
Applying social norms to high-fidelity
pedestrian and traffic simulations

Marco Robol
Department of Information Engineering

and Computer Science
University of Trento

Trento, Italy
Email: marco.robol@studenti.unitn.it

Paolo Giorgini
Department of Information Engineering

and Computer Science
University of Trento

Trento, Italy
Email: paolo.giorginit@unitn.it

Paolo Busetta
Delta Informatica SpA

Trento, Italy
Email: paolo.busetta@deltainformatica.eu

Abstract—Smart cities are founded on complex interactions
among architectural and urban designs, sensors, actuators and
crowds of people with their devices. In this context, simulation
becomes essential to study the effects of the technology and
to understand how to improve its effectiveness on the social
environment. The majority of the current pedestrian and traffic
simulations adopt a bird-eye view and are driven by statistical
models. While this is enough in many cases, e.g. to study traffic
flow under common conditions assuming average cases, it is not
appropriate when a higher level of fidelity is required. Simulated
people need to show both a plausible behavior and mechanisms
to coordinate with human participants in a natural way. Much of
this coordination happens silently and is driven by social norms,
that may vary according to culture and context. In this paper,
we propose an approach to represent social norms in multi-agent
systems that enables implicit coordination driven by observations
of others’ behaviors. This is applied specifically to the case of
pedestrian movement. In order to allow for a more effective
participation of humans in the simulation, our approach does
not use central coordinators or coordination protocol, but rather
each agent takes its own decision so to make more realistic
interactions. A software architecture and initial experimental
results are presented and discussed.

I. INTRODUCTION

Realistically simulating the social life mechanics of people
inside a city can be useful for many reasons, such as iden-
tifying and solving possible problems of the infrastructures
and the services provided to citizens or visitors. In particular,
pedestrian and traffic simulation is an effective way to evaluate
the need for new infrastructures and spot the locations that ne-
cessitate more attentions. Additionally, high fidelity simulators
may be helpful to train personnel in charge of the security or
other crucial departments.

The simulation of realistically behaving people can be
very complex to be implemented, particularly when basic
coordination mechanisms are the result of the application of
cultural- and context-sensitive social norms that may affect the
behavior of each single actor.

Current solutions for pedestrian and traffic simulation focus
mostly on massive simulations ruled by statistical models.
Some well known products are:

• SimWalk1 is an advanced pedestrian simulator that of-

1http://www.simwalk.com/, SimWalk, [Accessed 20 Apr. 2016]

fers a powerful solution for analyzing and improving
pedestrian flow and crowd management issues. Every
single pedestrian is modeled individually with specific
goals and behaviors. SimWalk allows visualization in
2D as well as 3D. It is continuously validated through
validation projects, tests and comparisons with real-world
data in order to deliver an accurate tool for the analysis
of pedestrian flows.

• Legion2 is another pedestrian simulator that undergoes
a validation process based on a measurement program
of actual pedestrians: video footage shots in different
cities covering all relevant pedestrian contexts. It provides
sophisticated modeling, analysis and presentation tools
for a vast array of contexts and types of project.

• AnyLogic’s pedestrian modeling library3 allows to create
complex analyses using the coded behavior of their
pedestrian objects. These objects follow basic rules that
have been determined by theoretical studies so they move
at predetermined rates, they know not to occupy the same
physical space as other objects, and they adjust their
distance and speed based on the congestion of the crowds
around them.

• SUMO (Simulation of Urban MObility)4 traffic simulator
focuses on routing algorithms and models to generate
paths of pedestrians. Interactions with vehicles are dealt
with a single, simplistic collision-avoidance conservative
model.

It appears that current solutions for pedestrian and traffic
simulation often miss a 3 dimensional graphical representation
and high fidelity of simulated people behaviors adequate for
an immersive experience in a serious game. Videogames and
Virtual Realitys (VRs), by contrast, support very high quality
3D representations, but lack of plausibly behaving Non Player
Character (NPC).

