
Noname manuscript No.
(will be inserted by the editor)

Adaptive Socio-Technical Systems: A Requirements-Based

Approach

Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

Received: date / Accepted: date

Abstract A Socio-Technical System (STS) consists of

an interplay of humans, organizations and technical sys-

tems. STSs are heterogeneous, dynamic, unpredictable

and weakly controllable. Their operational environment
changes unexpectedly, actors join and leave the system

at will, actors fail to meet their objectives and under-

perform, dependencies on other actors are violated. To
deal with such situations, we propose an architecture

for STSs that makes an STS self-reconfigurable, i.e.

capable of switching autonomously from one configu-
ration to a better one. Our architecture performs a

Monitor-Diagnose-Reconcile-Compensate (MDRC) cy-

cle: it monitors actor behaviours and context changes,

diagnoses failures and under-performance by checking
whether monitored behaviour is compliant with actors

goals, finds a possible way to address the problem, and

enacts compensation actions to reconcile actual and
desired behaviour. Compensation actions take into ac-

count the autonomy of participants in an STS, which

cannot be controlled. Our architecture is requirements-
driven: we use extended Tropos goal models to diag-

nose failures as well as to identify alternative strategies

to meet requirements. After presenting our conceptual

architecture and the algorithms it is founded upon, we
describe a prototype implementation applied to a case

study concerning smart-homes. We also provide experi-

mental results that suggest that our architecture scales
well as the size of the STS grows.

Keywords Self-Adaptive Software · Socio-Technical

Systems · Goal Models · Requirements Engineering

DISI, University of Trento

1 Introduction

Socio-Technical Systems (STSs) involve a rich inter-

play of human actors—the traditional constituents of

organizations—and technical systems [20]. The engi-
neering of STSs is not a mere extension of traditional

techniques for distributed software or information sys-

tems. Specific factors need to be considered: the volatil-
ity and unpredictability of the operational environment,

the heterogeneity, autonomy and uncontrollability of

participating actors, and the social dependencies that
hold or emerge between them. A major challenge for

STSs is to guarantee (or at least facilitate) a purpose-

ful and effective interaction between actors, to ensure

that overall objectives are achieved.

By interaction we refer here to social interaction as

in multi-agent systems [44], the establishment and evo-

lution of social relationships on the basis of the mes-

sages exchanged between actors. To successfully design
STSs, interaction with user interfaces [38] has to be

taken into account too. However, we do not consider

this type of interaction in this paper.

We encounter many examples of STSs in our daily
lives. A smart-home that helps heart patients carry

out everyday activities is an STS. It includes cameras,

biomedical sensors, and other devices, human actors
such as the patient itself, social workers, caregivers,

doctors. The LinkedIn1 social network is an STS con-

sisting of the LinkedIn website, professionals looking

for a job, business scouts searching for interesting pro-
files, companies advertising vacancies, and the LinkedIn

Corporation that aims at increasing revenues by offer-

ing professional relationships management. Likewise, a
logistics department in a wholesale fruit company is

1 www.linkedin.com

2 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

an STS. A logistics management system supports pur-

chases while warehouse personnel ensures fruit arrives
to the warehouse just in time for delivery. These three

examples of STSs differ in their degree of openness: a

social network is extremely open, internal logistics con-
sists of a relatively static set of actors, while a smart-

home is somewhere in-between.

As these examples demonstrate, STSs are more than

heterogeneous systems. Unlike these systems, the par-
ticipants in an STS are autonomous, the operational

environment is volatile, and actors are linked via social

dependencies, rather than simply in terms of method
invocations.

To effectively cope with the volatility of their oper-

ational environment, STSs design should provide STSs

with self-reconfiguration capabilities. A configuration

of an STS is a network of social dependencies among
the participating subsystems, wherein each subsystem

executes specific tasks and depends on other subsys-

tems to achieve its own requirements. A system is self-
reconfigurable if it can switch autonomously to a dif-

ferent configuration in response to failures and under-

performance. Each subsystem in an STS has to adapt
to fulfil its own requirements.

Numerous research trends have explored self-recon-

figuration, including self-adaptive software [35], self-ma-

naged systems [29], autonomic [26] and pervasive com-

puting. They all recognize the importance of integrat-
ing monitoring, diagnosis, planning and reconfiguration

functions into a system architecture. They enable soft-

ware to evolve and adapt to open, dynamic environ-
ments so that it can continue to fulfil its purpose.

Most approaches exploit architectural models to di-

agnose failures and to plan for alternatives [24,29,13].

Some frameworks are based on higher-level models, that
represent requirements. KAOS [18] was used in an ar-

chitecture [21] that reconciles requirements with system

behaviour, by anticipating deviations at design time

and monitoring for unpredicted circumstances at run-
time. Recently, goal models and code instrumentation

have been used to add self-repair capabilities to legacy

software systems [47]. However, neither approach is ex-
pressly suited for STSs, because they do not account

for the social context, i.e., the multiplicity of actors and

their dependencies within an STS.

We propose a conceptual architecture for self-recon-
figurable STSs that is based on goal-oriented require-

ments models. Its purpose is to support sub-systems

(actors) in achieving their requirements: whenever re-

quirements are at risk, the architecture suggests an al-
ternative plan. The architecture conducts a Monitor-

Diagnose-Reconcile-Compensate (MDRC) cycle. An ex-

tension of Tropos [8] goal models captures actor inten-

tionality, social dependencies between them, and the

interplay between the operational context and actor
goals [1], as well as domain assumptions that should

not be violated. Tropos goal models are also enriched

with triggering and fulfilment conditions, plan speci-
fications, and time-outs. These extensions allow us to

model monitoring and compensation rules that define

the ingredients of system adaptivity.

Our architecture is expressly thought for STSs: (i)

the system comprises not only of technical subsystems,

but also of social actors (humans and organizations);

(ii) diagnosis mechanisms can identify violated depen-
dencies between actors; (iii) planning mechanisms in-

clude both executing plans and establishing dependen-

cies between actors; (iv) as actors are autonomous, they
are free to accept or ignore suggested alternatives.

Our diagnosis mechanism is based on actor inten-

tions [7] and social dependencies [49,8]. Whenever an
actor’s goal is triggered, the actor should adopt an in-

tention for that goal. He can either execute plans or

interact with others by establishing a dependency for

that goal. On the basis of such atomic behaviour on
the part of actors, the STS maintains a dependency net-

work throughout its execution where actors depend on

one another for the fulfilment of their respective goals.

Consider a smart-home STS, and suppose patient

Marco’s goal is to have breakfast. Either he executes a

plan to prepare breakfast—get milk out of the fridge,
heat up milk on stove, etc.—or he calls a catering ser-

vice asking for home delivery. The second option es-

tablishes a social relation where Marco depends on the

catering service for the delivery of breakfast.

Failures are diagnosed if (i) the actor adopts no in-

tention to achieve its goal, e.g. Marco neither prepares

breakfast nor calls a catering service; (ii) a plan is car-
ried out incorrectly, e.g. Marco heats up an empty pot;

(iii) a plan takes longer than expected, e.g. Marco is

taking two hours to prepare breakfast; (iv) a depen-

dency is not fulfilled, e.g. the catering service doesn’t
deliver breakfast in time.

Once a discrepancy between expected and actual

behaviour is detected, our architecture (i) looks for an
alternative configuration to fulfil actor objectives (rec-

onciliation) and (ii) attempts to reconfigure the STS to

ensure actors achieve their objectives (compensation).
A configuration comprises tasks the actors should per-

form, social dependencies actors should establish, and

compensation actions [23] to revert the effects of tasks

that were in the old configuration and are not in the
new one. Since components of an STS are autonomous

agents, rather than conventional software components,

they cannot be forced to achieve goals or execute ac-

Adaptive Socio-Technical Systems: A Requirements-Based Approach 3

tions. Thus, the architecture reminds actors of their

goals and suggests specific plans to achieve these goals.

To offer evidence for its feasibility, we describe a pro-

totype implementation of our architecture developed in
Java and we apply it to a smart-home case study taken

from the EU-sponsored Serenity project2. The scenario

involves a patient living in a smart-home that supports
him in everyday activities with the aid of external ac-

tors (doctor, social worker, catering service). We also

devise a methodology that supports system engineers

to apply our proposed architecture to an existing sys-
tem, in order to create an adaptive STS.

The rest of the paper is structured as follows. Sec-
tion 2 describes the research baseline for our architec-

ture. Section 3 details our smart-home case study. Sec-

tion 4 presents the conceptual architecture for adap-
tive STSs. Section 5 shows the diagnosis and reconfig-

uration mechanisms exploited by our architecture. Sec-

tion 6 evaluates the implemented architecture for our

case study and presents the results of scalability experi-
ments. Section 7 discusses how to apply our architecture

to an existing STS. Section 8 contrasts our approach to

related work. Section 9 summarizes the contributions
of this work and sketches future directions.

2 Research baseline

We articulate our research baseline in three areas: (i)

goal models and actor dependency models express stake-
holders requirements and the multi-agent plans to fulfil

these requirements; (ii) the BDI paradigm guides diag-

nosis and plan selection for each actor; (iii) compensa-
tion mechanisms are exploited to deal with failures.

Goal models. Our architecture for self-reconfig-

urable STSs is based on requirements models. Goal-
oriented techniques [18] constitute the state-of-the-art

in Requirements Engineering (RE). Among existing ap-

proaches, we adopt Tropos [8]—which is founded on the
i* [49] modelling notation—as our baseline, for it ex-

ploits models of systems made up of socially interact-

ing actors depending on each other for the fulfilment of
their own goals and supports soft-goals as a means to

choose between alternatives. Moreover, Tropos, unlike

i*, uses such models not only to represent stakeholder

requirements but also system architectures.

Fig. 1 presents a sample Tropos goal model with two

agents (Patient and Supermarket) that depend on one
another for the fulfilment of goal Deliver food. The top-

level goal of Patient is Have lunch; it is OR-decomposed

to sub-goals Prepare lunch and Get lunch prepared. The

2 Serenity: System Engineering for Security and Depend-
ability, http://www.serenity-project.org

Fig. 1 A sample Tropos goal model

achievement of either sub-goal is sufficient to achieve
the root goal. Goal Prepare lunch is AND-decomposed

to sub-goals Get needed ingredients and Cook lunch. Goal

Get needed ingredients is a leaf-level one, and is linked
to two plans—Take ingredients from cupboard and Or-

der food by phone—through a means-end decomposi-

tion. The successful execution of either plan is suffi-

cient to achieve goal Get needed ingredients. The latter
plan introduces a dependency for goal Deliver food on

agent Supermarket. Supermarket will also have its own

goal model for goal Deliver food. Plans contribute neg-
atively or positively to soft-goals. Contributions are in

the range [−1,+1]. Soft-goal Timeliness is contributed

positively by task Take ingredients from cupboard (+0.8)
and negatively by task Order food by phone (−0.3).

Goal models capture software variability at the level

of requirements [37]. They include variation points—

e.g. OR-decompositions—that introduce variability, i.e.

multiple alternatives to meet goals. For instance, an
OR-decomposed goal is achieved by any of its sub-goals.

Recently, Jureta et al. [28] revisited the so-called

“requirements problem”—what it means to satisfy a set

of requirements—showing the need for concepts that
represent preferences, domain assumptions, etc. Here,

we adopt some elements from their proposal, notably

goals, soft-goals, plans, and domain assumptions.

BDI Paradigm. The Belief-Desire-Intention (BDI)
paradigm [39,40] conceives an agent as consisting of

beliefs about the world, desires (or goals) it aims at

attaining, and intentions, that is plans it has decided

to execute in order to fulfil its goals. The BDI paradigm
originates from the practical reasoning theory [7], which

focuses on the role of intentions to characterize agents.

