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Abstract—We address the challenge of requirements engineer-
ing for sociotechnical systems, wherein humans and organizations
supported by technical artifacts such as software interact with
one another. Traditional requirements models emphasize the
goals of the stakeholders above their interactions. However, the
participants in a sociotechnical system may not adopt the goals of
the stakeholders involved in its specification. We motivate, Protos,
a requirements engineering approach that gives prominence to
the interactions of autonomous parties and specifies a sociotech-
nical system in terms of its participants’ social relationships,
specifically, commitments. The participants can adopt any goal
they like, a key basis for innovative behavior, as long as they
interact according to the commitments. Protos describes an ab-
stract requirements engineering process as a series of refinements
that seek to satisfy stakeholder requirements by incrementally
expanding a specification set and an assumption set, and reducing
requirements until all requirements are accommodated. We
demonstrate this process via the London Ambulance System
described in the literature.

Index Terms—Requirements, refinement, architecture, commit-
ments, teams, protocols

I. INTRODUCTION

We define a SocioTechnical System (STS) as one involving
interactions between humans and organizations (principals)
facilitated by technical artifacts, including software. STSs
under this definition include two or more autonomous parties,
who ordinarily act and interact in ways that promote their
respective agendas. Thus the participants may act in ways that
are unexpected by others.

We further restrict our attention to STSs whose rules of en-
counter are formally represented, whether created via explicit
engineering or otherwise. The benefit of an “institutionalized”
STS is that its explicit rules of encounter facilitate reason-
ing by (prospective) participants about whether and how to
participate in the STS. Examples of such STSs can be found
in many domains, such as healthcare, finance, transportation,
and commerce. STSs, especially those with explicit rules of
encounter, provide a conceptual basis for innovation by the
participants. (Other STSs may also support innovation but we
limit our claims to institutional STSs.)

Innovations in STSs include the emergence of new social
practices. For example, beginning from goals of passengers
and transporters, we might design an airport as a hub where
they can execute their transactions. However, an enterprising
person could invent the notion of an airport as a venue

for shopping in general (as Brendan O’Regan did in 1947).
Similarly, the goals of providing capital for new ventures yield
a market for public offerings of stocks, which have morphed
into the financial systems of today. Notice that not every
innovation is desirable and in general some participants would
gain and some would lose from any innovation.

Classical Requirements Engineering (RE) approaches fail
to sufficiently support innovation and thus do not help realize
the innovative potential of STSs. Classical RE begins from an
elicitation of the goals of stakeholders, followed by an analysis
phase that produces a specification of a software system that
would satisfy those goals given some assumptions about its
operating environment. A limitation of such approaches is that
the goals of the stakeholders used as a basis for modeling may
have little in common with the goals of the participants in
the STS (whom we call “principals”). We posit that a goal-
based treatment of STSs undercuts innovation. It offers up the
following dilemma. Either the participants innovate but in an
ad hoc manner (such as on social media today, where memes
and conventions such as emoticons emerge sporadically) or the
participants are regimented to the original goals and do not
innovate at all. Regimentation is not viable for autonomous
participants. In practice, ad hoc innovation is what we see
most often.

Motivation. Our research question is as follows: How
can RE facilitate innovation in STSs? That is, how may the
stakeholders of an STS systematically produce a specification
that facilitates innovation?

We posit that the RE effort be broken into two logically
distinct phases: (1) coming up with the rules of encounter
in an STS and (2) given the rules of encounter, coming up
with models of participants (e.g., their policies) that determine
how they participate. A common representation of the rules
of encounter ties these two phases together. The first phase
is carried out jointly by (or on behalf of) the stakeholders
specifying the STS. The second phase is carried out separately
by (or on behalf of) stakeholders for each participant.

A major benefit of the aforementioned common representa-
tion is that not only does it enable the interoperation needed
to realize the STS but also decouples the participants with
respect to what is not specified, and thus frees them up to
innovate. As long as they comply with the rules of encounter,
the innovation is not ad hoc.



STSs are exemplified by many practical settings. Let us
consider a healthcare system, which we understand as involv-
ing interactions among physicians, nurses, patients, hospitals,
insurance sellers, and regulatory bodies. There are two poten-
tial ways one can approach the requirements engineering of
such a system given stakeholder requirements. The traditional
or regimented approach is to specify a software module that
all the principals would use. The other or interaction-oriented
approach involves is to specify the interaction protocols that
would support meeting the requirements.

An interaction protocol would describe how any principal
adopting one or more roles, such as hospital or physician,
would interact with others. In particular, the protocol would
specify the social expectations that principals playing one
of the roles could have of principals playing other roles.
Each principal would be free to develop its own software
in accordance with its requirements. For example, different
principals playing the role of hospital could adopt different
implementations and policies by which they conduct their
business. We refer to each principal’s software as its agent.

Traditional works on requirements engineering (RE) and
methodologies [1], [2] generally tend to be regimented: they
address the specification of software conceptualized as a ma-
chine that resides within STSs, not the sociotechnical system
itself. Approaches such as Tropos [3] begin from modeling the
sociotechnical system, but end up with a regimented software
system.

We refine the above question further to emphasize the foun-
dational aspects of RE, namely, What is a suitable formulation
and formalization of the STS design space that is conducive to
the autonomy both of stakeholders and principals? To focus
on the representational aspects, we place as out of our scope
the important challenges of negotiation among stakeholders
and of collaborative and concurrent engineering of an STS.

Contributions. We make the following contributions:
• We introduce a way of specifying an STS as a protocol

in terms of roles and their social commitments [4] to each
other. Our approach applies to social expectations generally,
though for concreteness, we focus on commitments here.

• We present a model for requirements satisfaction in which
stakeholder requirements are satisfied by a protocol speci-
fication, modulo any stated assumptions.