In this paper, we propose a multi-agent approach for a
highly realistic simulation of people behaviors applied to
controlling NPCs of a VR. Current theoretical studies show

2http://www.legion.com/, Legion, [Accessed 22 Apr. 2016]
3http://www.anylogic.com, AnyLogic, [Accessed 22 Apr. 2016]
4http://sumo.dlr.de, SUMO, [Accessed 11 Jul. 2016]

978-1-5090-1846-8/16/$31.00 ©2016 IEEE



Fig. 1. PRESTO

that Multi-Agent Systems (MASs) are adopted by many to
study complex social systems, because the Beliefs Desires
Intentions (BDI) architecture of autonomous agents is an
effective way to represent rational autonomous individuals.
MASs are also very useful to simulate small groups and do
not necessarily focus on large crowds. In principle, MASs are
more context- and culture-sensitive than specialized pedestrian
simulators.

We introduce INCA, a distributed approach for the coordi-
nation of NPCs that integrate social norms into autonomous
agents. We used INCA to implement implicit coordination
mechanisms adopting social norms to rule the order of access
to resources.

Next section presents a development suite for controlling
NPCs of a VR, followed by a section on the proposed approach
and another one about its implementation within the mentioned
suite, which includes a scalability test. We conclude with a
section about related work and final remarks.

II. BASELINE - PRESTO

The work presented in this paper has been developed on
top of PRESTO5, a suite of development tools and run-
time facilities for artificial intelligence in games, focusing
in particular on cognitive simulation. PRESTO interfaces a
number of game engines, including Unity6, to compute the
perceptions of NPCs and control their behaviour by means
of autonomous agents developed with PRESTO’s own DICE
framework. Specifically, our work extends DICE to auto-
matically obtain plausible behaviours when facing common
situations e.g. during navigation in a 3D space.

Figure 1 shows a simplified anatomy of PRESTO. Its core
provides services such as perception elaboration (Situation
Awareness (SA)) and low-level control of the simulation
entities. An ontology provides the conceptualization required
to make behavioural models and scripts independent of the
specificities of a simulation, game or rendering engine [1], [2].
A script engine controls the overall evolution of a simulation,
while the DICE multi-agent framework is used for building
complex NPC models as an assembly of roles, goals that can
be satisfied by the latter and behavioural models implementing
the tactics required to achieve goals.

5Plausible Representation of Emergency Scenarios for Training Operations
(PRESTO), a R&D project by Delta Informatica Spa.

6unity3d.com, (2016). Unity Technologies [Accessed 26 Feb. 2016].

A future version of PRESTO may allow a human player
to become the strategic controller of an agent. Differently
from common video-games in which human players directly
control gestures, postures and movements of their avatars, in
PRESTO the players would give them goals. An advantage of
this approach is the construction of cognitive-level GUIs (min-
imizing the need for HCI devices that discourage the casual
player, let alone mature users that may feel uncomfortable in
serious games). Internally, it allows a uniform representation
and perception of humans and NPCs.

A. Situation Awareness

PRESTO elaborates, in real-time, the sensorial space of
the NPCs to create individual streams of perceptions as
ontologically classified symbols, which are processed by the
controlling agents to update their internal beliefs. Perceptions
represents pre-elaborated cognitive stimulus corresponding to:
(i) perceived entities and their persistence in time, (ii) their
features properly classified to allow symbolic reasoning.

Next versions of PRESTO will extend perceptions to in-
clude the automatic detection of situations, defined as specific
patterns of locations, entities and their properties.

B. DICE

Delta Infrastructure for Cognition and Emotion (DICE) is
a framework to implement autonomous agents capable to
control NPCs of a VR in real time. It integrates the facilities
of PRESTO with JACK Intelligent Agents (JACK) [3], an
agent-oriented development environment built on top of, and
integrated with, the Java programming language. JACK allows
to develop agents based on the theoretical BDI paradigm.