We rely on BDI principles for:

4 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

– diagnosis : to achieve his goals, an agent has to adopt

an intention and to carry out a suitable plan. Diag-
nosis is a bottom-up process: the status of current

plans is used to determine the status of goals. If

the patient has not taken any ingredient from the
cupboard and has not ordered food by phone, the

status of goal Get needed ingredients might be set to

failure.
– reconciliation: as a failure is identified, an alterna-

tive plan should be devised. Given the current top-

level goals, goal trees are explored top-down to iden-

tify the most adequate set of tasks to achieve the
goals, as well as the dependencies to be established.

Compensation. Compensation is the capability of

a system to nullify the effect of started plans when a

failure occurs and the system needs to switch to another
configuration that does not include those plans. We take

inspiration from Databases where the concept of Saga

[23] has been explored as a means to compensate for
a failed long-running transaction. A Saga is a set of

atomic transactions treated as a unique entity, and any

transaction is provided with a compensation transac-

tion semantically equivalent to an undo action. If one
step of the Saga fails, compensation is executed for all

completed or in-execution transactions of the Saga.

In the spirit of Sagas, we attach compensation ac-

tions to plans, and execute compensation actions to
erase or mitigate the effects of failed plans. After revert-

ing these effects, our compensation mechanism enacts

a reconfiguration to ensure the STS fulfils its mission.

3 Case study: smart-homes

We describe now a promising application for our archi-

tecture, which relates to smart-homes for supporting
elderly or handicapped people. This scenario is a vari-

ant of the “smart items” case study [11] of the Serenity

project: a patient lives in a smart-home and is part of

a socio-technical system supporting the patient in ev-
eryday activities (e.g. eating, sleeping, taking medicine,

being entertained, consulting with doctor). Both the

smart-home and the patient are equipped with Ambient
Intelligence devices that collect data—such as patient’s

vital signs and the temperature in the bedroom—and

enact response actions—such as opening the door or
alerting the medical centre if the patient feels giddy.

Our prototype smart-home exploits many sensors: a

pulse oxymeter to gather patient’s heart rate and sat-

uration level, a set of cameras capable of motion de-
tection and object tracking, a wireless sensor network

to authenticate doctors and social workers, magnetic

fields to detect open doors and windows. The equip-

ment in the house (lights, doors, windows, heating, and

so on) is connected by the KNX communication bus3.
In addition, the house includes a number of actuators

for the entrance door, the windows and the blinds to

enable automatic opening and closing. Moreover, lights
and temperature can be adjusted automatically; some

pieces of equipment can be raised or lowered, etc.

This information about the smart-home STS is use-
ful to understand how the patient can achieve his goals

with the aid of the smart-home system. We detail here

a part of the case study where the system helps the pa-

tient conduct his pre-breakfast morning routine. Fig. 2
presents the goals of a patient via an extended Tropos

goal model (details are given in Section 4.2.1). We pro-

vide just some details to ease the reading. The top-level
goal g1: Pre-breakfast morning routine is AND-decom-

posed to sub-goals g2: Get out of bed, g5: Check health,

g10: Take medicine, and g13: Have a wash. The decompo-
sition link from g1 to g10 is labelled c2; this means that

the achievement of g1 requires the achievement of g10
only if the context c2 (patient suffers from chronic dis-

ease) holds. g2 is OR-decomposed to sub-goals g3: Get
up autonomously and g4: Get support to get up, which are

valid alternatives if the patient is autonomous (c3 holds)

and not autonomous (c4), respectively. To achieve goal
g4, possible means are t4: use transfer sling and t5: lift

patient. Each of these plans originates a dependency

on actor Patient assistant, for goals Get patient up with
transfer sling and Get patient up by lifting, respectively.

Three soft-goals are considered: efficacy, reliability, and

low failure cost. Contributions from plans to these soft-

goals are not shown here to keep the diagram readable.

4 An architecture for self-reconfigurable STSs

Fig. 3 presents our conceptual architecture for self-re-
configurable STSs exploiting an UML 2.0 component

diagram to show architectural components and the con-

nections among them.

Our architecture is founded on the MDRC cycle.

Monitoring collects data about the state of the envi-

ronment and the STS from a variety of sources; Di-
agnosis interprets these data with respect to require-

ments models to determine if all is well, if not, diag-

nose the problem-at-hand; Reconcile searches for an

alternative configuration that deals with the problem-
at-hand; Compensation takes necessary steps to ensure

that the new plan can be executed. Our architecture

is designed for STSs, which are inherently decentral-
ized, distributed and heterogeneous systems. Therefore,

3 a standard bus that allows devices in smart-homes to
communicate: http://www.knx.org/

Adaptive Socio-Technical Systems: A Requirements-Based Approach 5

Fig. 2 Contextual goal model describing the patient health care scenario

it has to support the interaction between participating

actors and functional components as well as the super-
visory MDRC cycle. These interactions are supported

through additional elements of the architecture:

– Context sensors are computational entities that pro-

vide raw data about the operational environment.

In our smart-home setting, context sensors provide
data about the current location of the patient, tem-

perature and humidity levels in specific rooms, open

and closed doors and windows, incoming/outgoing

phone calls, the location of other actors (caregivers,
doctors) within the apartment or elsewhere.

– Agents include all STS actors who need to be mon-

itored to ensure that they deliver on their obliga-

tions to the system. These may be patients living in

smart-homes, firemen and medical doctors in cri-
sis management settings, air traffic controllers in

charge of managing the air space around the air-

port they work in. Due to theri autonomy, agents
cannot be controlled. They are sent directions, ad-

vice and reminders through interface System pushes.

For instance, a patient may be reminded to take her

medicine by sending an SMS to her mobile phone.
Also, the system can try to assign specific tasks to

other agents—establish dependencies—through in-

terface Task assignments. For instance, a catering
service might be asked for delivering food. A de-

6 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

<<component>>

Self-reconfiguration

<<component>>

Agent

<<component>>

Context sensor

<<component>>

Context actuator

<<component>>

Monitor

<<component>>

Policy manager

<<component>>

Reconfiguration

<<component>>

Diagnosis

<<component>>

Context

monitor

<<component>>

Interaction

monitor

<<component>>

Event

normalizer

<<component>>

Prioritize

diagnoses

<<component>>

Reaction strategy

planner

<<component>>

Task assigner

<<component>>

System pushing

<<component>>

Actuator

manager

<<component>>

Domain assumption

verifier

<<component>>

Contextual goal

model diagnosis

<<component>>

Plan execution

checker

<<component>>

Interaction

analyser

<<component>>

Diagnoses

Selector

<<component>>

Goal commitment

diagnosis

Interaction

opportunities

Priority

policiesTolerance

policies

Violated domain

assumptions

Task

assignments

System

pushes

Actuations

System

pushes

Actuations

Actuate

reconfigurations

Push system

reconfigurations

Uncommitted

goals

Task

reassignment

reconfigurations

Diagnoses to

compensate

Selected

diagnoses

Failed

dependencies

Failed

plans

Goals/plans

applicability

Interaction

status

Context

changes

Normalized

events
Events

Task

assignments

Fig. 3 Logical view on the proposed architecture for self-reconfigurable STSs

pendency is established only if the catering service
accepts such request.

– Context actuators represent effectors in the envi-

ronment that can receive commands and act. Ex-

amples of actuators are sirens, door openers, auto-
mated windows, remote light switches, automatic

911 callers. The component receives the commands

to enact through the required interface Actuations.

The Self-Reconfiguration component provides the
self-reconfiguration capabilities of our architecture. It

consists of three sub-components. The Monitor compo-

nent collects, filters, and normalizes received events; the

Diagnosis component identifies failures and discovers
root causes; the Reconfiguration component performs

reconciliation and compensation in response to failures.

The next subsections detail these components.

4.1 Monitor

The Event normalizer component initiates the moni-

toring function, which takes its input from the interface

Events through appropriate ports (in Fig. 3 ports are
the small squares on component borders). The collected

events are normalized to a common format that ex-

presses them over the context model (see Section 4.2.1).
Normalization requires the definition of a translation

schema for each raw data format. Defining these schema

is an application-specific activity. If event sources pro-
vide data in standard formats (e.g., XML), transfor-

mation schemata can be defined using a transformation

language (e.g., XSLT [14]). The provided interface Nor-

malized events is required by the components that deal
with agent interaction and contextual events. The In-

teraction monitor computes the status of existing inter-

actions and exposes it through interface Interaction sta-

Adaptive Socio-Technical Systems: A Requirements-Based Approach 7

tus. An example is a social worker expected to visit, who

calls the patient to notify she will not come. The Con-
text monitor processes events related to context and

exposes the interface Context changes. For instance, if

the house entrance door is closed and an event such as
open(door, timei) happens, the status of the entrance

door will switch to open.

4.2 Diagnosis

Diagnosis means checking current information about

the STS against requirements models. These models

specify which goals and plans agents are expected to
achieve and execute, as well as the domain assump-

tions that shall not be violated. The richer the require-

ments models are, the more accurate diagnosis will be.
By contrast, the granularity of events that can be ob-

served depends on technological and pragmatic aspects.

Detecting if a patient is sitting on a sofa is readily fea-

sible (through pressure sensors), while detecting if she
is handling a knife the wrong way is more complex.

This section is split into two sub-sections. Section
4.2.1 introduces the requirements models that are used

by our architecture. Section 4.2.2 describes how the

components interact to perform diagnosis.

4.2.1 Requirements models

We use different models to specify correct behaviour:

goal models, a context model, plan specifications, and

domain assumptions. Together, these models capture

system requirements. However, this paper is not con-
cerned with requirements elicitation and validation. We

assume requirements are created using traditional elic-

itation and analysis methodologies.

Goal models. We exploit a variant of Tropos goal

models expressly thought for runtime usage.

– Contexts4 are linked to decompositions to express
when certain alternatives are applicable or required.

We exploit the contextual extension of Tropos [2]

and associate contexts to variation points. In Fig. 2,
the AND-decomposed goal g1: Pre-breakfast morning

routine includes a contextual decomposition link to

goal g10: Take medicine: the achievement of g10 is

required to achieve g1 only if context c2 holds, that
is if the patient suffers from a chronic disease. Goal

g11: Regulate glucose is a valid alternative to achieve

the OR-decomposed goal g10 only if context c5 holds
(the patient suffers from diabetes).

4 A context is a partial state of the world that is relevant
to an actor’s current intentions and status [2]

– Activation rules are associated to top-level goals.

An activation rule is composed of a triggering event
and a precondition. The goal is activated when the

triggering event happens, if the precondition holds.

Fig. 2 includes activation rules for the top-level goals
of the patient: goal g1: Pre-breakfast morning routine

is activated as the alarm rings, whereas goal g18: Call

helper is triggered as the alarm rings, provided that
the patient is alone at home and is not autonomous.

– Declarative goals are goals that are met only if their

achievement condition is fulfilled. Their satisfaction

is independent of the satisfaction of sub-goals or
plans linked by means-end decompositions. Achieve-

ment conditions are expressed as states over the

context model. For instance, a possible achievement
condition for g6: Routine check is that an electronic

medical report is sent to the medical centre. Declar-

ative goals deal with uncertainty, as they allow for
actors to achieve goals by means of unforeseen ways.

– Time limits are associated to top-level goals to de-

fine the maximum amount of time within which an

agent has to achieve a goal. In Fig. 2, goal g1 should
be achieved within 60 minutes, whereas goal g18
within 40 minutes.

– Plans are sets of actions. In a contextual goal model,
plans are connected to goals by means-end decom-

positions: an agent executes a plan to achieve a goal.

To support plan monitoring and diagnosis, we spec-
ify plans using a simple and flexible language. Each

action is performed correctly if its postcondition is

achieved within a time limit and, at that time, the

associated precondition holds. If an action is not
performed correctly, the plan including it fails. We

provide more details later in this section.