• We propose a generalization of one of the foundational
axioms of RE that accommodates the separation of concerns
between specifying an STS and an individual principal
specifying its agent.

• We present an abstract design process for STSs that extends
the classical idea of refinement. We refer to this extended
notion of refinement as social refinement to emphasize the
refinement of requirements into commitment-based specifi-
cations. We illustrate the process in a systematic case study
of the London Ambulance System.

Organization. The rest of the paper is organized as follows.
Section II introduces background on protocols and require-

ments refinement. Section III revisits the traditional RE prob-
lem to accommodate STSs and shows that specifying STSs and
specifying agents are two independent problems. Section IV
motivates and formalizes a set of refinement reductions to
obtain STS specifications from stakeholders’ requirements.
Section V applies our approach to the London Ambulance
System. Section VI discusses related work and Section VII
summarizes our contributions, and outlines future directions.

II. BACKGROUND

We adopt a scenario from automobile insurance (based on
Browne and Kellet’s [5] real-life description).

A. Classical Formulation of Requirements

Zave and Jackson [1] characterize RE in terms of A (a set of
domain assumptions), M (a software (machine) specification),
and R (a set of stakeholder requirements). A requirements
engineer’s task is to come up with a software specification
and the domain assumptions that together guarantee that the
requirements are met, which Eq. 1 shows:

A,M ` R (1)

B. Commitment Models

A commitment represents a directed social expectation
between principals. We express a commitment as a four-tuple
C(debtor, creditor, antecedent, consequent): the debtor is
committed to the creditor that if the antecedent holds, the
consequent will hold [6]. A commitment is detached when
its antecedent holds, unless it has timed out. It is discharged
when its consequent holds, unless it has timed out.

Example 1. The insurance company commits to the car owner
to reimburse any damages if the insurance policy is valid:
C(INSURER,CAR OWNER, hasValidInsurance, getReimbursed).

Example 2. If the CAR OWNER has a valid
policy, the above commitment is detached and
the following unconditional commitment holds:
C(INSURER,CAR OWNER, true, getReimbursed).

If the car owner is reimbursed, the insurer’s commitment is
discharged. The commitment is violated if the car owner owns
a valid policy but does not get reimbursed for damages.

A protocol specifies the rules of encounter among principals
adopting roles in it. In general, a commitment is established
by communication from its debtor to its creditor: it is thus
autonomously created and becomes part of the social state of
the interacting parties. However, we concentrate here on the
commitments themselves without regard to the communica-
tions that bring them about. Thus, here, a protocol specifies a
set of commitments, such as in Example 1. By adopting roles
in a protocol, a principal would become the creditor of some
commitments and debtor of others.

Commitments, like goals, are a high-level abstraction. How-
ever, unlike goals, commitments provide a standard of correct-
ness for interactions among principals that is independent of
their mental states. Thus, for example, a particular insurance
company may intend to avoid paying for the damages of a



particular car owner even if the owner has valid coverage. If
the insurance company goes through with its intention, though,
it would violate its commitments to the car owner.

C. Refinement

Refinement is a foundational concept in software engi-
neering [7]. Goal refinement, in particular, is a fundamental
concept for systematically extracting a specification from a set
of requirements, e.g., in Tropos.

Design refinement is a relation between design problems p
and p′, where p′ is an incremental improvement of p, p ↪→ p′,
and a solution for problem p′ also constitutes a solution for
problem p. A design space (P,R↪→, p0) consists of an abstract
set of design problems, P ; a root problem, p0 ∈ P ; and a
refinement relationship R↪→ ⊆ P × P . A root problem is one
that is not a refinement of any other problem.

In Zave and Jackson’s terminology an engineer could begin
from the requirements in R and progressively refine them to
produce an implementable M . Software development, then, is
concerned with implementing M .

III. RE FOR SOCIOTECHNICAL SYSTEMS

Fig. 1: The overall design space for sociotechnical systems.

Figure 1 illustrates the overall design space for STSs as
discussed in Section I. Stakeholders are of two kinds: STS
stakeholders and principals (that is, runtime participants in
the STS). The principals of an STS might have been involved
as STS stakeholders in its design, but that is not necessary.
The innovation opportunity of STSs arises partly because its
principals may never have been imagined as its stakeholders
during design, though the principals should have something
in common with the STS stakeholders. The dark boxes (and
relationships) capture the design space for STS stakeholders.
The light boxes (and relationships) capture an individual
principal’s design space. Whereas STS stakeholders specify
a protocol by refining STS requirements, a principal specifies
an agent from its requirements. The principal, via its agent,
adopts one or more roles in the protocol. By decoupling STS
requirements from principal requirements and concomitantly
decoupling protocol (STS) specifications from agent specifica-
tions, we enable a principal to comply or not with a protocol.
Additionally, a principal may comply with a protocol while
functioning in novel ways, thereby promoting innovation.

Below, for clarity, we identify STS stakeholders with roles
(based on the intuition that stakeholder types and STS roles
would normally coincide) and use proper names to identify
principals. Thus, for example, in an automobile insurance
system, the stakeholders include INSURER, MECHANIC, and
CAR OWNER. Alessia and Cristina are particular mechanics;
Great Insurance Co. is a particular insurance company.

A. Rethinking RE Characterization

The conception of the design space in Figure 1 necessitates
a rethinking of Zave and Jackson’s formulation. Eq. 1 is
adequate for refining the stakeholders’ requirements into a
specification of a machine, i.e., the software that would reside
in an STS. For example, we might specify software that would
support a car owner to file a claim and an insurance staff
member to approve the claim and assign a mechanic. The
formulation captures the essence of regimented approaches,
as illustrated by Example 3.