DICE’s internal architecture reflects the simulation cycle
typical of Computer Graphic (CG) engines, which is char-
acterized by a continuous stream of perceptions of events,
to which PRESTO associate ontologically classified concepts.
Further, DICE extends JACK with meta-models (of roles,
behavioural models, and other behavioural-controlling rules),
provides its own high-level interpreted language (to support
end-user development of custom behaviours), and allows goals
to be pushed from the outside.

C. DICE scheduler

DICE takes complete control of JACK agents with a
scheduler implementing a cyclic process that guarantees the
synchronization of beliefs and intentions of the agent with the
VR. This cycle is implemented as follows: first, it processes
the perceptions coming from the VR in a step called SA
Drilling Down; second, it generates intentions in reactions to
perception; third, it gives control to the current main intention
(plan) that runs until it decides to yield. During the period
in which the plan runs (called “cognitive step”) incoming
perceptions are queued but not processed by DICE.

D. Introspection and meta-level reasoning

In agent oriented architectures, introspection refers to the
ability of an agent to reflect upon the workings of his own



cognitive functions [4]. DICE supports introspection over both
goals and intentions, so agents are able to access to their own
stacks of running plans and events. This allows, for instance,
to pick a plan (intention) or an event (goal) from the stack
and terminate and fail it.

The actions of most Artificial Intelligence (AI) programs
can be classified in base-level actions, those that achieve the
program’s goals, and meta-level actions, involved in deciding
which base-level actions to perform [5]. Meta-level reasoning
in JACK is limited to choosing, from a pool of applicable plans
(intentions), the best one to be executed to achieve a goal.
DICE supports much more advanced meta-level reasoning
thanks to its introspection facilities. As discussed later, our
work exploits them in particular during the SA step of the
DICE scheduler, which allows to control the inner workings
of the agent at well-known times and in coordination with
perceptions from the environment.

III. ARCHITECTURAL APPROACH

Implicit Negotiation Coordinating Agents (INCA) is the
approach that we propose here to better approximate human-
like behaviors in social situations. It is a distributed and
implicit approach to coordination in MASs.

The situations taken into consideration by INCA are related
to access to resources, where social norms allows to implicitly
negotiate the order of access. INCA extends BDI agents
allowing them to integrate social norms.

A. Problem definition and principles

The question to which INCA tries to answer is: ”what
actions, and in which order, should intelligent actors perform,
to coordinate for an ordered access to a resource?”. Actors here
are meant as rational participants in a coordination process and
have the task to solve the coordination problem and perform
coherent actions.

INCA relies on the key concept of resources that can be
engaged by actors, but only by a limited number at the time. To
this end, actors must be ordered in logical access queues. Since
INCA focuses on coordination by implicit negotiation, queues
are autonomously generated by each actor. If individually-
generated queues are coherent one to another, thanks to pre-
shared social norms, and if everybody acts respecting its own
queue, the actions performed should result coordinated. Note
that agents are autonomous and can therefore decide to break
rules; for example, if an agent realizes to be late it could
decide to not respect its turn and overcome others actors in
the queues, resulting in a non coordinated behavior.

Actions are the possible interactions of the actors with the
environment, and we are interested in recognizing and giving
semantics to those related to coordination processes. Within
INCA we have identified four actions that actors necessitate
and require to perform to coordinate and access resources.
These are approaching, waiting, engaging and engaged. For
example, actors that want to enter a room and need to pass
trough a door, first approach a queue for that door, then wait

in queue, later they walk toward it and, at the end, they cross
the door.

Agents reason on the information they have about the
coordination context and try to filter alternative solutions,
which represent possible order of access of the participants
(in the simplest case a single one) by applying context-
specific social norms. To simulate human-like coordination
mechanisms, information about the context is constrained to
what is perceived by the agent controlled character and also
includes beliefs about what other actors are doing.