Patient

suffersChronicDisease : boolean

diabetic : boolean

autonomous : boolean

heartPatient : boolean

canStand : boolean

isInBed : boolean

standing : boolean

House

livesIn

1..*

Assistant

knowsAssistant

1..*

SmartShirt

active : boolean

healthChecked : boolean

ekgDone : boolean

hasSmartShirt 0..*Thermometer

Oxymeter

hasThermometer

0..*

hasOxymeter

0..*

Fig. 4 Part of the context model for the scenario of Fig. 2

8 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

Context model. Associating context descriptions to

variation points doesn’t suffice to verify if a certain
context holds. Context analysis [2] is a refinement pro-

cess to understand abstract contexts (e.g. “the patient

is sick”) as formulae of observable facts (e.g. “the pa-
tient’s oxymeter measures a saturation level below x”

and “the patient didn’t wake up this morning”). Facts

are expressed with respect to a context model, which
describes context in terms of entities, attributes and

relations. In the requirements models used by our ar-

chitecture, contexts are formulae of facts on the context

model, which is represented as a class diagram. Fig. 4
shows part of the context model for the smart-home

scenario. The class Patient is characterized by a set of

boolean attributes that express whether he suffers from
a chronic disease, he is diabetic, autonomous, is a heart

patient, can stand, is currently in his bed, and is cur-

rently standing. A patient has also associations to other
classes: for instance, he can have multiple smart shirts

(association hasSmartShirt to class SmartShirt), and he

knows at least one assistant (association knowsAssis-

tant to class Assistant).

At runtime, our architecture deals with instances of

the classes in the context model. For instance, we might
have two instances of Patient (jim and bob), both living

in the same House smartHome1. Each of them might

have one SmartShirt (ss1 and ss2, respectively). They
might be assisted by the same Assistant mike.

Plan specification. We specify a plan as a set of ac-
tions to be carried out by an agent. Each action is char-

acterized in terms of (i) a postcondition, the expected

effect produced by performing that action; (ii) a set of

preconditions, the state of the world that should hold
to enable an agent to perform that action; (iii) a time

limit within which the action should be carried out.

Preconditions can be critical or non-critical. If an ac-
tion postcondition is fulfilled and a critical precondition

does not hold, the action leads to plan failure.

Fig. 5 Statechart showing the possible state transitions for
a plan

Table 1 shows a semi-formal representation of some

plans in the scenario of Fig. 2. Plan semantics is for-
malized in Fig. 5. The statechart represents the possi-

ble states for a plan and the transitions between these

states. The meaning of each state is the following:

– idle: None of the actions in the specification has

been executed so far, the time limit is not expired.
This state includes situations in which some actions

started, and none of them is done yet.

– started : at least one (but not all) action has been
performed successfully, the time limit is not expired.

This state shows the non-atomicity of plans: several

actions have to be performed before completing the

plan, and in that situation the plan is in progress;
– success : all actions in the specification have been

executed successfully within the time limit. This is

a terminal state: once a plan succeeds, there is no
need for the system to monitor its execution;

– failed : at least one action in the specification has

been performed, and at least one critical precondi-
tion was false. This is another terminal state. Plan

failure triggers an adaptation process, unless the ap-

plication policies tell to ignore such failure;

– timeout : the time limit expired. Timeout is a par-
ticular type of failure, and is a terminal state.

Though our specification does not prescribe a com-
plete order for actions execution, they can be partially

ordered. This is doable by using the postcondition of an

action as critical precondition for another. This way, the
plan is carried out correctly only if the second action is

performed after the first one.

We illustrate our plan specification language on the

smart-home scenario. Suppose the patient’s goal is to

get up, and the smart-home system has to ensure he
achieves such objective. A possible way for the patient

to get up is to grab a bed pole. As in Table 1, plan t1:

use pole/trapeze is specified by the following actions:

1. Precondition: patient p is in bed b, bed b has a pole

pl; Postcondition: the bed pole pl is touched; Time

limit : 5 minutes;
2. Precondition: patient p is in bed b (critical), bed b

has pole pl, pl is touched; Postcondition: patient p

stands up; Time limit : 10 minutes;

The plan is executed correctly if: (i) the bed pole is

touched within five minutes since plan activation (the
time the means-end decomposed goal is activated), and

(ii) the patient stands up—after he touches the bed

pole—within ten minutes. There are three possible vi-

olations for this plan:

– the patient stands up without being in bed before.

This might represent a fault in the camera that de-

Adaptive Socio-Technical Systems: A Requirements-Based Approach 9

Plan name Precondition Action Time
t1: use pole/trapeze bed b has a pole pl pl is touched 5

patient p is in bed b, b has pole pl, pl is
touched

p stands up 10

t2: get up without support patient p is in bed b p stands up 10
t7: use thermometer patient p has thermometer t, t is active t measures temp > 35◦C 35
t8: use oxymeter patient p has oxymeter o, o is working o measures heart rate 16

patient p has oxymeter o, o is working o has measured saturation 16
t9: use glucose meter patient p has glucose meter gm, gm is

turned on
gm has blood on its sensor 28

patient p has glucose meter gm, gm is
turned on, gm has blood on its sensor

gm measures glucose level 30

t10: use pulse checker patient p has pulse checker c c measured pulse 25
t11: use smart shirt EKG patient p has smart shirt s s performs EKG 40
t12: inject with insulin pen patient p has insulin pen i i injects insulin 50
t20: phone helper to get up house h has phone ph ph is dialling 10

house h has phone ph, ph is not dialling ph called a helper 15
t24: activate sling bed b has sling sl, sl is active and over bed patient p stands up 45

Table 1 Semi-formal specification for some plans in Fig. 2. Preconditions in bold are critical

tects when the patient stands up, or in the bed sen-
sor that detects if the patient is in bed;

– a time-out failure occurs if the patient does not

stand up within ten minutes (e.g. since the alarm

rings). This happens if the patient touches the bed
pole—his intention is to stand up—and he does not

stand up within the time limit;

– the pole is not touched within five minutes. Both
this violation and the previous indicate a possible

health problem of the patient.

Based on the policies defined by designers, these fail-

ures might result in different actions: the system might

notify a nurse and give her access to the room webcam,
gently alert the patient, or ignore the failure if his vital

signs are good. Though failures are detected at the level

of tasks, they are often related to social dependencies
between actors. Indeed, a dependee actor is expected to

execute tasks and achieve goals to fulfil a dependum.

Domain assumptions. A domain assumption is an
indicative property that should not be violated by the

system or its surrounding environment [28]. Though

not referring to functions the system should deliver, do-
main assumptions should be considered during design,

as they express stakeholders’ needs or constraints. Our

architecture supports their monitoring and diagnosis.

We specify domain assumptions as implications over

the context model. The implication antecedent consists

of an activation event, that triggers the domain assump-
tion, and an arbitrary number of preconditions. If the

antecedent holds (the activation event occurs while the

preconditions are true), the consequent has to be veri-

fied. We allow for two types of consequent: (i) a state
should hold when the activation event occurs; and (ii)

an event should occur within a time limit since the an-

tecedent event occurs.

A possible domain assumption for the smart-home
scenario is “The oven should be turned off within 10

minutes if the patient is not at home”. This domain

assumption is represented as follows: (i) the activation

event is “the patient exits home”; (ii) the antecedent
precondition is “the oven is turned on”; (iii) the con-

sequent is event “the oven is turned off”, which should

occur within ten minutes. Another domain assumption
is that “the fridge door should be closed if the patient

is not in kitchen”. This can be expressed as follows: (i)

the activation event is “the patient exits kitchen”; (ii)
the consequent is state “the fridge is closed”.

4.2.2 Diagnosis component

The Contextual goal model diagnosis component uses

context changes to analyse goal models for identifying

goals and plans that should and should not be achieved.
Its output is provided through interface Goals/Plans

applicability. Domain assumption verifier uses context

changes to verify the list of domain assumptions. Iden-

tified violations are then exposed through interface Vi-
olated domain assumptions. Interaction analyser uses

both interaction status and goals/plans applicability,

and computes failed dependencies. Dependencies fail
not only if the dependee cannot achieve the goal or

perform the plan (e.g. the nurse cannot support the

patient because she’s busy with another patient), but
also when changes in the context affect applicable goals

and make a dependency inapplicable (e.g., the patient

exits her house and thus cannot depend on a cater-

ing service any more). Plan execution checker requires
goals/plans applicability, determines failed plans and

provides them through interface Failed plans. For exam-

ple, this component can identify failures such as “insulin

10 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

was pumped while insulin pump was not under skin”,

or a time-out as the patient tries to wake up.

The Goal commitment diagnosis component diag-
noses those goals that should be achieved for which the

agent took no action so far. This notion of commitment

corresponds to psychological commitments 5: whether

the agent has adopted an intention [15]. For example,
the patient shall have breakfast within two hours since

waking up (has to commit and adopt an intention to

that purpose). This component requires goals/plans ap-
plicability and provides interface Uncommitted goals.

A goal is uncommitted if there is no evidence that

the agent is committed to its achievement. Diagnoses
Selector requires failed dependencies, failed plans, un-

committed goals, and uses interface Tolerance policies

provided by the Policy manager. The policy manager

handles system administrators policies, e.g. cases where
failures should be tolerated and not compensated. For

example, lack of commitment for washing dishes can be

tolerated if the patient’s vital signs are good (she may
wash dishes after her next meal). The interface Failure

diagnoses contains the diagnoses to compensate.

4.3 Reconfiguration

The reconfiguration phase defines compensation strate-

gies in response to diagnosed failures. Its effectiveness
depends on various factors, among which available al-

ternatives and the effectiveness of suggestions and re-

minders on participating actors. Also, the success of
compensation strategies depends on available resources.

Suppose a patient feels giddy: if she lives in a smart-

home provided with a door opener, the door can be
automatically opened to let the rescue team enter; else,

the rescue team should wait for someone to bring the

door keys. The component Prioritize diagnoses requires

selected diagnoses and priority policies, selects a subset
of failures according to their priority and provides them

through interface Diagnoses to compensate.

Common criteria to define priorities are goal criti-

cality, failure severity, urgency of taking a countermea-

sure, time passed since diagnosis. For example, a pri-
ority policy might specify that a life-critical goal (e.g.

patient measures glucose level) shall be reconfigured be-

fore a non-critical goal (e.g. patient brushes her teeth).
The component Reaction strategy planner takes the di-

agnoses to compensate as input and selects a set of

reactions to compensate for the failures. Given one or
more failures, this component identifies possible recon-

5 Singh [43] explains the distinction between psychological
and social commitments.

figurations, and selects one of them. Our architecture

supports three types of reconfiguration:

– Task reassignment reconfigurations involve the au-

tomated enactment of dependencies on agents. The

architecture acts on behalf of the supported agent to

define a social relation with a dependee agent. Task
reassignments work only if the dependee accepts to

deliver the service (due to its autonomy, it is free

to refuse). For example, if the patient has not had
breakfast and the time limit for the goal is expired,

the architecture can automatically call the catering

service. If the catering service does not accept or
later violates its task, the architecture will have to

perform another reconfiguration.

– Push system reconfigurations remind agents of their

current goals or suggest tasks to execute. Such op-
tion gives little certainty, but is an effective way to

deal with social actors. A push strategy for the pa-

tient that did not have breakfast so far is sending
an SMS to her mobile phone.

– Actuate reconfigurations are enacted via context ac-

tuators. As we said earlier, context actuators are
passive entities that can be commanded. For in-

stance, if the patient feels bad, the door can be au-

tomatically opened by activating its door opener.

This way, rescuers or neighbours can easily enter
and help the patient.

Each reconfiguration type feeds a specific component

(Task assigner, System pushing and Actuator manager)

that enacts the chosen reconfiguration by interacting
with external components (agents and actuators).

5 Diagnosis and reconfiguration mechanisms

We describe the main algorithms to diagnose failures
and to compensate for them via reconfiguration. Al-

gorithm 1 shows how the diagnosis and reconfigura-

tion activities are linked together in the MDRC cycle.

The input consists of the supported agents in the STS,
whereas the output is a possible strategy to enact in

order to better achieve the goals of the agents. The

success of the suggested strategy largely depends on
whether the involved agents will accept and enact it.

