is linked with a message flow to “Visa
check service”; (ii) the message flow is used to exchange
the data object “Visa” and it assures confidentiality of the
transferred data object; (iii) integrity and authenticity of the
“Visa” data object are preserved. Assuming the predicates
that details the security annotations of the security policy
are less restrictive of the predicates of the business process,
the business process satisfies the security policy. For further
details, please refer to [10].

In real case scenarios, where business processes can be
composed by tens of elements, is not possible to verify security
policies manually. The softwareb provided with SecBPMN
framework verifies automatically if a SecBPMN-Q security
policy is satisfied by a SecBPMN-ml business process.

III. SWIM ATM CASE STUDY

SWIM ATM STS was analyzed, as a case study, as part of
the Aniketosc European project. It consists of a large number
of autonomous and heterogeneous components, which interact

bhttp://www.secbpmn.disi.unitn.it
chttp://www.aniketos.eu

with each other to enable air traffic management operations:
pilots, airports personnel, meteo services, radars, etc.

In such a complex system, ensuring security is critical, for
security leaks may result in severe consequences on safety and
confidentiality. For instance, a successful attack to the control
tower, the core component of every airport, can paralyze an
airport for days, with severe consequences for the passengers
and consequently, for the company which manages the airport.

The dimensions of SWIM ATM STS are considerably wide
but with similar, redundant, sub-parts. Hence we opted to focus
on four representative aspects of such system: the landing
process, the negotiation of the Reference Business Trajectory
(RBT), i.e., the flight plan, and the external-services manage-
ment and use. We believe these four aspects are distinctive
examples of the salient characteristics of SWIM ATM STS:
the management of functionalities typical of any ATM, and
the dynamic management of external services.

IV. MODELING SWIM ATM STS WITH SECBPMN

This section describes the SWIM ATM business pro-
cesses and an example of security policy we modeled using
SecBPMN. We modeled 4 business processes, one for each
aspects of the ATM SWIM STS we considered.

The first business process is executed to dynamically add
external services to SWIM ATM STS. External services
negotiate with ATM controllers the Quality of Service that
will be offered to SWIM ATM users.This business process is
composed by 28 elements that are performed by 4 participants.
It contains 5 message flows and 7 data objects. In this business
process 14 security annotations are used to reflect, on the
SecBPMN model, the security aspects of each activity.

The second business process is executed when functionali-
ties of external services are used. The SWIM ATM STS grants
to internal users the reliability of external services. This is
achieved with a trust-basted mechanism. This business process
contains 55 elements that are executed by 5 participants. It
contains 15 message flows and 16 data objects and 18 security
annotations.

The third business process is about the dynamic negotiation
of RBT. When a Flying Object (FO) is entering an area
controlled by a control tower (TWR), it negotiates with the
TWR the part of the RBT to cross the area. This business
process is composed by 48 elements that are executed by 3
different participants. It contains 13 message flows and 17 data
objects and 31 security annotations.

The forth business process is the landing process of FOs. In
this scenario a FO negotiates a RBT to the landing point and
the queue position. This business process is compose by 59
elements executed by 4 participants. It contains 14 message
flows and 14 data objects and 31 security annotations.

Aniketos experts analyzed the security requirements docu-
ments and they identified a set of security policies, i.e. security

Figure 3. Example of a SWIM-ATM SecBPMN-Q security policy

constraints on the STS, using STS-ml (Socio-Technical Secu-
rity - modeling language) [5], a goal-based modeling language.
For example, Aniketos experts identified a security policy that
specifies that sensitive data of customers of an airport can not
be disclosed, hence they specified the content of the security
policy, i.e. the constraint that costumers’ information can not
be disclosed, the requester, i.e. the customers themselves, and
the responsible, e.g. the crew of the flights.

The experts identified 27 active entities (among all respon-
sible and requesters of security policies) and 60 security poli-
cies. We classified the security policies in 7 types, described
in Table I with the number of their instances in the SWIM
ATM STS.

We transformed all textual security policies in SecBPMN-
Q security policies. This result of the transformation is not
unique because it is based on the interpretation of the textual
security policy, hence other security designers may obtain dif-
ferent security policy. This is one of the salient characteristic
of SecBPMN: it does not force the designers to a unique
interpretation of textual security policies. An example is the
non-production security policy in Table I: it is transformed in
the SecBPMN-Q model in Figure 3. The SecBPMN-Q security
policy will be satisfied by all models where the activity “Send
negotiation acceptance” is executed before any another activity
(“@X”) which creates the data object “RBT” from scratch (the
creation of data objects is modeled with a dashed arrow from
an activity to the created data object). The second activity
is annotated with accountability and auditability security an-
notations, meaning that the actions performed to execute the
activity are monitored and the involved users will be held for
their misbehaviors. Such security annotations are required in
order to have one or more security mechanisms to control
at runtime the behavior of the service provider, when the
activities are executed. For the sake of brevity we omit the
predicates which specialize the security annotations.