B. Architecture

Figure 2 illustrates the anatomy of INCA within an au-
tonomous agent, thus repeated for each component of a MAS.
It is composed of the PRESTO framework, the DLV 7 reasoner
and the social norms and agent integration core modules.
PRESTO. The simulation framework on which INCA has
been developed is represented at the bottom of Figure 2.
As discussed earlier, PRESTO interfaces a VR with NPC
controlled by autonomous agents. DICE is a MAS based on
BDI agents adapted to reflect the typical cycle of execution
of a VR. Unity is a complete development framework for
VRs that provides the environment where NPCs live and
act. PRESTO integrate them throughout the generation of
perceptions and let agents interact with the VR.
DLV. The DLV reasoner, represented at the top of Figure 2,
is exploited by INCA to perform Knowledge Representation
and Reasoning (KR&R) about the coordination problem.
The social norms module. Concepts and components of the
social norms module are represented in the upper part of the
circle at the center of Figure 2.
Agent integration module. The agent integration module is
represented in the lower part of the circle at the center of
Figure 2. Its components integrate the social norms into an
autonomous agent.

C. The social norms module and DLV

Everything related to the coordination context is represented
in a Knowledge Base (KB) on which meta-level defined social
norms are applied by a reasoner to resolve the coordination
problem.

The representation of social norms with a meta-level lan-
guage allows them to be implementation-independent with
respect to agents. It is also used to represent the coordination
context.

The meta-language is based on DLV, a disjunctive logic
language that allows KR&R. It is currently the best implemen-
tation of a Disjunctive Logic Programming (DLP) language
[6], which is the most flexible KR&R formalism. In DLP
languages, facts describe an initial situations on which the
application of disjunctive rules generates different solutions
represented by models. DLV proposes an his own dialect
of a generic DLP language, that allows additional reasoning
features.

7Dlvsystem.com, (2016). DLVSYSTEM S.r.l. [Accessed 25 Feb. 2016]



Fig. 2. INCA anatomy

DLV allows to represent the coordination context and the
social norms and also to reason on them. The coordination
reasoner takes in input a KB about the context of coordination,
which could be partial because of the limited information
available to the agent. It contains information about the actors
and the resources. A queue engine computes all possible
combinations of actors in queues and generates a model
for each combination. At this point, an instructions engine
computes the instruction that each actors should follow. Then
a policy, which is a composition of social norms valid for
a specific domain of application, is applied to filters the
solutions, at best, up to one.

Social norms are filtering criteria of the different solutions
proposed by the queue engine. They are represented, in DLV,
as weak constraint rules that rate solutions giving a penalty to
the ones that does not respect them. DLV returns the solution
that minimize the number of penalties.

In the example of individuals that want to pass through a
door to enter a room, social norms describe commonly adopted
rules to define the order of access; for instance, in normal
conditions in a Western country well-behaving adults respect
their order of arrival. In DLV this can be obtained with a weak
constraint rule that gives a penalty to each solution where a
person X, who has arrived after Y, is in the queue before
the latter: :⇠ next(X,Y), queue(X,C), queue(Y,C), waiting-
before-than-for-queue(Y,X,C). As another example, consider
the case of multiple doors, each with its own queue. People
tend to spread so to minimize the time of access. In DLV
this can be represented with a weak constraint rule that gives
higher penalties to solutions where more people wait in the
same queue: :⇠ next(X, Y). The ”next(X,Y)” fact encodes that
Y will access the resource after X; for each person in a queue,
”next” facts are generated to define a person’s relation with
people already in a queue. A long queue is a valid candidate
that generates a penalty. Assume that there two persons and
two doors: a solution that assigns each person to a door does

not receive any penalty while a solution that queues both to a
single door gets a penalty of one.

D. Agent integration module

The agent integration module integrates social norms into
an autonomous agent. It transforms simple BDI agents into
normative BDI agents. The meta-level plan is the software
component that performs the coordination reasoning. It allows
to keep the coordination problem separated from the domain
of application. Other components are the action execution
plans, which provide domain-specific execution capabilities to
generic agent actions.