The for cycle of lines 2-7 iterates over all agents,

whereas the internal for cycle of lines 3-7 scans all top-
level goals agents are expected to achieve. Table 2 pro-

vides the semantics for goals to achieve (should do) and

achievable sub-goals (visible). Line 4 calls function Di-

agnoseGoal (described later in Algorithm 2) to de-
termine which plans and goals are failed, started, and

done. Then (lines 5-7) the global set of failed, started,

and done plans/goals are updated. Lines 8 and 9 deal

Adaptive Socio-Technical Systems: A Requirements-Based Approach 11

Algorithm 1 Reconfiguration algorithm

Reconfigure(Agent [] ags)
1 GoalPlan [] fail, start, done
2 for each ag ∈ ags

3 do for each g ∈ GetShouldDo(ag)
4 do 〈f, s, d〉 ← DiagnoseGoal(g)
5 fail += f

6 start += s

7 done += d

8 Strategy [] alt← GenerateAlternatives(ags)
9 Strategy str← SelectVariant(alt, fail, start, done)

10 EnactStrategy(str)

with the reconfiguration process: line 8 calls Gener-

ateAlternatives (Algorithm 4), a function that acts
as a planner and identifies alternative configurations;

line 9 calls SelectVariant (Algorithm 5), which ranks

existing alternatives and selects the best one (accord-
ing to a specific set of criteria). Finally, the selected

strategy is enacted by EnactStrategy (line 10).

5.1 Diagnosis

We detail the diagnosis mechanisms included in our ar-

chitecture. Failures are identified by comparing moni-
tored behaviour of the system to the expected behaviour.

Failures occur when (a) the monitored behaviour is not

allowed or (b) expected behaviour does not occur.

goal(a, g, P) ∧ happened(activation evt(a, g, P), t)
∧ ¬done(a, g, P) ∧ ∄ gp, dec s.t. decomp(a, gp, g, dec)

i.
should do(a,g,P)

should do(a, g, P)
ii.

visible(a,g,P)

goal(a, g, P) ∧ ¬done(a, g, P)
∧ ∃ gp s.t.

goal(a, gp, Pp) ∧ decomp(a, gp, g, dec)
∧ visible(a, gp, Pp) ∧ holds(context cond(dec))
∧ ∀p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p) = name(pp)),

value(p) = value(pp)
iii.

visible(a,g,P)

plan(a, t, P) ∧ holds(prec(a, t, P)) ∧ ¬done(a, t, P)
∧ ∃ g s.t.

goal(a, g, Pp) ∧ means end(a, g, t, dec)
∧ holds(context cond(dec)) ∧ visible(a, g, Pp)
∧ ∀p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p) = name(pp)),

value(p) = value(pp)
iv.

visible(a,t,P)

visible(a, t, P) ∧ depends(a, b, t, g) ∧ ¬done(a, t, P)
v.

visible(b,g,P)

Table 2 Expected and visible goals and plans

Table 2 introduces the should do and visible pred-

icates in first-order logic. Goal models define goals at
the class level. At runtime, each goal can have multi-

ple instances with different parameters. A patient’s goal

Have breakfast is repeated every day with different val-
ues for the parameter day, and has different instances

for each patient living in the smart-home.

– Rule i. specifies when an agent a shall achieve a

top-level goal. This happens if g is a goal instance

with actual parameters P , is not achieved yet, the

activation event occurred, and g is a top-level goal
(there is no goal gp AND/OR-decomposed into g).

– Rule ii. is a general axiom saying that whenever a

goal instance should be achieved, it is also visible
(i.e., it is compatible with the current context).

– Rule iii. defines when decomposed goals are visible.

A goal instance g with parameters P can be achieved
if it is not achieved and exists an achievable goal gp
with parameters Pp that is decomposed into g, the

context condition on the decomposition holds, and

the actual parameters of g are compatible with the
actual parameters of gp.

– Rule iv. defines visibility for plans. This rule is very

similar ro Rule iii. There are two differences: plans
are also characterized by a precondition—which has

to hold to make the plan executable—and are con-

nected to goals through means-end decompositions.
– Rule v. specifies visibility for dependencies. If a task

t is visible for agent a and a depends on b for goal

g, and t is not completed yet, then g is visible for b.

Algorithm 2 (DiagnoseGoal) uses the rules in Ta-

ble 2 to diagnose goals and plans failures. It is invoked

by Algorithm 1 for each top-level goal agents are ex-
pected to achieve, and explores a goal tree recursively.

Algorithm 2 starts by declaring arrays to contain

failed, started and done goals/plans, also one array for
the sub-goals or means-end decomposed tasks (chil-

dren). Then (line 2) the status of goal g is set to uncom-

mitted, since no information is initially available. Lines

3-10 define the recursive structure of the algorithm. If
the goal is AND/OR-decomposed (line 3), the array

children is initialized to contain all the sub-goals of g

(line 4), and the functionDiagnoseGoal is recursively
called for each sub-goal (lines 5-6), updating the goal

arrays. If the status of all the sub-goals is success,

then the status of g is also set to success, and g is
added to the array done (lines 7-9). If the goal is means-

end decomposed (line 10), G is assigned to the set of

plans that are means to achieve the end g. If the di-

agnosed status of g is still uncommitted (line 11) each
sub-goal (or means-end decomposed plan) in children

is examined (lines 12-37). If g is not visible, the algo-

rithm does not examine the goal further and contin-

12 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

Algorithm 2 Identification of goal and plan failures

DiagnoseGoal(GoalPlan g)
1 GoalPlan [] fail, started, done, children
2 g.status← uncommitted

3 if IsGoalDecomposed(g)
4 then children← Getsubgoals(g)
5 for each gi in children

6 do 〈fail, started, done〉 += DiagnoseGoal(gi)
7 if ∀gi in children, gi.status = success

8 then g.status← success

9 done += {g}
10 else children← GetMeansToEnd(g)
11 if g.status = uncommitted

12 then for each gi in children

13 do if !gi.visible
14 then continue
15 if IsAndDec(g)
16 then switch gi.status
17 case fail :
18 g.status← fail

19 break
20 case in progress :
21 g.status← in progress

22 if IsMeansEndDec(g) then
23 if DependsOn(gi, g′) then
24 gi.status← DiagnoseGoal(g’)
25 else gi.status← CheckPlan(gi,g)
26 if not IsAndDec(g)
27 then switch gi.status
28 case success :
29 g.status← success

30 done += {g}
31 break
32 case in progress :
33 g.status← in progress

34 case fail :
35 fail += {gi}
36 if g.status = uncommitted

37 then g.status← fail

38 if g.status = in progress then started += {g}
39 if g.should do and g.status = uncommitted and
40 Timeout(g) then g.status← fail

41 if g.status = fail then fail += {g}
42 return 〈fail, started, done〉

ues with the next element in children. Indeed, invis-

ible goals cannot be achieved in the current context.
If g is AND-decomposed (lines 15-21), two cases are

handled: if gi failed, then the status of is g is set to

fail and no other element in children has to be exam-
ined (lines 17-19); else if gi is in progress, the status of

g is set to in progress (lines 20-21). If g is means-

end decomposed (line 22), two cases are possible. If
the task originates a dependency on another agent for

goal g′ (line 23), the algorithm DiagnoseGoal is in-

voked recursively on g′ (line 24). If the task originates

no dependency, the algorithm calls CheckPlan (Al-
gorithm 3) to diagnose plan status (line 25). If g is not

AND-decomposed—i.e. it is either OR-decomposed or

means-end decomposed—(lines 26-37), it succeeds if at

least one sub-goal (or plan) succeeds. If the status of gi
is success, the status of g is also set to success, g is
added to the set of done plans and the cycle is termi-

nated (lines 28-31). If gi is in progress, the status of g

is set to in progress (lines 32-33). If the status of gi is
fail, gi is added to the set of failures, and if g is still

uncommitted its status is set to fail (lines 34-37). If

the loop ends and the status of g is in progress, g is
added to the started goals (line 38). If g is a top-level

goal to achieve, its status is uncommitted, and the time

limit expired, then its status is set to fail because the

agent adopted no intention for it (lines 39-40). If the
status of g is fail, it is added to the list of failures

(line 41). Finally, the algorithm returns failed, started

and succeeded goals (line 42).

Algorithm 3 Plan execution diagnosis

CheckPlan(GoalPlan means, GoalPlan end)
1 int start time← GetActivationTime(end)
2 Event [] events← GetSpecification(means)
3 plan status← uncommitted

4 for each evt in events

5 do if ∃time1 > start time s.t. Happened(evt, time1)
6 then if time1 > start time+ evt.time limit

7 then return fail

8 boolean done← true

9 for each prec in evt.preconditions

10 do if !HoldsAt(prec, time1)
11 then if IsCritical(prec)
12 then return fail

13 else done← false

14 if plan status = uncommitted and done

15 then plan status← success

16 else if plan status = success

17 then plan status← in progress

18 return plan status

Algorithm 3 (CheckPlan) describes plan diagno-
sis. Its parameters are a plan and a goal linked by a

means-end decomposition. Lines 1-3 initialize the vari-

ables used by the algorithm: start time contains the ac-

tivation time of the goal, events is the set of events that
specifies the plan, plan status is the return value of the

algorithm, and it is initially set to uncommitted. Then,

all events in the specification are examined (for cycle
in lines 4-17). If the examined event occurs after the

activation of the goal (lines 5-15), the event is further

analysed. If the event occurs after the event time limit,
the algorithm returns failure (lines 6-7); otherwise, the

event preconditions are examined (lines 8-13). Line 8

initializes the variable done to true. If the precondition

does not hold (line 10) and it is critical (line 11) the
algorithm returns failure (line 12), whereas if it is not

critical the variable done is set to false. After precondi-

tions are checked, if the plan is still uncommitted and

Adaptive Socio-Technical Systems: A Requirements-Based Approach 13

the variable done is still true (line 14), the plan status is

set to success (line 15). If the event has not occurred af-
ter goal activation and the plan status is success (line

16), the plan status is set to in progress, since not all

events have happened. Line 18 returns the plan status
if the algorithm has not returned failures in the cycle.

Domain assumptions are diagnosed when their trig-
gering event (the antecedent) happens and its precon-

ditions are true. Their failure is determined depending

on their consequent type:

– Event: a failure occurs if the event does not hap-

pen within its time limit. This kind of violation is
detected as the consequent event time limit expires;

– State: a failure occurs if the consequent state does

not hold at the time the triggering event happens.

5.2 Reconfiguration algorithms

As shown in the Reconfiguration component in Fig. 3,
our reconfiguration mechanisms include both reconcili-

ation (planning) and compensation (enactment). While

enactment is a domain-specific activity, which depends
on the environment and participating agents, planning

mechanisms can be abstractly defined regardless of the

setting where the architecture will operate. Our mech-
anisms are inspired by Artificial Intelligence (AI) plan-

ning techniques, though we address a simpler problem.

Indeed, our problem can be reduced to searching all

sets of leaf nodes that support the root node in a set of
AND/OR trees. This is doable by identifying all root-

to-leaf paths in each tree. As the output of this activity

is a set, differently from traditional AI planning, we are
not concerned with the ordering of leaf nodes (tasks).

When planning for new configurations, the first de-
cision to make is whether planning should be local (from

a single agent’s perspective) or global (from the per-

spective of the overall STS). With respect to the no-

tion of agency, local planning is better, for global plan-
ning requires a centralized view that conflicts with the

autonomy of the agents. Global planning is better in

terms of planning efficacy, since it can find a solution
that is the best for the entire system. The computa-

tional cost is lower in local planning, since this approach

avoids loops that can arise from mutual dependencies.
We combine the two approaches: we take a global per-

spective as our planning suggests dependees to adopt a

commitment for the dependums, while we evaluate lo-

cally the best plan for goal achievement. Given the au-
tonomy of each agent, our architecture does not force

them to execute tasks or to achieve goals. The archi-

tecture can do no better than trying to make agents

committed, but there can be no guarantee that they

will carry out the suggested plan.