V. VERIFYING AND MAINTAINING SATISFACTION OF
SECURITY POLICIES

If security policies are not satisfied by all the business
process of an STS, consequences will be severe [4]. Hence all
business processes of a STS shall satisfy all security policies,
otherwise they shall be modified in order to be compliant
with such policies. For example, if the security policy of non-
disclosure, showed in Table I, is not fulfilled by the business
processes of the SWIM ATM STS, sensitive data of pilots will
be disclosed, with monetary consequences, law consequences

TABLE I
DESCRIPTION OF SECURITY POLICIES TYPES

Type # Description

Non-disclosure 8 A data object will not be disclosed to unauthorized participants.

Non-usage 3 A data object will not be used by unauthorized participants.

Non-modification 11 A data object will not be modified by unauthorized participants.

Non-production 11 A data object will not be created by unauthorized participants.

Need to know 13 All operations on a data object are executed only for providing a specified functionality.

Redundancy 1 The functionality requested will be offered with a backup strategy.

Non-repudiation 13 The participant will not be able to deny the fact that he/she performs an action.

and a lost in the credibility of the entire system. Therefore, ion
order to avoid such consequences, all the business processes
which do not satisfy the security policy must be modified.

Frequently STSs change to adapt to external changes, hence
the verification of security policies is required not only when
the system is design, but also after the deployment. For
example, in SWIM ATM STS the security mechanisms used
by the TWR to enforce its communications may need to be
substituted because a security bug is found. This implies that
all business processes in which the TWR communicates with
other entities of the STS are updated and, therefore, all security
policies must be verified.

Business processes are not the only part of the STS that can
change, also security policies can be modified. For example, if
a law about privacy changes, e.g., it requires stricter controls
on sensitive data, the security policies must be updated to
be compliant with the new law. This change trigger the
verification of the updated security policies and, in case it
is not satisfied, the business processes are modified.

We used a specific process to maintain the satisfaction of
security policies. The process starts every time a business
process or a security policy are changed. If security policies
are satisfied a new change is waited. Otherwise, the business
process or the security policies are changed and, again, all
security policies are verified.

The documentation of SWIM ATM STS we analyzed, does
not have any historical data that can be used to simulate
changes in the business process, therefore we defined a set
of changes that are likely to happen in such systems. For
example, security issues both in external and internal compo-
nents, changes in the technologies used by a component and
changes in the functionalities offered by internal components.
All these changes bring the designers to adapt one or more
business processes, i.e., to modify the flow of activities, and/or
the security annotation linked to the activities.

VI. CONCLUSIONS

This paper describes an application of SecBPMN framework
to the SWIM ATM case study. SecBPMN framework allows

designers of a STS to verify whether a set of given security
policies are satisfied by a set of security annotated business
processes. We demonstrated that SecBPMN is an effective
framework to support the design and the maintenance of secure
complex systems providing a clear understanding of security
policies and the restrictions they impose on the interactions
among the components of the system.

As part of future work, we will explore more in detail how
SecBPMN can be effectively used with HPC techniques to
develop monitoring solutions for the runtime verification of
security policies in STSs.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant no. 257930 (Aniketos).

REFERENCES

[1] Federal Aviation Administration. SWIM ATM case study, last vis-
ited March 2014. http://www.faa.gov/about/office org/headquarters
offices/ato/service units/techops/atc comms services/swim/.

[2] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. SecureBPMN:
Modeling and Enforcing Access Control Requirements in Business
Processes. In Proc. of SACMAT’12, pages 123–126.

[3] Y. Cherdantseva and J. Hilton. A reference model of information
assurance and security. In Proc. of ARES ’13, pages 546–555.

[4] R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security requirements
engineering: When anti-requirements hit the fan. In Proc. of RE’02,
pages 203–205. IEEE, 2002.

[5] F. Dalpiaz, E. Paja, and P. Giorgini. Security Requirements Engineering
via Commitments. In Proc. of STAST’11, 2011.

[6] R.C. Green, L. Wang, and M. Alam. Applications and trends of high
performance computing for electric power systems: Focusing on smart
grid. IEEE Trans. on Smart Grid, 4(2):922–931, 2013.

[7] Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework
for business process models. IBM Syst. J., 46(2):335–361, April 2007.

[8] A. Rodrı́guez, E. Fernández-Medina, and M. Piattini. A BPMN exten-
sion for the modeling of security requirements in business processes.
IEICE Trans. on Information and Systems, 90(4):745–752, 2007.

[9] J. Rushby. Using model checking to help discover mode confusions and
other automation surprises. Reliability Engineering and System Safety,
75:167–177, 2002.

[10] M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and verifying security
policies in business processes. In Proc. of BPMDS’14.