1) Meta-level: It is the component that executes the DLV
reasoner. It does not make the agent to execute any action but
operates only on agent’s internal conditions controlling the
intention deliberation, which is done thanks to introspection
on the stack of active goals and plans. In particular it control
the coordination goals given on the basis of the instructions
computed by the reasoner.

2) Coordination goals: A coordination goal represents the
intention to access some resource by coordinating with other
agents. It can be achieved with specific plans, which perform
coordination actions for a specific domain of application.
These plans do not implement any reasoning about the co-
ordination, which is a task delegated to the meta-level. In the
example of passage through a door the actors, interpreted by
agents, performs different actions; for instance, approaching a
queue for a group of doors connecting a room with another
one, forming and maintaining a precise disposition inside the
queue, going toward a specific door and finally pass through it.
Each of these coordination actions has its own implementation
in an action execution plan, specific for the doors domain.

The default policy to be adopted for a given context is
chosen by an agent in a domain specific plan, but the agent
cognitive model can affect INCA by replacing that policy with
one that reflects the current emotional state. For example, if
a person is panicking and thus acting irrationally, she does
not care to adopt or follow a socially accepted behavior and
simply puts herself at the top of the queue.

IV. TOOLSET SUPPORT FOR INCA

INCA has been integrated in PRESTO where it has been
adopted to coordinate agents that need to pass through doors
and gates of various types and nature. The INCA toolset pro-
vides, to PRESTO agents programmers, facilities to integrate
implicit coordination capability into DICE agents.

PRESTO allows to build agents by compositions of roles,
defined as sets of goals, and behavioral models, which en-
capsulate the implementation of these goals and are packaged
as JACK modules called “capabilities”. PRESTO agent pro-
grammers develop behavioral models and all their elements
and assemble roles to create agents.

The rest of this section first illustrates some guidelines for
a PRESTO agent programmer on how to exploit INCA and
then it illustrates its components.



A. How to initiate the coordination

To start to coordinate with other agents, INCA has to be
started by a domain specific plan that necessitate it. These
plans are developed by agent programmers and implement
specific agent capabilities, e.g., walking, driving, providing
medical care, etc. To start INCA from a domain plan, it
is necessary to submit a domain-specific coordination goal
which, in turn, causes the meta-level to start its reasoning on
the coordination problem to be handled and takes control of
the domain goal itself.

For example, a domain plan that handles a person navigation
capability could require coordination to pass through doors. To
achieve this it submits a specific INCA-enabled coordination
goal. In its current implementation as part of the standard
navigation capability, doors are automatically recognized when
perceived and, when there is the need to cross them, INCA is
started.

B. Implementing a domain-specific coordination goal

A coordination goal, which represents the intention to access
some resource by coordinating with other agents, takes in
input the policy to adopt and the resources to which the
agent is interested in. Its execution automatically triggers
the meta-level of INCA, which, in turn, starts to reason
on the coordination problem and the invocation of domain-
specific plans implementing coordination actions. Our current
implementation includes a goal to pass through doors and
related plans. The “approaching” plan moves the character
toward the last person in the queue, a “waiting” plan forces
to stay behind the last person in the queue, the “engaging”
plans makes the character walk toward the door. To allow
the automatic recognition of actions performed by other NPC
participating to the coordination, we exploit the ability of
PRESTO of ontologically tagging entities in the VR to expose
the current action execution plan. Alternative implementations,
e.g. to manage crowding in front of doors rather than ordered
queuing, will be created in future.

C. Integration of INCA in PRESTO - the meta-level

The core of the integration of INCA in PRESTO consists
in meta-level facilities where social norms are added to the
agent architecture, allowing to separate coordination reasoning
from actions execution. It exploits the SA step of the DICE
scheduler to handle perception updates concerning NPC partic-
ipating to the same coordination; this involves generating a KB
and starting and monitoring an external process executing DLV
to compute the resource-access queue and decide which action
to take next. DICE introspection is called to identify active
coordination goals and change the current action execution
plan when required.