There are three main planning mechanisms to iden-

tify alternative variants in goal models in response to a

specific goal or plan failure:

– Backtracking : the goal tree is explored bottom-up

in order to find an alternative plan. Options in the
same tree branch are preferred to options in other

branches. Backtracking preserves stability—it en-

sures that the new variant differs as little as pos-
sible from the current one—but does not guarantee

the optimization of cross-cutting concerns, such as

soft-goals. This approach was experimented in re-

lated work [16], where this technique was applied
by extending the agent-oriented programming lan-

guage Jason [6]. Backtracking for failure handling is

extensively discussed by Sardina and Padgham [42].
– Tree planning : this class of mechanisms corresponds

to planning from scratch. Tree planning identifies

the best solution in the goal tree (based on the met-
ric used to determine the quality of a solution), re-

gardless of how much the new variant differs from

the previous one.

– Tree replanning : this approach combines tree plan-
ning and variant stability. Algorithms in this cate-

gory do not only consider plan optimality, but also

minimize changes from the previous configuration.
The impact of each of these two factors (optimal-

ity and stability) can be balanced depending on the

agent’s preferences.

We describe a replanning algorithm that evaluates

plan optimality on the basis of soft-goals contributions.
Reconfiguration is enacted by Algorithms 4 and 5, that

are invoked by Algorithm 1 in lines 8 and 9, respectively.

Algorithm 4 Alternatives generation

GenerateAlternatives(Agent [] ags)
1 PlanSet [][] options← null
2 for each ag ∈ ags

3 do for each g ∈ GetShouldDo(ag)
4 do PlanSet [] opts← GeneratePlans(g)
5 options.Add(opts)
6 PlanSet [][] cartProduct← options[1]× . . .× options[n]
7 Strategy [] strategies← null
8 for option ∈ cartProduct

9 do Strategy s

10 for planSet ∈ option

11 do s.AddPlanSet(planSet)
12 strategies.Add(s)
13 return strategies

Algorithm 4 takes as input the supported agents in

the STS. Line 1 initializes to null the variable options

14 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

that will contain the alternatives for top-level goals. op-

tions is an array of arrays of type PlanSet. One planset
is a viable strategy to achieve a top-level goal, an ar-

ray of plansets contains all strategies to achieve a top-

level goal, an array of arrays of plansets contains all
strategies to achieve a set of top-level goals. The for

cycle in lines 2-5 explores all agents, the inner cycle

in lines 3-5 explores all top-level goals to be achieved,
whereas lines 4-5 initialize the variable options. Line 4

creates an array of plansets that contains all plans for

a specific top-level goal. The invoked function Gener-

atePlans explores the AND/OR goal tree and iden-
tifies all valid minimal plans. Minimality means that

whenever an OR-decomposition is encountered, only

one sub-goal is selected. In line 5, the algorithm adds
the possible plans for the examined top-level goal to

variable options. As the cycles are over, the variable

cartProduct is initialized to the Cartesian product of
the sets in options ; this way, each array of plansets in

cartProduct is a plan to achieve all top-level goals. Line

7 initializes the variable strategies to null; this variable

is a data structure that allows for simpler handling of al-
ternative than cartProduct. Lines 8-12 populate strate-

gies : for each option (line 8) a Strategy is declared, the

plansets in that option are added to the strategy (lines
10-11), and the strategy is added to strategies (line 12).

Once the array of strategies is populated, the algorithm

returns it (line 13).

Algorithm 5 takes as input the array of strategies alt

and three arrays of plans with self-explanatory names:
failed, started, and done. The for cycle in lines 1-15

computes the cost and the contribution to soft-goals

for each strategy in alt. Lines 2-5 determine the cost of
the examined strategy, which corresponds to the sum

of the compensation costs for failed plans (we assume

that each failed plan has to be compensated) and the
compensation cost for started plans that will not be

in the new configuration. Lines 6-15 iterate the goal

trees in the strategy and compute contribution to soft-

goals. Line 7 iterates all plans in the goal tree, line 8
initializes the variables contrib and totPriority used in

the cycle, whereas line 9 iterates all the soft-goals the

examined plan contributes to. In line 10, the contri-
bution value from the plan to the soft-goal is multi-

plied by the soft-goal priority and the product is added

to variable contrib. In line 11, the soft-goal priority is
added to the total priority for the considered plan. Then

(line 12) the plan contribution is divided by the total

priority to compute the average soft-goal contribution

for the examined plan, and the contribution value for
the whole strategy is updated (line 13). Lines 14-15

update the reconfiguration cost by adding the mini-

mum reaction cost for the plans that are not started

Algorithm 5 Selection of the best reconfiguration
strategy

SelectVariant(Strategy [] alt,Plan [] failed, started, done)
1 for each str in alt

2 do str.cost←
∑

p∈failed p.compCost

3 for each sp in started

4 do if p in GetAllPlans(str)
5 then str.cost += p.compCost
6 for each gt in str.goalTrees
7 do for each pl in gt.plans
8 do int contrib, totPriority← 0
9 for each c in pl.contribs

10 do contrib += c.val ∗ c.softgoal.priority
11 totPriority += c.softgoal.priority

12 contrib← contrib/totPriority
13 str.contrib += contrib/Size(gt.plans)
14 if pl not in started ∪ done

15 then str.cost += GetBestReaction(pl)
16 minCost←min(str.cost | str ∈ alt)
17 maxCost←max(str.cost | str ∈ alt)
18 minCont←min(str.contrib | str ∈ alt)
19 maxCont←max(str.contrib | str ∈ alt)
20 bestVal← −∞
21 bestStrategy← null
22 for each str in alt

23 do nCost← str.cost−minCost
maxCost−minCost

24 nCont← str.contrib−minCont
maxCont−minCont

25 if GetAllPlans(str) ∩ failed 6= ∅
26 then strValue← strValue− 4
27 strValue← strValue+ nCont− nCost

28 if strValue > bestVal

29 then bestVal← strValue

30 bestStrategy← str

31 return bestStrategy

nor done (GetBestReaction) if more than one reac-

tion is available (e.g., both task assignment and system
pushing are viable). Lines 16-19 initialize the variables

that contain the minimum/maximum strategy cost (16-

17) and the minimum/maximum contribution (18-19).

Lines 20-21 initialize the variable to contain the best
value to −∞ and the best strategy to null. The for

cycle in lines 22-30 performs a min-max normalization

of costs and contribution in the [−1,+1] range, in or-
der to make them comparable and to compute a single

value for the strategy. Lines 23 and 24 compute the

normalized value for a strategy’s cost and contribution,
respectively. Line 25 deals with strategies that contain

failed plans: any of these strategies is worse than all

those without failed plans. The strategy value (line 27)

is the normalized contribution minus the normalized
cost. Lines 28-30 update the variable for the best strat-

egy if the examined strategy is better than all those

examined earlier. Line 31 returns the best strategy.

Adaptive Socio-Technical Systems: A Requirements-Based Approach 15

6 Implementation and evaluation

Our architecture falls into the paradigm of design sci-

ence. Thus, its evaluation can be based on the methods

suggested by Hevner et al. [25]. A comprehensive eval-

uation has to consider five perspectives: observational,
analytical, experimental, testing, and descriptive.

We aim to evaluate the feasibility, applicability and

effectiveness of our approach. To this extent, we devel-

oped a prototype implementation of our architecture
(described in Section 6.1) and tested it in a simulated

smart-home STS based on the case study in Section 3.

We detail on the application to the case study in

Section 6.2; we exploit a descriptive and experimen-
tal evaluation approach, since we construct scenarios

the architecture has to successfully cope with and per-

form simulations to experiment whether it is actually
the case. We report on scalability results in Section 6.3;

this type of evaluation belongs to dynamic analysis, as

we aim to assess the performance of our artefact.

The main limitation of our evaluation is that we

haven’t conducted a case study in a business environ-
ment yet. Thus, we cannot evaluate the interaction of

users with the architecture: (i) how well designers use

the interfaces to instrument an STS with the adaptive
architecture; (ii) the impact of the adaptation mecha-

nisms on end users in terms of unobtrusiveness and effi-

cacy. We will conduct these evaluations in future work.

6.1 Implementation

We developed a prototype implementation of our archi-
tecture to show its feasibility. We used Java 1.6 as main

programming language, the Eclipse Modeling Frame-

work (EMF)6 to define the requirements meta-models,

the DLV-complex reasoner [10] to support diagnosis
and reconfiguration, and the H2 embedded database7

to consider the effect of context changes on active goals.

EMF enables to define the meta-model for require-

ments models as a class diagram with OCL constraints.
The class diagram provides the coarse-grained structur-

ing of requirements models, whereas OCL constraints

restrict the allowed syntax. For instance, in our EMF
meta-model, a Contribution is represented as a class.

Such class has an attribute called value, whose range is

between -1 (full negative) and +1 (full positive), which
represents the contribution degree. Class Plan is linked

to Contribution via an aggregation link: in our frame-

work, contributions start from plans. A contribution is

6 http://www.eclipse.org/modeling/emf/
7 http://www.h2database.com/

linked—via an association—to a SoftGoal class: a soft-

goal is contributed by zero or more contributions, but
can exist without any contribution. A contribution has

a set (possibly empty) of Conditions: the contribution

is valid only if the contextual conditions hold. Using
the OCL constraint shown in Code 1 (an invariant),

we enrich the specification of a contribution. The OCL

invariant says that the contextual conditions of a con-
tribution (if any exists) should refer to entities that be-

long to the parameters of the plan from which the con-

tribution starts. This is a well-formedness constraint:

it guarantees that contextual conditions in the contex-
tual goal model refer to entities that can be correctly

associated to the specific goal instance at runtime. For

example, if a contextual contribution depends on the
temperature of a room, but the decomposed goal has

no parameter associated to a “room” entity, it will not

be possible to guess which room should be considered.

Code 1 An OCL invariant applied to a contribution
context Contribution inv:

self.conditions->forAll(x | let y:ContextEntity =

x.oclAsType(Condition).entity in

self.contribFrom.parameters->exists(z |

z.oclAsType(Parameter).entity=y))

Our prototype uses Java Emitter Templates (as in
[17]) to transform the EMF meta-model—in an ecore

file—into a requirements model editor deployable as an

Eclipse application. The resulting application—a gen-
erated EMF editor—enables the definition of require-

ments models, and provides integrated validation to

check the well-formedness of the model with respect to

the meta-model and its OCL constraints. The analyst
creates requirements models using the Eclipse default

tree editor for XML files, as shown in Fig. 6.

At runtime, requirements models become integral

part of the architecture for self-reconfiguration. Before

the architecture starts, the analyst specifies the model

to load, and the architecture translates it to the DLV-
complex input format. Requirements models in the ecore

file are expressed at the class-level, whereas the transla-

tion to Datalog supports instances, namely real agents
and goal instances that constitute the application at

runtime. Code 2 contains an example of how the pro-

totype maps a contextual contribution to the DLV-
complex input format. The first rule says that, if task

useThermometer is visible according to the current con-

text, and the patient has no flu, the contribution to

soft-goal reliability is positive with value +0.7 (repre-
sented as 700, as DLV supports only integer numbers).

The DLV internal predicate ♯memberNth is used to ex-

tract specific parameters from the parameters list P .

16 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

Fig. 6 Screenshot of the Eclipse-based requirements editor

The second rule states that, if the patient has flu, the

contribution to soft-goal reliability is negative (−0.4).

Code 2 Representation of a plan to soft-goal contextual

contribution in DLV-complex
contr(patient,useThermometer,P,reliability,Val,Neg)

:- visible(patient,useThermometer,P),

#memberNth(P,1,Patient), #memberNth(P,2,House),

#memberNth(P,3,ActTime),

holdsNow(hasFlu,Patient,false,CT), currTime(CT)

Val=700, Neg=false.

contr(patient,useThermometer,P,reliability,Val,Neg)

:- visible(patient,useThermometer,P),

#memberNth(P,1,Patient), #memberNth(P,2,House),

#memberNth(P,3,ActTime),

holdsNow(hasFlu,Patient,true,CT), currTime(CT)

Val=400, Neg=true.