Example 3. Let stakeholders INSURER and MECHANIC get
together to design software for an automobile insurance STS
(we neglect CAR OWNER for simplicity). Let R1 be the set
of INSURER’s requirements, containing only one requirement:
any replacement parts ordered by a mechanic that are priced
above $500 must be approved by the INSURER. This re-
quirement, following Eq. 1, would be refined into a software
specification that disables for mechanics the functionality of
ordering parts priced over $500 unless INSURER’s approval
is recorded. The specification can be implemented using an
access control module.

If a principal who plays MECHANIC wants to order parts
without the insurance company’s approval (e.g., because of
urgency or because the approver—(staff member)—is on
holiday), the above-mentioned software would not allow the
mechanic to proceed. The mechanic would be forced to wait
for approval—the software, effectively, regiments interactions
[8].

What we would like instead is to come up with a specifica-
tion that captures the essence of the stakeholder requirement
and yet does not regiment the actions of any principal in
the STS. This is possible if stakeholder requirements are
refined into, not a machine, but a protocol specification. Any
principal who adopts a role in the protocol is free to specify
(and implement) its own agent in accordance with its own
requirements. Eq. 2 captures the above intuition. Ag and S
are the sets of agent and protocol specifications, respectively.
Eq. 2 separates the essential nature of the interaction in
the protocol from the autonomous decision-making of the
participants involved in its enactment.

A,Ag , S ` R (2)
Note that when Ag is a singleton and S is thus a null pro-

tocol, Eq. 2 reduces to Eq. 1. Therefore, Eq. 2 generalizes the
traditional requirements specification problem equation, Eq. 1,
to a setting of multiple autonomous principals. Example 4
illustrates Eq. 2.



Example 4. Consider R1 from Example 3. Let S1 be the pro-
tocol specification {C(MECHANIC, INSURER, price(item) >
500, getApproval(item) precedes order(item))}. For simpli-
city, let A1 (the set of assumptions) be empty. Let Ag1 =
{i,m}; and i and m be the agents of Great Insurance Co.
and Alessia, respectively. Suppose Alessia has designed m to
obtain approvals before ordering any parts. The overall system
is correct, that is, A1,Ag1, S1 ` R1.

Example 5. Modify Example 4 such that Alessia’s agent m
never asks for preapproval, so it would violate the above-
mentioned commitment to obtain preapproval. Let’s refer to
this agent as m′ and let Ag ′1 = {i,m′}. Then R1 wouldn’t be
satisfied either, i.e., A1,Ag

′
1, S1 6` R1.

B. Modularity of the Design Space

We can achieve the separation of design spaces illustrated in
Figure 1. A protocol provides a solution for the requirements,
independently of the agents who would ultimately play roles
in that protocol to instantiate the STS. That is, given some
assumptions AS of the domain, protocol S ensures R under the
assumption E that all principals adopting roles in the protocol
satisfy their commitments. In other words, the following holds.

AS , E, S ` R (3)

Example 6. Returning to our example, under the assumption
E (here meaning that any principal playing MECHANIC would
satisfy the commitment to get approval), A1, E, S1 ` R1.

Assuming E during STS design does not mean that any
principal who wants to play a role in the STS must be
compliant. Its purpose is to capture precisely the intuition that
it is the satisfaction of the commitment (and not, for instance,
its creation) that satisfies some requirement. Also note that E
is not relativized to the particular STS (that is why there is no
E1 as there are R1, S1, and A1). The assumption E is purely
formal: it assumes the satisfaction of whichever commitments
there are in the specification; in particular, assuming E is not
a matter of choice for the stakeholders.

We are concerned with the process of designing protocols
from requirements, as in Eq. 3 (and the dark boxes in Fig-
ure 1). Example 7 illustrates how agent specifications, as in
the lighter boxes in Figure 1, fit into the overall requirements
satisfaction argument.

Example 7. We know that A1, E, S1 ` R1. Cristina wants
to play MECHANIC in S1. Cristina’s requirements are Rc and
she wants to design an agent c accordingly. Rc may or may
not contain requirements imposed by the protocol. Let’s say
Rc contains the requirements and c is specified appropriately
following Eq. 1, that is, Ac, c ` Rc. As before, let i (Great
Insurance Co.’s agent) play INSURER and, further, that Ai, i `
Ri. Putting everything together, we get Ai, Ac, A1, {i, c}, S1 `
R1. This is like Eq. 2: A = Ai ∪ Ac ∪ A1; Ag = {i, c},
and S = S1. (The assumption E does not figure in the final
equation as it is “replaced” by actual agent specifications.)

Example 7 demonstrates that even the simple modifica-
tion of introducing a protocol yields interesting payoffs. The
protocol provides a precise description of the nature of the
interactions among principals but leaves open the possibility
of enacting the protocol in multiple ways based on their
own requirements, thus enabling innovation. For example, this
approach accommodates heterogeneous software for different
mechanics, and enables ordering before getting the approval
(although a mechanic who does so may lose money if the
insurance company denies the authorization).

IV. SOCIAL REFINEMENT

We seek a theory of design for STSs founded on the concept
of refinement. Since the concepts in terms of which STSs
are conceived (e.g., roles, protocols, and commitments) are
fundamentally different from those of traditional software en-
gineering(e.g., goals, functions, and actions for requirements,
statements and variables for programs), our task is to define
new refinements that are specific to STS design problems.

Below, we introduce our model elements, use them to define
a design configuration, and introduce a design process.

A. Model Elements

The following are the key primitives of Protos.
Proposition, which represents a state of the world in the

domain of the STS. A proposition may be atomic or
composite (representing the conjunction or disjunction of
propositions). The set of all propositions is P .

Stakeholder, an autonomous entity present during the design
process of an STS.

Team, one or more stakeholders who function as a cohesive
unit for design purposes. That is, no team is empty. We
denote that τi is a subteam of τ as τi v τ . We write a
team τ that comprises subteams τi as τ =

⊔
i τi. We do

not consider the subtleties of organizational structures,
though our approach could be enhanced to incorporate
such models. The set of all teams is T , and includes
individual stakeholders as unary terms.