D. Evaluation - scalability test

In this section is presented a scalability test of the coordi-
nation reasoner, which is the active component of INCA.

Fig. 3. Plot per people

Fig. 4. Plot per resources

1) Design of the experiment: We evaluated the scalability of
the reasoner with respect to the execution time over factors of
complexity. Two of them have been taken into consideration:
the number of people and the number of resources. The
coordination reasoner takes in input a policy, a very simple
one has been adopted, and a KB representing the coordination
context.

2) Method of execution: The tests have been ran on a
machine, with an Intel(R) Core(TM) i7-5500U @ 2.4Ghz
and 8GB of RAM. The operating system is Windows 10
by Microsoft(R). A Java program has been developed to
sistematically generate the KB, run the DLV process and
measure its execution time. It runs the DLV process 5 times,
for each combination of the factors of complexity, and mea-
sures the execution times. From the 5 measures, of the same
combination, the higher and the lower are removed, then the
remaining 3 are averaged.

3) Results interpretation and conclusion: Figure 3 shows
the execution time in variations to the number of resources.
It shows five series of tests executed with different numbers
of people: 5, 10, 15, 20, 25. The tendency seems to be linear
or polynomial with respect to the number of resources. Figure
4 shows the execution time in variations to the number of
people. It shows four series of tests executed with different
numbers of resources: 5, 10, 15 and 20. The tendency of all
the four series seems to be exponential with respect to the
number of people.

The execution time of a single run of the reasoner increases
with the increment of both the number of people or the
number of resources, this is due to the increasing number
of possible solutions, each bounded to a combination of the



actors in the queues. It is important to consider that the KB
have been systematically generated and, in a real case, more
constraints could simplify the problem, while a complex policy
could complicate it. Consider also that, in a real case, each
agent executes an instance of the reasoner by his own. INCA
approach has been developed for VR systems, where real-
time is an important aspect, and also the performances of the
coordination reasoner could contribute in obtaining a realistic
simulation.

V. RELATED WORK

This section presents some research works about multi-
agent based simulations of societies of people and the problem
of coordination in MASs.

1) Social norms and autonomous agents: Shoham in [7]
defines a social norm as a restriction of the set of actions
available to the agents.

2) Normative agents: Deliberative normative agents are
agents that have an explicit knowledge about the enacted
norms in a multi-agent environment and can make a choice
whether to obey the norms or not [8]. Luck et al. in [9] study
how norms can be incorporated into autonomous agents. They
propose some strategies to constrain agent autonomy through
norms and define a process of autonomous norms compliance,
which is a different thing to a simple adoption of norms.

3) Coordination approaches in MAS: For Wooldridge in
[10] the coordination problem is that of managing inter-
dependencies between the activities of agents. A basic ap-
proach to coordinate multiple agents is to restrict their activi-
ties in a way which enables them to achieve their goals while
not interfering with other agents [11].

4) Negotiation: Coordination can adopt implicit negotia-
tion, where agents do not explicitly communicate, but negoti-
ation is embedded in a pre-existing context [12]. In Michael
et al. [13] is studied the problem of interaction between
intelligent agents without the benefit of communication. They
examine various constraints on the actions of agents and
discuss their effects.

5) Coordination by norms and social laws: Savarimuthu
et al. in [14] show that norms facilitate coordination and
cooperation among the members of a society. Jennings in [15],
after having studied the theoretical problem of coordination,
concludes with the need to identify actions and social norms
(he called them commitments and conventions) on which
agents are able to performs reasoning. Shoham et al. in [16]
ask themselves why not adopt a convention, or, as we would
like to think of it, a social law, according to which if each
agent obeys the convention, there will be avoided a lot of
interactions, creating an implicitly coordinated social behavior
without any need for either a central arbiter (to be avoided in
MAS) or negotiation (also complex in MAS).