In addition to requirements models, the analyst can

optionally specify an input simulation trace for the ar-
chitecture. After the analyst launches the architecture,

the input of the architecture consists of both the sim-

ulation trace and the events received from the running

application (agents and sensors). We developed an ed-
itor to enable designers to specify simulation traces.

This editor permits to define the contextual entity in-

stances that are considered at runtime, and provides
a visual tool to specify the initial state and the evolu-

tion of those entities (by manipulating their attributes).

The simulation is defined in terms of time steps; each
tick occurs every n milliseconds. In our prototype, in-

put from agents and sensors is read via socket listeners.

The actual monitors that observe contextual events are

domain-specific, as well as the normalization of events
to the context model. In our experimentations, our pro-

totype receives events that are already normalized over

the context model.

Failures are handled in two steps. First, the archi-

tecture uses the DLV-complex reasoner as a planner to
generate alternatives. Second, a dedicated thread se-

lects the best option and enacts it. Enactment is a do-

main specific activity, which depends on available ef-
fectors and the capabilities of the agents in the system.

We have chosen DLV-complex, rather than an off-the-

shelf AI planner, for two reasons: (i) DLV-complex can
be easily customized and extended; (ii) our alternative

generation problem is simpler than the traditional plan-

ning problem, as it has a smaller search space (see Sec-

tion 5.2).

6.2 Experiments on the case study

We experimented our architecture on the case study in

Fig. 2. The goal model is composed of two agents, 25
goals, 28 plans, and 3 soft-goals. The context model

consists of 18 entities having 67 attributes. Overall, 67

different event types are relevant to our architecture,
such as “phone is dialling”, “bed rails are active”, “pa-

tient enters bathroom”, “patient exits home”. We ran

our experiments on a machine equipped with an AMD

Athlon(tm) 64 X2 Dual Core Processor 4200+ proces-
sor, 2GB RAM, and running Linux ubuntu 2.6.31-16-

generic ♯53-Ubuntu SMP i686, Java OpenJDK Runtime

Environment (IcedTea6 1.6.1) (6b16-1.6.1-3ubuntu1).

We tested the requirements models over several re-

alistic scenarios. We show here three simulated scenar-
ios that involve failure diagnosis and compensation. We

express these scenarios in terms of time-steps. To au-

tomate testing, we developed a module that simulates

the enactment of a chosen reconfiguration. The pur-
pose of these scenarios is to demonstrate the capability

of our architecture to detect and to react (by selecting

a proper alternative configuration) to diverse failures
that threaten the actors’ requirements: plan execution

implying dependency failure, plan time-out, and goal

time-out. An orthogonal problem, that our architecture
does not deal with, is how to respond to device failures,

e.g. how to ensure faulty devices will be fixed.

Scenario 1 Marco is a diabetic patient that lives in a

smart-home. Due to a recent flu, he needs assistance

to stand up. His alarm rings at time-step 1. His phone
starts dialling at time-step 2. At time-step 3 the phone

stops dialling and a helper is called. Plan t20 is carried

out without failure: Marco successfully calls a helper.

This indicates that Marco depends on a helper to stand
up. At time-step 4 he is not alone in his house any

more. The sling is over his bed. At time 9, Marco stands

up with the support of a helper.

Adaptive Socio-Technical Systems: A Requirements-Based Approach 17

The event sequence described in Scenario 1 leads to

a failure. Specifically, plan t24 fails. This, in turn, re-
sults in a failure of the social dependency on the helper.

The patient is standing and the sling is over the bed,

but the sling is not active. According to the monitored
events, Marco could hardly be standing up, for the

sling is above the bed and inactive. This might have

different interpretations: either the patient is actually
standing and the sling activation sensor is faulty, the

patient standing sensor failed, or maybe the assistant

is not there. Regardless of the real cause, the archi-

tecture plans possible alternatives and selects the best
one, which includes notifying the helper to lift the pa-

tient. This corresponds to reminding the helper that

the patient is depending on him. The system acts un-
obtrusively, as its intervention is invisible to Marco. If

Marco does not achieve his other goals, more obtrusive

actions will be taken.

Scenario 2 Marco knows a social worker named Mike.

Marco is in bed, he is alone at home. At time-step 1 the

alarm rings in his bedroom. Since Marco is still weak,
he should call a helper and perform his pre-breakfast

morning routine: g18 and g1 are instantiated. At time-

step 2 the phone dials; this gives evidence that Marco is
calling a helper, maybe Mike. At time-step 17 no helper

has been called yet, and the phone is still dialling.

The architecture detects a plan time-out failure at time

17. Indeed, plan t20 is not performed correctly (see Ta-

ble 1). While the first action is correctly performed at
time-step 2 (the phone is dialling), the second action

is not completed within the time limit: no helper is

called. This might be a dangerous situation: perhaps
Marco felt giddy and could not contact any helper. In

reaction to this failure, the architecture decides to au-

tomate plan t21 and sends an SMS to Mike on behalf of

Marco. Later, Mike acknowledges he received the text
by sending an SMS to Marco’s mobile. The smart-home

interprets this message as the fact a helper has been

called, and a dependency is established.

Scenario 3 Marco has to perform his regular health

check (he is expected to achieve g6). At time-step 10

the oxymeter measures both heart rate and saturation.
The actions are carried out correctly, for their critical

preconditions are true. However, at time 61 the medical

centre has not received any electronic medical report.

This scenario includes a goal time-out failure for the

top level goal g1: Pre-breakfast morning routine. Indeed,
at least one of its sub-goals is not achieved within one

hour. The scenario does not satisfy the declarative goal

g6: Routine check, for its achievement condition is not

met. The successful execution of task t8: use oxymeter

does not suffice to achieve g6. The architecture detects
this kind of failure as the time limit expires, and reacts

by selecting a different plan, which involves automating

task t6: use smart-shirt, if Marco is wearing his smart-
shirt.

Fig. 7 shows a snapshot of the architecture running

Scenario 1. The current simulation trace is on the left

side, whereas requirements monitoring is on the right

side. Goal models are represented as a tree, the status of
each goal is represented by a coloured circle. Plans are

leaf-level nodes in goal trees. The status of domain as-

sumptions is shown in a different tab (hidden in Fig. 7).
In Fig. 7, the architecture has started its reaction to t24
failure: Marco is lifted by the helper, the smart shirt

performs a routine check, Marco is using the glucose
meter to measure his blood, he has taken his medicine.

0

20

40

60

80

100

10 20 30 40 50 60 70 80

C
P

U
 u

s
a

g
e

 (
p

e
rc

e
n

ta
g

e
)

Time tick

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80

H
e

a
p

 u
s
a

g
e

 (
M

e
g

a
b

y
te

s
)

Time tick

Average Maximum Minimum
CPU 8.93% 66.9% 0%
Heap 32.73MB 61.19MB 8.84MB
Diagnosis 863ms 1215ms 787ms
Reconfiguration 203ms 203ms 203ms

Fig. 8 The line charts show CPU and Heap Memory usage
for Scenario 1. The table below shows statistics about CPU,
Heap, diagnosis time, and reconfiguration time

Fig. 8 outlines the performance of our architecture

when executed on Scenario 1. During this simulation,

the prototype performed well during diagnosis and re-

configuration. On average, CPU usage was below 9%,
with a maximum value of almost 67% and some other

peaks, but also some values close to 0%. Memory (heap)

usage follows a pattern where heap allocation (high
peaks are ∼61MB) is immediately followed by heap

deallocation (low peaks are ∼9MB). On average, heap

usage is less than 33MB. For what concerns perfor-
mance, we can conclude that the size of the models

used for this case study is not critical for our proto-

type. On average, diagnosis took 863ms, with a max-

imum of 1215ms and a minimum of 787ms. Planning
for and selecting alternatives took 203ms. Future work

will involve a more comprehensive evaluation, e.g. via

random generation of scenarios to use as test cases.

18 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

Fig. 7 Requirements monitoring GUI of the architecture applied to the smart-home case study

6.3 Scalability

We evaluate scalability along two dimensions: (i) fail-
ure diagnosis, i.e. how long the architecture takes to

determine failures (Algorithms 2 and 3); (ii) system re-

configuration, i.e. the time needed to derive alternatives
(Algorithm 4) and to choose the best one (Algorithm 5).

Diagnosis scalability is verified on goal models of

growing size. Specifically, we increase: (i) the number

of top-level goals of an agent; (ii) the number of agents
in the model; (iii) the depth of a goal tree. We report

results concerning all these dimensions.

Trees Goals Rules Time Time
Goals

Time
Rules

1 15 131 218 14.533 1.664
2 30 255 318 10.600 1.247
3 45 379 526 11.689 1.387
6 90 751 799 8.878 1.064

12 180 1495 2146 11.922 1.435
24 360 2983 7101 19.725 2.380
48 720 5959 25615 35.576 4.299

Table 3 Diagnosis scalability: increasing the number of top-
level goals. Time in ms

Table 3 presents scalability results obtained by in-

creasing the number of top-level goals. We take a basic

goal tree composed of 15 goals and clone it to obtain
multiple goal trees, thus increasing the total number

of goals. The six columns in the table represent the

number of goal trees, the number of goals, the number

of datalog rules, the diagnosis time, the time per goal,
and the time per rule, respectively. The results show

that the tool scales very well till 180 goals (12 top-level

goals), for the time per goal is always below 15ms. With

larger goal models the time per goal increases to 35ms

for 720 goals. However, this is still a good result given

that (i) time does not grow exponentially; (ii) typical
goal models for applications such as the smart-home

STS are smaller than the largest we tested.

Agents Goals Rules Time Time
Goals

Time
Rules

2 20 291 213 14.550 1.366
3 25 320 291 12.800 1.099
5 40 340 379 8.500 0.897

11 70 463 525 6.614 0.882
21 120 793 915 6.608 0.867
41 220 1964 1695 8.927 1.159
81 420 5870 3255 13.976 1.803

161 820 17831 6375 21.745 2.797

Table 4 Diagnosis scalability: increasing the number of
agents. Time in ms

Table 4 reports on scalability for requirements mod-

els with multiple agents. We keep one agent unchanged

and make it depend on an increasing number of other
agents. The agents acting as dependee are cloned: each

agent has one small goal tree composed of five goals.

The table columns represent the number of agents, the
number of goals, the number of rules, the diagnosis

time, the time per goal and the time per rule, respec-

tively. Diagnosis scales linearly till 420 goals (81 agents);
the result becomes slightly worse with 820 goals (161

agents). However, the growth is still not exponential.

Table 5 details scalability results for goal models

with increasing depth. To increase depth, we generated
goal decompositions with just one sub-goal. In this set-

ting, the diagnosis mechanisms scale less well than in

the other two experiments: good scalability is measured

Adaptive Socio-Technical Systems: A Requirements-Based Approach 19

256

512

1024

2048

4096

8192

16384

16 32 64 128 256 512

T
im
e
 (
m
s
)

Number of Goals

Goal Trees
Nr. Agents
Tree Depth

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

4 8 16 32 64 128 256 512 1024 2048 4096 819216384

T
im
e
 (
m
s
)

Number of Alternatives

Alternatives generation
Best alternative selection
Generation + Selection

Fig. 9 Scalability evaluation for diagnosis (left side) and reconfiguration (right side) mechanisms

Depth Goals Rules Time Time
Goals

Time
Rules

5 18 241 156 13.388 1.545
10 23 286 191 12.435 1.497
20 33 375 261 11.364 1.437
40 53 727 401 13.717 1.813
80 93 2076 681 22.323 3.048

160 173 7184 1241 41.526 5.789
320 333 30071 2361 90.333 12.737

Table 5 Diagnosis scalability: increasing goal model’s depth.
Time in ms

till 93 goals (depth 80). However, these are unrealisti-
cally deep goal models.