Commitment, a social relationship between a debtor team
and a creditor team, referring to an antecedent proposition
and a consequent proposition. The set of all commitments
is C. Thus, C ⊆ T × T × P × P .

Refinement, a reflexive, transitive, antisymmetric relation be-
tween propositions. We notate refinement as ↪→ where
a ↪→ b means that a refines into b (that is, b is a
refinement of a). Thus, ↪→⊆ P × P . The refinement
of commitments and other constructs follows from the
above. We lift refinement to design configurations where
one configuration refines into another.

Conflict, an irreflexive, symmetric relationship over proposi-
tions. We notate conflict as ⊕ where p⊕ q means that p
conflicts with q. Thus, ⊕ ⊆ P × P .

Requirement, a representation of an expectation that a team
would like to achieve a proposition. The set of all
requirements is R. R ⊆ T × P . The notation R(τ, π)
means that (τ, π) ∈ R.



Onus, a representation of the assumption that a team takes
on the onus of ensuring a proposition. O(τ, π) means
that team τ takes on the onus for ensuring proposition π.
We include onus assertions with other assumptions.

B. Design Configurations

We use these model elements to talk about design episodes.
A design episode proceeds from one design configuration to
another by systematically applying refinements. We define the
following concepts to help us describe design episodes.

Requirements are given as R, a finite set of assertions descri-
bing what each team (stakeholder) wants to achieve in the
STS. The teams are autonomous, each holding a stake in
its own requirements, though a team’s requirements may
hold for its subteams. Thus, R ⊆ R.

Specifications are given as S, a finite set of assertions desc-
ribing how the STS to be will function. As motivated
above, these assertions describe the interactions in the
STS but not the internal details of any of its participants.
The interactions are naturally captured as social relation-
ships among the participants. Thus, S ⊆ C.

Domain assumptions are given as A, a finite set of assertions
that must hold true in order to ensure that the specifica-
tions will satisfy the requirements. The set of possible
domain assumptions is A = {p|p ∈ P}∪{O(τ, p)|τ ∈ T
and p ∈ P} ∪ {a ↪→ b|a, b ∈ P}.

Needs are given as N , a finite set of requirements. That is,
N ⊆ R. N represents the set of requirements that are yet
to be addressed during the design episode.

The foregoing leads to a definition of a design configuration.

Definition 1. Given a set of stakeholder teams T and a set
of propositions P , a design configuration is a tuple 〈S,A,N〉,
where N ⊆ R; S ⊆ S; and A ⊆ A.

Table I contains an illustration of the complete pro-
cess of deriving specifications from requirements for an
automobile insurance scenario. C, I, M, G, and F repre-
sent the stakeholders—CAR OWNER, INSURER, MECHANIC,
MANAGER, and FINANCE, respectively. MANAGER and
FINANCE are subteams of INSURER; the former approves the
payments and the latter makes the transactions. In Table I, the
S, A, and N cells of each row constitute a design configuration.
We refer to the table to illustrate our formal definitions.

The following definitions are needed in Section IV-C to
specify how a design process may begin, terminate, and
whether its outcome is consistent and meets the requirements.

Definition 2. A design configuration 〈S,A,N〉 is initial for
requirements R if and only if N = R, S = ∅, and A = ∅.

In Table I, Row 1 refers to the initial design configuration.
CAR OWNER’s requirement is to be prepared for the emergen-
cies: R(c, prepared), INSURER has the requirement of selling
insurance: R(I, sold), and MECHANIC wants to get paid for
his repair services.

Definition 3. A design configuration 〈S,A,N〉 is final if and
only if N = ∅.

In Table I, Row 8 refers to the final design configuration.

Definition 4. A design configuration 〈S,A,N〉 is consistent
if and only if A ∪ S 6` false.

Definition 5. A design configuration 〈S,A,N〉 satisfies re-
quirements R if and only if A ∪ S ` R.

C. Design Process

The requirements of stakeholders feed a design (refinement)
process, which we imagine as being conducted by stakeholders
and facilitated by requirements engineers. The output of the
process is an STS specification, and a set of domain assump-
tions. We model the design process as iteratively taking a
design configuration and producing another, refined, design
configuration through an application of one of the above
reductions, beginning from an initial configuration and ending
in a final configuration.

We initialize a design configuration from the requirements
by treating each requirement as the technical debt of the
relevant team. The design process iteratively addresses each
need. A team may take on the onus for any of its needs.
Alternatively, it may obtain a commitment from another team,
in which case its need would change to the antecedent of the
commitment. A design episode concludes when a configura-
tion is obtained that resolves all needs of all teams.

Potentially, more than one reduction may apply on a given
design configuration. That is, the design space can be large.
Some explorations of it may end up in failure. An exploration
is consistent when it constitutes a series of refinements from
an initial to a final consistent configuration.

Definition 6. A design step takes as input a configuration
〈S,A,N〉 and produces a configuration 〈S′, A′, N ′〉 provided
we can conclude 〈S,A,N〉 ↪→ 〈S′, A′, N ′〉.

In Table I, going from one row to the next is a design step
(the latter row is annotated with the applied reduction from
Section IV-D).

Definition 7. A design path for requirements R is a finite
series of configurations 〈S0, A0, N0〉 . . . 〈Sn, An, Nn〉 where
(1) 〈S0, A0, N0〉 is initial for R; (2) 〈Sn, An, Nn〉 is final
and consistent; and (3) for each i, 0 ≤ i < n, 〈Si, Ai, Ni〉
↪→〈Si+1, Ai+1, Ni+1〉 is a design step.

Table I shows a design path from Row 1 to Row 8.

Definition 8. A design path 〈S0, A0, N0〉 . . . 〈Sn, An, Nn〉
for requirements R is sound if and only if 〈Sn, An, Nn〉 is
consistent and 〈Sn, An, Nn〉 satisfies R.