VI. CONCLUSION

We propose INCA, an implicit negotiation approach for
a multi-agent simulation of human-like coordination mech-
anisms based on social norms. INCA provides a meta-level

language and reasoner, integrated in the architecture of a
BDI agent. These components allow agents to reason on and
follow social norms about queues of access to resources.
INCA uses MAS technology to mimic an implicit negotiation
of these queues, allowing agents to coordinate with others
for the usage of resources. INCA can be therefore exploited
to simulate implicit coordination mechanisms. The INCA
toolset has been implemented in PRESTO and in order to
evaluate its performance in complex scenarios, we performed
scalability tests. Future work include a more efficient and
usable implementation of INCA.

REFERENCES

[1] M. Dragoni, C. Ghidini, P. Busetta, M. Fruet, and M. Pedrotti, “Using
Ontologies For Modeling Virtual Reality Scenarios,” in Proceedings of
ESWC 2015, 2015.

[2] P. Busetta and M. Dragoni, “Composing Cognitive Agents from Be-
havioural Models in PRESTO,” in Proceedings of the 16th Workshop
”From Objects to Agents” (WOA-2015), 2015.

[3] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-components for intelligent agents in java,” AgentLink News
Letter, vol. 2, no. 1, pp. 2–5, 1999.

[4] K. Konolige, “A Computational Theory of Belief Introspection,” in
IJCAI, vol. 85, 1985, pp. 503–508.

[5] M. Genesereth, “An Overview of Meta-Level Architecture,” in AAAI-83
Proceedings, 1983, pp. 119–124.

[6] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The DLV system for knowledge representation and reasoning,”
ACM Trans. Comput. Logic, vol. 7, no. 3, pp. 499–562, 2006.

[7] Y. Shoham and M. Tennenholtz, “On the emergence of social con-
ventions: modeling, analysis, and simulations,” Artificial Intelligence,
vol. 94, no. 1-2, pp. 139–166, jul 1997.

[8] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur, “Deliberate
Normative Agents: Principles and Architecture,” Intelligent Agents VI,
vol. LNAI 1757, pp. 364–378, 2000.

[9] M. Luck and M. D’Inverno, “Constraining autonomy through norms,” in
Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems part 2 (AAMAS-02), 2002, pp. 674–681.

[10] M. Wooldridge, Introduction to MultiAgent Systems. Hoboken, NJ,
USA: Wiley, 2002.

[11] Y. Shoham and M. Tennenholtz, “On social laws for artificial agent
societies: off-line design,” Artificial Intelligence, vol. 73, pp. 231–252,
1995.

[12] F. Scharpf, “Games Real Actors Could Play: Positive and Negative Co-
ordination in Embedded Negotiations,” Journal of Theoretical Politics,
vol. 6, no. 1, pp. 27–53, 1994.

[13] M. Genesereth, M. Ginsberg, and J. Rosenschein, “Cooperation Without
Communications,” in AAAI-86 Proceedings, Stanford Heuristic Pro-
gramming Project, Computer Science Department, Stanford University.
Heuristic Programming Project, Computer Science Department, Stanford
University, 1984.

[14] T. Savarimuthu, M. Purvis, and M. Purvis, “Social norm emergence in
virtual agent societies,” in Declarative Agent Languages and Technolo-
gies. Berlin: Springer, 2008, vol. VI, pp. 18–28.

[15] N. Jennings, “Commitments and Conventions: The Foundation of Coor-
dination in Multi-Agent Systems,” The Knowledge Engineering Review,
vol. 8, no. 3, pp. 223–250, 1993.

[16] Y. Shoham and M. Tennenholtz, “On the synthesis of useful social laws
for artificial agent societies,” in AAAI-92 Proceedings, 1992.