The left-hand side of Fig. 9 shows a chart plot sum-

marizing diagnosis scalability. The chart uses a log-
arithmic scale on both axes. The three plots repre-

sent the three conducted experiments: the chart shows

that diagnosis works better with many small goal mod-
els (even with many agents) than with a single large

goal model (increasing its depth). Overall, the diagno-

sis mechanisms perform well for medium-sized require-
ments models.

To assess reconfiguration scalability, increasing the
number of goals—as we did to verify diagnosis—is not

meaningful. Reconfiguration is the selection of an al-

ternative configuration to achieve current goals. There-

fore, reconfiguration corresponds to (i) generating pos-
sible alternatives and (ii) selecting the best alternative.

Scalability is measured with respect to the number of

alternatives (variants). To check reconfiguration scal-
ability we create goal models with increasing number

of alternatives. We increase the number of options at

variation points: more sub-goals in OR-decompositions
and more plans in means-end decompositions.

Table 6 reports on scalability for reconfiguration

mechanisms. The five columns represent the number
of alternatives, the time taken to generate alternatives,

the time taken to select the best alternative, the gen-

eration time per alternative, and the selection time per

♯ alt Gen time Sel time Gen time
♯alt

Sel time
♯alt

3 36 <1 12.000 0.111
8 40 1 4.958 0.166

27 73 3 2.691 0.111
64 204 7 3.182 0.115

125 325 15 2.597 0.117
216 408 36 1.867 0.166
343 547 66 1.594 0.193
512 798 95 1.559 0.186

1024 1148 122 1.121 0.119
2048 1839 286 0.898 0.140
4096 3064 354 0.747 0.111
8192 5198 514 0.635 0.063

16384 10604 738 0.647 0.045

Table 6 Reconfiguration scalability: increasing the number
of alternatives. Time is expressed in ms

alternative, respectively. We repeated each test three

times; the overall time is approximated to the millisec-
ond in columns 2 and 3. The implemented reconfigura-

tion mechanisms scale very well. The growth is linear

with the number of alternatives, as can be seen in the

ratio columns. Both generation and selection perform
efficiently. In particular, selection time is much lower

than generation time. The right-hand side of Fig. 9

graphically resumes the scalability results for reconfig-
uration, also shows the overall reconfiguration time.

7 Creating the architecture for an existing STS

To exploit our architecture, requirements engineers and

software designers need guidance to apply it to existing

STSs. Once created, the architecture can be deployed
to add self-reconfiguration capabilities to the STS by

helping participating agents achieve their objectives.

Fig. 10 shows the proposed process as a SPEM 2
[34] diagram representing the sequence of activities and

the input-output flow in terms of artefacts. Specific

methodologies shall be adopted or devised to refine the

20 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

process according to the application domain. For exam-

ple, requirements elicitation and analysis methods are
required to correctly gather and specify requirements.

Fig. 10 SPEM 2 diagram showing the high-level process to
create the architecture for an STS

The first task is Application Domain Analysis : ac-

quiring knowledge about the STS in terms of humans,
autonomous software agents, and non-autonomous en-

tities such as sensors and actuators. The resulting arte-

fact is the set of agents and entities in the application.

Domain analysis is followed by two concurrent tasks:

Requirements Analysis and Context Analysis. Their out-

put consists of the models for the STS: a context model
results from context analysis, while goal models and do-

main assumptions are provided by requirements analy-

sis. These two steps are typically performed iteratively:
the corresponding models are not isolated, given that

requirements models are specified on the basis of con-

text. For example, domain assumptions are implication

over context entities, whereas the status of goals (vis-
ible, started, done, failed) is computed on the basis

of contextual events. Given the tight connection be-

tween these models, changes in the context (require-
ments) model often requires to modify to the require-

ments (context) model. The interested reader might

look at recent work on contextual goal-oriented require-
ments engineering [2].

After requirements and context analysis are com-

pleted, Traceability Establishment is conducted. This

task defines what to monitor at runtime for determin-

ing requirements satisfaction and violation. The objec-
tive of this step is to ensure traceability links between

implementation and requirements. In particular, this

traceability corresponds to requirements reflection [5],
a system’s awareness of its requirements. We propose

to carry out this step by associating a specification—in

terms of observable events expressed over the context
model—to goal model tasks. Thus, the status of a task

is computed by monitoring the status of its event-based

specification, whereas the status of a goal is derived

from the status of the tasks that operationalize it.
The following steps are to select tolerance policies

and to define reconfiguration mechanisms. Task Toler-

ance Policies Selection specifies tolerance policies for
failures and under-performance. Some failures are ad-

dressed through reconfiguration, others are always tol-

erated, others again are tolerated under certain circum-
stances. Policies are first defined at design-time, then

they are typically tuned at runtime. For instance, sys-

tem administrators might realize that too many failures

are considered, and system performance is affected by
frequent reconfigurations.

Task Reconfiguration Mechanisms Selection defines

how failures are addressed by the architecture. The ac-
tivity produces two artefacts: (i) Compensation Plans

revert the effects of the failed strategies, and (ii) Re-

configuration Strategies describe possible alternatives
to achieve current goals. Both steps depend on the ac-

tuation capabilities of the existing application. Possible

reactions are scenario-dependent: the architecture con-

trols actuators or communicates with agents.

8 Related work

Most research in architectures for adaptive and auto-
nomic systems does not support socio-technical systems

where participating agents are autonomous and largely

uncontrollable. Some proposals consider these features

to some extent. Bryl and Giorgini recognize the dy-
namism of STSs and propose an approach for the re-

design of an STS in response to changes such as actors

joining or leaving the system [9]. Their approach in-
spires our architecture: it states the problem and pro-

vides general principles, but these are not applied to

an architecture for self-reconfiguration. Cetina et al.
propose an architecture for autonomic computing and

apply it to smart-homes [12]. Unlike ours, their archi-

tecture is based on feature models and focuses mainly

on the technological aspects of an STS. The two ap-
proaches might be combined into an architecture that

relies on both high-level concepts—requirements—and

technical configuration concerns—features.

Adaptive Socio-Technical Systems: A Requirements-Based Approach 21

Wang’s architecture for self-repairing software [46]

uses a single goal model as a software requirements
model, and exploits SAT solvers to check the current

execution log against the model to diagnose plan fail-

ures. We propose a broader approach, adopting part
of a more comprehensive ontology for RE [28]. We use

more expressive goal models, provide detailed specifi-

cation for plans, allow for specifying multiple contexts
that modify expected behaviour, and support depen-

dencies on other actors/systems.

Feather et al. propose an approach addressing sys-

tem behaviour deviations from requirements specifica-

tions [21]; they introduce an architecture (and a de-
velopment process) to reconcile requirements with be-

haviour. The reconciliation process is enacted by jointly

anticipating deviations at specification time and solv-
ing unpredicted situations at runtime. Our architecture

uses different requirements models, supports a wider set

of failures (theirs is focused on obstacle analysis [32]),
and deals with interacting autonomous agents.

Baresi and Pasquale [3] propose an approach based
on extended KAOS goal models for adaptive service

compositions. They introduce the notion of adaptive

goals, which are responsible for the actual adaptation
and evolution at runtime, and specify countermeasures

to address violations of conventional goals. Their frame-

work is further extended by FLAGS (Fuzzy Live Adap-
tive Goals for Self-adaptive systems) [4], which distin-

guishes between crisp goals with boolean satisfaction

value and fuzzy goals whose satisfaction is specified

via fuzzy constraints. Fuzzy goals exploit a temporal
language inspired by the theory of fuzzy sets. Though

supporting complex goal types, this approach does not

consider social relationships between actors in an STS.

Whittle et al. [48] propose RELAX, a requirements
specification language for self-adaptive systems. RE-

LAX relies on requirements relaxation to ensure that

the requirements handle uncertainty factors. Such lan-
guage can be used as an alternative requirements speci-

fication language to deal with uncertainty during adap-

tivity. However, RELAX does not exploit any social

abstraction, and is therefore more adequate for purely
technical systems.

ReqMon [41] is a requirements monitoring frame-

work for enterprise systems. ReqMon integrates KAOS

requirements models and software execution monitor-
ing, and provides tools to support the development of

requirements monitors. Though ReqMon’s architecture

covers all the reconfiguration process, it details only the

monitoring and analysis phases. Our approach targets
different application settings, can diagnose a different

set of failure types, and is equipped with implemented

reconfigurations mechanisms.

An important aspect to consider during adaptation

is customization to specific users. Hui et al. [27] inves-
tigate how a goal model can be customized to user skills

and preferences. The selection between alternatives is

based on the user skills to execute atomic tasks and on
user preferences (which are expressed over soft-goals).

Their approach can be combined with our architecture

so that to take into account the profile of specific users
while reconfiguring the STS.

Though not focused on STSs, literature in adap-

tive software proposes many relevant architectures and

algorithms. Self-adaptive software [36] is an approach

to develop systems that modify their architecture in re-
sponse to changes in the operating environment. This is

a model-based approach in which the model is the archi-

tecture itself. Basic reconfigurations consist of adding,
removing and replacing components. The building units

for self-adaptive software are components and connec-

tors. Compared to our work, this solution exploits ar-
chitectural knowledge rather than requirements knowl-

edge, thereby providing no assurance about the satis-

faction of the system’s goals. Moreover, their approach

presumes full control of the system, which is not possi-
ble in STSs.

Rainbow [24] is an architecture for self-adaptation

based on an externalized approach and software archi-

tecture models. Rainbow considers architecture models
as the most suitable abstraction level to abstract away

unnecessary details of the system. Moreover, the usage

of architectural models both at design- and at run-time

promotes the reuse of adaptation mechanisms. Our pro-
posal shares the externalized approach, but differs in

that we use models about the application requirements.

Our choice has both pros and cons: on the one side we
allow for a more useful representation of a system, on

the other side the establishment of traceability links

between requirements and code is complex.

In the area of self-managed software [29], a three-
layer architecture is proposed [45] to combine goals with

software components. This approach is based upon a

Sense-Plan-Act architecture made up of three layers:

the goal management layer defines system goals, the
change management layer executes plans and assem-

bles a configuration of software components, the com-

ponent layer handles reactive control concerns of the
components. Our proposal exploits a richer goal mod-

elling language based on means-end reasoning rather

than plan composition, and enacts a reconfiguration
processes that takes into account agents’ autonomy.

Existing work in AI planning includes algorithms for
reconfiguration. CPEF (Continuous Planning and Ex-

ecution Framework) [33] combines reasoning and plan-

ning systems into a comprehensive framework that sup-

22 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

ports execution, monitoring, evaluation, and repair of

plans at runtime. CPEF uses different models to guide
agents reconfiguration, and defines an initial rough plan

that is continuously refined rather than selecting the

most adequate based on some criteria (e.g., soft-goals).
A similar approach is taken in [30], where plans

are reconfigured by adding new actions (refinement)

and removing obstacles (unrefinement) using heuristics.
The same authors propose the Action Resource Frame-

work [31] to characterize systems that perform contin-

ual planning based on the production and usage of re-

source by actions. These two works rely on a sound
algorithmic theory that ensures efficiency and quality

of plans; differently, we aim to provide a comprehen-

sive framework to engineer self-reconfiguring systems—
which might exploit these approaches.

Decker and Lesser propose a family of algorithms

that enable coordination in multi-agent systems called
Generalized Partial Global Planning (GPGP) [19]. This

approach applies to heterogeneous agents that cooper-

ate to perform a set of tasks. Planning is based on the

notion of episode: a set of tasks each with a deadline.
Their algorithms can be used during reconciliation to

generate variants. However, unlike us, they do not con-

sider the autonomy of the agents: they presume agents
can be assigned tasks.

MADAM [22] considers self-adaptivity for mobile

systems in response to context changes. They exploit
architecture models to keep track of the current system

configuration, and use utility functions to define the

policies that lead adaptation. Their approach is very

specific, both in application scenarios and in the adap-
tation triggers. By contrast, we exploit state-of-the-art

requirements models rather than generic policies.