In Table I, the design path from Row 1 to Row 8 is sound.
Soundness relies on Theorem 1 that establishes that design
paths following the reductions below are sound.

Recall Eq. 3 states that AS , E, S ` R. It captures the
problem of specifying a protocol from requirements. The



TABLE I: Illustrating refinement on the insurance scenario
Specification (S) Assumptions (A) Needs (N) Refinement type

1 ∅ ∅ R(C, prepared),
R(I, sold), R(M, paid)

2 ∅ A1 = {prepared ↪→ covered ∧
eme}

R(C, covered ∧ eme),
R(I, sold), R(M, paid)

Need refinement

3 C(C, I, covered , sold),
C(I, C, sold , covered)

A1
R(C, eme ∧ sold),
R(I, covered), R(M, paid)

Cyclic commitments

4 C(C, I, repaired , data ∧ fee),
C(I, C, data ∧ fee, repaired)

A2 = A1 ∪ {sold ↪→ data ∧
fee, covered ↪→ repaired}

R(C, eme ∧ data ∧ fee),
R(I, repaired), R(M, paid)

Commitment refinement i

5 C(C, I, found ∧ fixed , data ∧ fee),
C(I, C, data ∧ fee, found ∧ fixed)

A3 = A2 ∪ {repaired ↪→
found∧ fixed}

R(C, eme ∧ data ∧ fee),
R(I, found ∧ fixed),
R(M, paid)

Commitment refinement i

6
C(C, I, found ∧ fixed , data ∧ fee),
C(I, C, data ∧ fee, found ∧ fixed),
C(M, I, paid , fixed), C(I, M, fixed , paid)

A3

R(C, eme ∧ data ∧ fee),
R(I, found ∧ paid),
R(M, fixed)

Cyclic commitments

7
C(C, I, found ∧ fixed , data ∧ fee),
C(I, C, data ∧ fee, found ∧ fixed),
C(M, I, paid , fixed), C(I, M, fixed , paid)

A4 = A3 ∪ {G < I, F <
I, paid ↪→ transfer ∧ app}

R(C, eme ∧ data ∧ fee),
R(I, found), R(M, fixed),
R(G, app), R(F, transfer)

Subteams

8
C(C, I, found ∧ fixed , data ∧ fee),
C(I, C, data ∧ fee, found ∧ fixed),
C(M, I, paid , fixed), C(I, M, fixed , paid)

A5 = A4 ∪{O(C, eme ∧ fee ∧
data), O(I, found), O(M, fixed),
O(G, app), O(F, transfer)}

∅ Onus

design process described above conforms to Eq. 3. Sn and An

in the design path for R map to S and AS∪E, respectively. If
the design path is sound, we obtain the relation Sn, An ` R.

D. Social Refinement Types

Below, we list social refinement types supported by Protos.
(Here the set operators associate to the left and to reduce
clutter we do not place assertions in quotations.)

Need refinement: Based on proposition refinement. The
intuition is that if p refines to p′, a need for p can be met
by meeting a need for p′. For soundness, we must record the
assumption that p refines to p′.

〈S,A,N ∪ {R(τ, p)}〉 ↪→
〈S,A ∪ {p ↪→ p′}, N \ {R(τ, p)} ∪ {R(τ, p′)}〉

Notice that we write the needs set as N ∪{R(τ, p) to ensure
that a need R(τ, p) belongs to the needs set. In the resulting
configuration, we remove R(τ, p) from N to make sure it is
not present in the resulting needs set and introduce the refined
need R(τ, p′) explicitly.

Example 8. Row 2 in Table I is obtained from Row 1 by
refining R(C, prepared) into two other needs, R(C, covered)
and R(C, eme), namely, accident coverage and emergency
response, respectively.

Commitment introduction i: If τ1 has a need for q, τ1 can
address that need by obtaining a commitment from τ0 to τ1
whereby τ0 commits to bringing about q provided p holds.
Here, τ1 takes on the need for p.

〈S,A,N ∪ {R(τ1, q)}〉 ↪→
〈S ∪ {C(τ0, τ1, p, q)}, A,N \ {R(τ1, q)} ∪ {R(τ1, p)}〉

Commitment introduction ii: If τ1 has a need for q, τ1 can
address that need by obtaining a commitment from τ0 to τ1
whereby τ0 commits to bringing about q provided p holds. In

this case, we add an assumption that p will hold.

〈S,A,N ∪ {R(τ1, q)}〉 ↪→ 〈S ∪ {C(τ0, τ1, p, q)},
{A ∪ {p}}, N \ {R(τ1, q)}〉

Commitment refinement i: Based on the refinement of either
or both of its antecedent and consequent. That is, if the
antecedent or consequent of a commitment can be refined, then
so can the commitment. As before, we record the refinements
as assumptions.

〈S ∪ {C(τ0, τ1, p, q)}, A,N ∪ {R(τ1, p)}〉 ↪→
〈S \ {C(τ0, τ1, p, q)} ∪ {C(τ0, τ1, p′, q′)},

A ∪ {p ↪→ p′, q ↪→ q′}, N \ {R(τ1, p)} ∪ {R(τ1, p′)}〉
Notice that, the resulting commitment need not logically

entail the original commitment. For example, a commitment to
provide coffee for payment may be refined into a commitment
to provide coffee for payment of Euros, though the second
commitment is weaker than the original.

Example 9. Row 4 in Table I is obtained by refining the
commitments in Row 3. Specifically, buying a policy is refined
into providing personal data and paying the fee, whereas
providing coverage is refined into repairing the car. The
commitments and needs in Row 4 reflect this refinement.

Commitment refinement ii: Based on the refinement of either
or both of the commitment’s creditor and debtor.

〈S ∪ {C(τ0, τ1, p, q)}, A,N ∪ {R(τ1, p)}〉 ↪→
〈S \ {C(τ0, τ1, p, q)} ∪ {C(τ0′ , τ1′ , p, q)},

A ∪ {τ0′ v τ0, τ1′ v τ1},
N \ {R(τ1, p)} ∪ {R(τ1′ , p)}〉

Cyclic commitments: Given n teams (n ≥ 2) where for each
i, 0 ≤ i < n, team τi has a need for pi, these teams can address
their needs via (cyclic) commitments from τi to τ(i+1 mod n)

whereby τi commits to bringing about p(i+1 mod n) provided
pi holds. Reciprocal commitments are a special case of cyclic



commitments when n = 2.
〈S,A,N ∪

⋃
i

{R(τi, pi)}〉 ↪→

〈S ∪
⋃
i

{C(τi, τ(i+1 mod n), pi, p(i+1 mod n))}, A,

N \
⋃
i

{R(τi, pi)} ∪
⋃
i

{R(τ(i+1 mod n), pi)}〉

Example 10. Row 3 in Table I is obtained from Row 2 by
applying Cyclic Commitments. In Row 2, CAR OWNER and
INSURER need coverage and sale of policies, respectively. To
meet these needs, in Row 3, CAR OWNER commits to buying
a policy if INSURER provides coverage for accidents and
INSURER commits to providing coverage if a policy is bought.
Further, CAR OWNER and INSURER need to buy policy and
provide coverage, respectively.

Subteams: If a team τ has a need p, we can assign pi to
subteams τi; this is appropriate only because we assume that
τi is a subteam of τ .

〈S,A,N ∪ {R(τ, p)}〉 ↪→

〈S,A ∪ {p ↪→
∧
i

pi} ∪
⋃
i

{τi v τ},

N \ {R(τ, p)} ∪
⋃
i

{R(τi, pi)}〉

Example 11. Row 7 in Table I is obtained by applying Sub-
teams. The payment need R(I, paid) is refined into approval
and transaction, namely, R(I, app) and R(I, transfer). The
manager and the finance department, which are the insurer’s
subteams, adopt these needs, that is, R(G, app) and R(F, paid).

Onus: A team takes on the onus for some need locally; that
is, it decides not to delegate that need to another team.

〈S,A,N ∪ {R(τ, p)}〉 ↪→
〈S,A ∪ {O(τ, p)}, N \ {R(τ, p)}〉

Example 12. Row 8 is obtained by applying Onus: all
stakeholders take on the onus for their remaining needs.

Composition: Refinements compose in that, if part of a
configuration is refined through a particular operation, so is
an entire configuration through the same operation.
〈S′, A′, N ′〉 ↪→ 〈S′′, A′′, N ′′〉 (S ∪ S′ ∪A ∪A′) 6` false

〈S ∪ S′, A ∪A′, N ∪N ′〉 ↪→ 〈S ∪ S′′, A ∪A′′, N \N ′ ∪N ′′〉

E. Logic of Design Elements

For simplicity, we assume that a logic is available for
reasoning about the various elements of a design configuration.
In particular, this logic provides an inference relation, notated
`. The various elements of a design configuration are closed
under `, as specified by Table II.

F. Example of Design Paths

Figure 2 illustrates the above definitions. The root is the
requirement. Immediately below the root is the initial design
configuration. Each of the leaves is a final configuration and
satisfies the requirements. Each configuration is consistent.

TABLE II: The underlying logic is propositional logic
augmented with the following axioms pertaining to the
symbols introduced in Protos.

Conflict means we cannot
satisfy both

p p⊕ q
¬q

A subteam’s stronger need
satisfies a team’s need: AND

R(τ ′, p ∧ q) τ ′ v τ
R(τ, p)

A subteam’s stronger need
satisfies a team’s need: OR

R(τ ′, p) τ ′ v τ
R(τ, p ∨ q)

Subteams together cover
needs that a team’s need
refines to

∧
i

R(τ i, pi) p ↪→
∧
i

pi
∧
i

τ i v τ

R(τ, p)

If a team takes on an onus,
the corresponding need is
covered

O(τ, p)

R(τ, p)

A conditional commitment
along with its antecedent
cover its consequent

R(τ, p) C(τ ′, τ, p, q)

R(τ, q)

An unconditional
commitment covers its
consequent

C(τ ′, τ, true, q)

R(τ, q)

Each path is a well-formed design path and is sound for the
requirements. The edge labels are informal descriptions.

R(y, q)

S = {}; A = {}; N = {R(y, q)}

S = {C(x, y, p, q)}; A = {}; N = {R(y, p)}

S = {C(x, y, p, q)}; A = {O(y, p)}; N = {}

Accept onus

Introduce commitment

S = {}; A = {O(y, q)}; N = {}

Do it in-house

Begin design

Fig. 2: Paths through the design space.

G. Soundness

We now establish the soundness of our formal model.

Theorem 1 (Soundness). Let P = 〈S0, A0, N0〉
. . . 〈Sn, An, Nn〉 be a design path for requirements R.
Then P is sound.

PROOF SKETCH. Establish the invariant that A∪S∪N ` R
by structural induction: it holds for an initial configuration
by construction and for each subsequent configuration by
inspection of the reductions. In a final configuration, N = ∅:
hence we have the result.