9 Conclusions and future directions

We propose an architecture for adaptive socio-technical

systems. The architecture uses a set of models that rep-

resent the correct behaviour of the system in terms of
the requirements of participating agents. The architec-

ture also collects data about changes in the operational

environment and diagnoses failures by checking moni-
tored data against requirements models. Once a failure

is identified, our architecture tries to reconcile the be-

haviour of the system with a correct one. In doing so
it considers that an STS is made up of autonomous

and uncontrollable agents, which cannot be forced to

execute tasks. A key element of reconciliation plans is

the establishment of social dependencies between ac-
tors. An existing STS can be reengineered to exploit

our proposed architecture by adding a new agent whose

goal is to support other participants.

The paper (i) presents the logical view on the ar-

chitecture for self-reconfigurable STSs; (ii) defines the
set of requirements models used at runtime to repre-

sent correct behaviour; (iii) introduces algorithms to

perform diagnosis and reconfiguration; (iv) describes a
prototype implementation of our architecture; (v) ap-

plies the prototype to a smart-home case study and

evaluates the framework’s scalability; and (vi) shows
how an existing STS can be reengineered to exploit

our architecture. The implementation shows the feasi-

bility of our conceptual architecture. The evaluation on

the case study highlights its applicability to a real-life
scenario. Scalability experiments demonstrate that the

prototype can be effectively used for STS with medium-

sized requirements models.

Our approach suffers from some limitations, which
open the way for future research directions:

– Customization: our approach focuses on reconfig-

uration in response to failures and under-perfor-
mance. However, a major aspect of STSs is that

human agents have very different preferences and

skills. These specificities should be taken into ac-
count when reconfiguring an STS;

– Requirements evolution: we assume here that re-

quirements do not change over time. An orthogonal

aspect to be addressed by future work is reconfigu-
ration in response to the evolution of requirements;

– Complex requirements : requirement types might be

supported. For instance, goal types (maintain, cease,
avoid, like in KAOS [18]) would enrich the expres-

siveness of the requirements language. Another di-

mension to consider comprises complex temporal re-
lations and goal durations;

– Extensive evaluation: first, to determine if the ap-

proach has general applicability, it shall be applied

to several case studies in different areas. Second, the
evaluation methodology has to be systematic and in-

clude automated generation of test cases, feedback

from users, requirements model validation;
– Heuristics : adaptation performance is a crucial fac-

tor to guarantee prompt response to threats. Thus,

diagnosis and reconfiguration algorithms should as
fast as possible. Solution optimality can be sacrificed

to increase performance. Ad-hoc heuristics might be

developed to generate good-enough solutions;

– User intefaces : our approach does not focus on how
users interact with technical systems. The successful

operation of an STSs largely depends on the quality

of the user interfaces, which might be either graph-
ical or in the spirit of disappearing computing.

Adaptive Socio-Technical Systems: A Requirements-Based Approach 23

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based Soft-
ware Modeling and Analysis: Tropos-based Approach. In:
Q. Li, S. Spaccapietra, E. Yu, A. Olivé (eds.) Proceedings
of the 27th International Conference on Conceptual Mod-
eling (ER 2008), LNCS, vol. 5231, pp. 169–182. Springer
(2008)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal-based Frame-
work for Contextual Requirements Modeling and Anal-
ysis. Requirements Engineering 15(4), 439–458 (2010).
URL http://dx.doi.org/10.1007/s00766-010-0110-z

3. Baresi, L., Pasquale, L.: Live Goals for Adaptive Ser-
vice Compositions. In: Proceedings of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2010), pp. 114–123 (2010).
DOI http://doi.acm.org/10.1145/1808984.1808997

4. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for
Requirements-driven Adaptation. In: Proceedings of the
18th International IEEE Requirements Engineering Con-
ference (RE 2010) (2010)

5. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein,
A., Letier, E.: Requirements Reflection: Requirements
as Runtime Entities. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engi-
neering (ICSE 2010), pp. 199–202. ACM (2010)

6. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Program-
ming Multi-Agent Systems in AgentSpeak using Jason.
John Wiley & Sons (2007)

7. Bratman, M.E.: Intention, Plans, and Practical Rea-
son. Harvard University Press Cambridge, Massachusetts
(1987)

8. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., My-
lopoulos, J.: Tropos: An Agent-Oriented Software Devel-
opment Methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

9. Bryl, V., Giorgini, P.: Self-Configuring Socio-Technical
Systems: Redesign at Runtime. International Transac-
tions on Systems Science and Applications 2(1), 31–40
(2006)

10. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable
Functions in ASP: Theory and Implementation. In: Pro-
ceedings of the 24th International Conference on Logic
Programming (ICLP 2008), LNCS, vol. 5366, pp. 407–
424. Springer (2008)

11. Campadello, S., Compagna, L., Gidoin, D., Holtmanns,
S., Meduri, V., Pazzaglia, J.C.R., Seguran, M., Thomas,
R.: Serenity Deliverable A7.D1.1: Scenario Selection and
Definition (2006)

12. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic
Computing through Reuse of Variability Models at Run-
time: The Case of Smart Homes. IEEE Computer 42(10),
37–43 (2009)

13. Chess, D.M., Segal, A., Whalley, I., White, S.R.: Unity:
Experiences with a Prototype Autonomic Computing
System. In: Proceedings of the 1st IEEE International
Conference on Autonomic Computing (ICAC 2004), pp.
140–147. IEEE Computer Society (2004)

14. Clark, J., et al.: XSL Transformations (XSLT) Version
1.0. W3C Recommendation 16(11) (1999)

15. Cohen, P.R., Levesque, H.J.: Intention is Choice with
Commitment. Artificial Intelligence 42(2-3), 213–261
(1990)

16. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Software Self-
Reconfiguration: a BDI-based Approach. In: Proceed-
ings of the 8th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2009), pp.
1159–1160. IFAAMAS (2009)

17. Damus, C.W.: Implementing Model Integrity in EMF
with MDT OCL. Eclipse Corner Articles, online at:
http://www.eclipse.org/articles/article.php?file=Article-
EMF-Codegen-with-OCL/index.html (2007)

18. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-
directed Requirements Acquisition. Science of computer
programming 20(1-2), 3–50 (1993)

19. Decker, K.S., Lesser, V.R.: Designing a Family of Co-
ordination Algorithms. In: Proceedings of the 1st In-
ternational Conference on Multi-Agent Systems (ICMAS
1995), pp. 73–80 (1995)

20. Emery, F.E.: Characteristics of Socio-Technical Systems.
Tech. Rep. 527, London: Tavistock Institute (1959)

21. Feather, M.S., Fickas, S., van Lamsweerde, A., Ponsard,
C.: Reconciling System Requirements and Runtime Be-
havior. In: Proceedings of the 9th International Work-
shop on Software Specification and Design (IWSSD’98),
pp. 50–59. IEEE Computer Society Washington, DC,
USA (1998)

22. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund,
K., Gjorven, E.: Using Architecture Models for Runtime
Adaptability. IEEE Software 23(2), 62–70 (2006). DOI
http://dx.doi.org/10.1109/MS.2006.61

23. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings
of the 1987 SIGMOD Annual Conference, pp. 249–259
(1987)

24. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl,
B., Steenkiste, P.: Rainbow: Architecture-based Self-
Adaptation with Reusable Infrastructure. IEEE Com-
puter 37(10), 46–54 (2004). DOI 10.1109/MC.2004.175

25. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design
Science in Information Systems Research. MIS Quarterly
28(1), 75–105 (2004)

26. Horn, P.: Autonomic Computing: IBM’s Perspective on
the State of Information Technology. Talk given at IBM
TJ Watson Labs, NY (2001)

27. Hui, B., Liaskos, S., Mylopoulos, J.: Requirements Anal-
ysis for Customizable Software Goals-Skills-Preferences
Framework. In: Proceedings of the 11th IEEE Interna-
tional Conference on Requirements Engineering (RE’03),
pp. 117–126. IEEE Computer Society (2003)

28. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the
Core Ontology and Problem in Requirements Engineer-
ing. In: Proceedings of the 16th IEEE International Con-
ference on Requirements Engineering (RE 2008), pp. 71–
80 (2008)

29. Kramer, J., Magee, J.: Self-Managed Systems: an Archi-
tectural Challenge. In: Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE 2007),
pp. 259–268. IEEE Computer Society (2007)

30. van der Krogt, R., de Weerdt, M.: Plan Repair as an Ex-
tension of Planning. In: Proceedings of the 2005 Interna-
tional Conference on Automated Planning & Scheduling
(ICAPS 2005), pp. 161–170 (2005)

31. van der Krogt, R., de Weerdt, M., Witteveen, C.: A Re-
source Based Framework for Planning and Replanning.
Web Intelligence and Agent Systems 1(3), 173–186 (2003)

32. van Lamsweerde, A., Letier, E.: Handling Obstacles in
Goal-oriented Requirements Engineering. IEEE Transac-
tions on Software Engineering 26(10), 978–1005 (2000)

33. Myers, K.L.: CPEF: A Continuous Planning and Execu-
tion Framework. AI Magazine 20(4), 63–69 (1999)

34. Object Management Group: Software & Systems Pro-
cess Engineering Metamodel specification (SPEM) Ver-
sion 2.0. Tech. rep. (2008)

24 Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos

35. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D.S., Wolf, A.L.: An Architecture-Based Approach to
Self-Adaptive Software. IEEE Intelligent Systems 14(3),
54–62 (1999)

36. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-
based Runtime Software Evolution. In: Proceedings of
the 20th International Conference on Software Engineer-
ing (ICSE 1998), pp. 177–186 (1998)

37. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.:
High Variability Design for Software Agents: Extend-
ing Tropos. ACM Transactions on Autonomous
and Adaptive Systems 2(4), 16 (2007). DOI
http://doi.acm.org/10.1145/1293731.1293736

38. Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Be-
yond Human-Computer Interaction. John Wiley (2002)

39. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents
within a BDI-Architecture. In: Proceedings of the 2nd In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’91), pp. 473–484. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA (1991)

40. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to
Practice. In: Proceedings of the 1st International Confer-
ence on Multi-Agent Systems (ICMAS-95), pp. 312–319.
San Fransisco, USA (1995)

41. Robinson, W.N.: A Requirements Monitoring Framework
for Enterprise Systems. Requirements Engineering 11(1),
17–41 (2006)

42. Sardina, S., Padgham, L.: Goals in the Context of BDI
Plan Failure and Planning. In: Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2007), pp. 16–23 (2007)

43. Singh, M.P.: Social and Psychological Commitments in
Multiagent Systems. In: AAAI Fall Symposium on
Knowledge and Action at Social and Organizational Lev-
els, pp. 104–106 (1991)

44. Singh, M.P.: An Ontology for Commitments in Multia-
gent Systems: Toward a Unification of Normative Con-
cepts. Artificial Intelligence and Law 7(1), 97–113 (1999)

45. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From
Goals to Components: a Combined Approach to Self-
Management. In: Proceedings of the 2008 ICSE Work-
shop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2008), pp. 1–8 (2008)

46. Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: An Auto-
mated Approach to Monitoring and Diagnosing Require-
ments. In: Proceedings of the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE’07), pp. 293–302. ACM New York, NY, USA (2007)

47. Wang, Y., Mylopoulos, J.: Self-repair Through Recon-
figuration: A Requirements Engineering Approach. In:
Proceedings of the 24th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’09),
pp. 257–268. IEEE Computer Society (2009)

48. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B., Bruel,
J.M.: RELAX: a Language to address Uncertainty in Self-
adaptive Systems Requirement. Requirements Engineer-
ing 15(2), 177–196 (2010)

49. Yu, E.S.K.: Modelling Strategic Relationships for Pro-
cess Reengineering. Ph.D. thesis, University of Toronto,
Toronto, Ont., Canada, Canada (1996)