The above reductions do not consider conflict. The follow-
ing reduction ensures that if τ1 and τ2 (could be the same



TABLE III: A portion of the design process during the modeling session on the London Ambulance System
Step Specification Assumptions Needs Refinement

1 C(CT, SC, address ∧ status, incidentTaken)

A1 ={incidentReported ↪→
address ∧ status, O(SC,
address ∧ status), O(CT,
incidentTaken)}

R(SC, ambReceived),
R(AC, mobilityInfoSent),
R(RO, resourceAllocated),
R(RA, infoReported)

Onus

2 C(CT, SC, address ∧ status, incidentTaken)
C(CT, RA, incidentTaken, infoReported) A1

R(SC, ambReceived),
R(AC, mobilityInfoSent),
R(RO, resourceAllocated),
R(CT, infoReported)

Commitment introduction ii

3 C(CT, SC, address ∧ status, incidentTaken)
C(CT, RA, incidentTaken, infoReported)

A2 = A1 ∪ {O(CT,
infoReported)}

R(SC, ambReceived),
R(AC, mobilityInfoSent),
R(RO, resourceAllocated)

Onus

4

C(CT, SC, address ∧ status, incidentTaken)
C(CT, RA, incidentTaken, infoReported)
C(RA, RO, infoReported , resourceAllocated)
C(RO, AC, resourceAllocated ,mobilityInfoSent)
C(AC, SC,mobilityInfoSent , ambReceived)

A2

R(AC, ambReceived),
R(RO, mobilityInfoSent),
R(RA, resourceAllocated)

Commitment introduction ii

5

C(CT, SC, address ∧ status, incidentTaken)
C(CT, RA, incidentTaken, infoReported)
C(RA, RO, infoReported , resourceAllocated)
C(RO, AC, resourceAllocated ,mobilityInfoSent)
C(AC, SC,mobilityInfoSent , ambReceived)

A3 = A2 ∪ {O(AC,
ambReceived),
O(RO, mobilityInfoSent),
O(RA, resourceAllocated)}

∅ Onus

SC: service consumer, CT: call taker, RA: resource allocator, RO: radio operator, AC: ambulance crew

team) have conflicting needs, at most one of those needs can
be pursued.

Conflict introduction: Introduce an assumption of a conflict
into a design configuration.

〈S,A,N ∪ {R(τ1, p),R(τ2, q)}〉 ↪→
〈S,A ∪ {p⊕ q}, N \ {R(τ2, q)} ∪ {R(τ1, p)}〉

If we include the above reduction, Theorem 1 fails: although
consistency is preserved, we can no longer establish that
the original requirements are satisfied, because some may be
dropped along the way. Incorporating conflict would lead us to
formalize satisficing [9]. Then we may seek to establish that
a design process satisfices the stated requirements.

Let us see how Protos would support design in the pre-
sence of conflicts. Imagine in Table I that CAR OWNER has
an additional requirement concerning data privacy, that is,
R(C, privacy). Conceptually, this requirement would conflict
with the disclosure of personal data, that is, R(C, disclosure).
In Protos, the stakeholder would introduce an assumption
that disclosure ⊕ privacy via Conflict Introduction. Then, by
Conflict from Table II, we are guaranteed that one of the two
propositions, i.e., one of the two requirements, cannot be met.
In essnce, the design process fails at this point.

V. PRELIMINARY EVALUATION

We conducted a preliminary evaluation via a modeling
session involving modelers other than the authors. To this
end, we recruited eight modelers, all doctoral students in
computing who are familiar with goal modeling, to participate
in our modeling session. At the beginning of the session, we
instructed the participants in Protos concepts, reductions, and
design process.

We instructed the modelers to apply Protos to jointly create
a specification of Kramer and Wolf’s [10] case study of the
London Ambulance System (LAS), which we described for
the modelers. Kramer and Wolf’s LAS scenario includes nine

stakeholders, namely, the service consumer, call taker, call
reviewer, LAS management, ambulance crew, call reviewer,
radio operator, operator at ambulance station, dispatcher, and
resource allocator. The requirement of the service consumer
is to receive an ambulance when there is an incident. The
call taker needs incident details to report the incident and
the resource allocator requires the incident report. The radio
has the requirement of the resource allocation information
and the ambulance crew needs mobility instructions. For our
modeling session, we merged the call taker and call reviewer
stakeholders to ensure a one-to-one correspondence between
the study participants and the stakeholders.

The study participants then designed the LAS STS start-
ing from their respective requirements. Table III provides a
partial design process with a few representative stakeholders
where the call taker and the service consumer established a
commitment and refined it prior to Step 1 of Table III. Both
stakeholders take the respective onuses which are added into
the assumptions set in Step 1. In Step 2, the call taker and re-
source allocator apply commitment introduction ii and the call
taker commits to the resource allocator to report information
about the incident upon receiving such information. In Step 3
the call taker takes the onus for this commitment. Step 4 and 5
are compressed representations of the iterative design process
that is similar to Step 2 and 3, where at each step commitment
introduction ii is applied and then the oOnus is taken by the
respective stakeholder.

Observations. The commitment network created by the
participants following Protos superficially resembles the i*
strategic dependency diagram for LAS, as provided in [11].
However, the Protos modeling of the LAS offers distinct
advantages over the i* modeling of the LAS. One, the partici-
pants were able to collectively refine the commitments to make
the interaction explicit and concrete. Two, the stakeholders
were able to model conditional interactions via commitments,



whereas an i* dependency is not conditional. Three, the
design reductions of Protos helped focus the design process;
i* lacks such a formalization. Four, removing the needs as
the respective stakeholders took on the corresponding onuses
helped the participants track the status of the design. Further,
an empty needs set served as a clear stopping criterion for the
design process; such a criterion does not exist in i*.

Threats to validity. The reference document used for the
LAS domains [10] includes a small number of stakeholders
relative to other examples such as smart cities or a national
health-care system. This somewhat narrow starting point and
the participants’ limited familiarity with the domain prevented
them exploring designs that are not described in the reference
document. Despite this, however, the participants elaborated
details of interaction that are not present in the reference docu-
ment by negotiating and using argumentation. The participants
were collaborative and understanding to others’ demands. In
a real-life scenario one may expect more aggressive behavior
from the stakeholders due to their conflict of interests that may
even result in failure in the design process.

VI. RELEVANT LITERATURE

Our conception of an STS is in terms of a protocol specified
as a set of commitments. In our conception, the STS itself,
unlike Baxter and Sommerville’s conception [12], does not
have goals. Individuals principals, on the other hand, may have
goals and may represent them in their agents.

Tropos [3] models STSs in terms of dependencies among
actors, which can be stakeholders. Tropos dependencies differ
from commitments in that they refer to the goals of the actors
[13]. Tropos does not specify a protocol; instead it specifies
software that implements functionality to achieve stakeholder
goals. This is effectively a regimented approach. Still the idea
of formal requirements analysis is one we adopt from Tropos,
though we approach it quite differently: the name Protos is
an anagram of Tropos. Telang and Singh [14] propose an
extension of Tropos with commitments that enables specifying
cross-organizational business interactions. We go further by
providing the formal foundations for RE for sociotechnical
systems. Dalpiaz et al. [15] illustrate how principals providing
services can use commitments to and from others in reasoning
about the satisfaction of their own goals. However, such
work does not explain how the commitments are obtained
starting from the stakeholders needs. Liu et al. [16] formalize
commitments in a different sense—as a relation between a
principal and a service, not between principals, as in done
in Protos. Dalpiaz et al. [17] model adaptive STSs using
Tropos; the approach could benefit from the adoption of Protos
requirements analysis in order to obtain a well-founded and
accurate specification of the STS.

Protos includes STS stakeholders explicitly in the design
process and represents them explicitly in its output in contrast
to RE methodologies such as KAOS [18] and problem frames
[19]. Notably, neither approach supports deriving protocol
specifications—like Tropos, their focus is on software spec-
ification. Mahfouz et al. [20] apply goal modeling toward

deriving choreography specifications. Choreographies specify
interaction among principals but at a lower level of abstraction
(via control flow constructs) than commitments.

Work on viewpoints in software engineering [21], [22]
emphasizes the need to look at a system from different
perspectives. In Protos, a stakeholder represents a viewpoint.
Commitments represent a way of relating viewpoints formally
(both at design and runtime). Castro et al. [23] note the com-
plexity of Tropos models, especially the lack of modularity.
Since commitments decouple principals (and their agents),
they significantly alleviate the modularity problem.

Sutcliffe [24] argues for using multiple kinds of description
for effective design—scenarios, design rationale, models, and
so on. In the present paper, we mainly focus on deriving formal
models of systems. In earlier work on commitments [25],
we applied argumentation as a way of recording the design
rationale of stakeholders. Extending Protos with argumentation
is a direction of future work.

In mainstream software engineering, especially RE, there
is increasing recognition of the importance of representing
the social aspects of systems [26]. Newer approaches such
as Sommerville et al.’s [27] apply responsibility modeling to
represent contingency plans in organizations. However, reduc-
ing responsibilities to plans makes the approach a regimented
one. With Protos, social and organizational factors make their
appearance not only as requirements and assumptions, but in
the specifications themselves as social expectations. Notice
that commitments imply responsibility: a commitment for
something means the debtor is responsible to the creditor
for bringing about that thing. Dardenne et al.’s [18] notion
of responsibility is not a relation between principals. Strens
and Dobson [28] use a directed notion of responsibility as a
structure that specifies not only what the responsibility-holder
is responsible for but also his or her obligations. Assuming
that their responsibilities are like commitments, specifying
obligations in addition is unnecessary.

The need to involve end-users in the design process has
been noted and addressed in the literature on Participatory
Design in the fields of Human Computer Interaction (HCI)
and Computer Supported Collaborative Work (CSCW) for
more than twenty years (e.g., [29], [30]). Questions answered
in such research range from “Who participates?”, “By what
means?” and “During which part of the design process?”.
Results from such research include novel design processes,
such as semi-structured workshops and collaborative proto-
typing, new media for design, such as graphical facilitation
and storyboarding, and card games, as well as cooperative
prototyping and cooperative evaluation. We share many of the
principles of this research. There are, however, several key
differences in objectives and research methodology between
our proposal and this body of research. Firstly, our focus is
on design of STSs, whereas much of this literature focuses on
interfaces and atomic software systems. Secondly, our focus
is on the requirements problem for STSs and how to solve
it through a design process, as opposed to addressing abstract
user concerns. Thirdly, we are offering a formal framework for



a design process that explores a formally defined design space,
amenable to formal analysis and tool support. Instead, HCI
and CSCW work has emphasized the pragmatics of the design
process that are outside the scope of our current research.

VII. CONCLUSIONS AND DIRECTIONS

Protos is a novel RE process for sociotechnical systems that
enables refining stakeholder requirements into commitment-
based system specifications. Whereas other approaches are
conceptually founded upon the notion of refining requirements
into machines, Protos refines them into protocols. This brings
modularity to the problem space: the problem of designing
principals’ software (agents) is related but separate from the
problem of specifying protocols. Further, it demonstrates a
generalization of Zave and Jackson’s foundational characteri-
zation of RE.

We emphasize the point about the divergence of the require-
ments of the STS stakeholders from the requirements of the
principals. Supporting this divergence is the key to innovation.
Simply put, whatever the goals of the stakeholders might be
we simply cannot install such goals in the decision models for
the individual principals.

Protos opens up some interesting and important directions
for further research. First, the emphasis on multiple stakehold-
ers suggests a deeper study of conflict at design and run time,
incorporating the notion of satisficing requirements, possibly
in relation to notions such as social welfare of the stakeholders
and bringing to bear techniques such as argumentation [25] for
determining which of the conflictin requirements to satisfy and
which to ignore. Second, the sociotechnical setting opens up
challenges of vagueness, inconsistency, and defeasibility of
requirements [31]. Third, we would need to explore modeling
concepts geared for requirements in diverse STS settings, e.g.,
with respect to the normative relationships [32], and for which
we can establish results such as completeness. Fourth, it would
be crucial to develop a methodology and tools that support the
Protos design process.
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