
1

Simulating BDI-based Wireless Sensor Networks
Alexis Morris, Paolo Giorgini, Sameh Abdel-Naby

Department of Information Engineering and Computer Science
University of Trento

Trento, Italy
{alexis.morris, paolo.giorgini, sameh}@disi.unitn.it

Abstract—“Autonomic systems” merge advancements in the
field of multi-agent software design, dynamic analysis, and
decentralized control in order to assist designers in constructing
complex distributed systems. Wireless Sensor Networks (WSN)
represent such systems, and may benefit from autonomic system
designs that target distributed nodes in diverse and chang-
ing environments that interact over a wireless communication
channel for decentralized problem solving. Multi-agent system
techniques have been recently applied to WSN’s; however, due
to hardware limitations nodes (agents) are not fully deliberative
(or strong) reasoning systems. Since hardware increases rapidly
it is expected that such systems may eventually be viable. In
this paper we provide a generic, extensible, and deliberative
simulator for testing interactions in autonomous WSN’s. The
belief, desire, intention (BDI) agent model of Rao is used, as well
as the Agentspeak language, and the Jason framework. Results
from two simple WSN test scenarios show how (simulated) BDI
agents might perform basic WSN functions.

Keywords-Wireless Sensor Networks; Distributed Systems; Au-
tonomous Systems; Belief Desire Intention; Simulation;

I. INTRODUCTION

Wireless sensor networks (WSN’s) are teams of small, low
powered computing devices that measure physical factors of
the environment, sharing information across nodes via wireless
communication channels. As the hardware for the sensing
units becomes smaller, and more power efficient, it is expected
that WSN’s will be embedded into many everyday objects in
order to both gather data and perform pervasive computing
tasks [21] as part of a future “internet of things”. Given
such a ubiquitous context, complexity of design, deployment,
and runtime interaction becomes more problematic; especially
since the dynamic nature of the many varied problem domains,
and the limited local intelligence of sensor devices makes it
difficult to deploy even a simple WSN. Testing of deployments
is also problematic, as conventional methodologies are not able
to compensate for the number of variables that the device
may encounter. One solution to these problems is to use
complicated, cleverly designed, distributed systems algorithms
to make the system function more robustly. A more natural
solution is to create an autonomous wireless sensor network
that is able to react dynamically to changes when required,
but in a decentralized manner.

Systems that use such an approach are flexible, adaptable,
self organizing, and self-optimizing [12], allowing designers
to solve distributed problems using interaction design poli-
cies rather than algorithms [25]. In the literature (see [24]),
researchers are taking advantage of the approach in order to

solve common distributed system problems such as routing,
active sensing, information processing, and collaborative sens-
ing strategies. The autonomous WSN as a platform is shown to
achieve improved system longevity, [19], and coverage density
[26], two of the most important WSN problem areas. The
common feature of current agent-oriented approaches is that
they employ non-deliberative agents; those that do not have a
fully functioning reasoning system. These agents use a weaker
notion of agency than the belief-desire-intention (BDI) of Rao,
[17], that is commonly held to be the standard model of strong
agency [10]. What this means is that such agents are not as
reactive to the environment as they could be; leaving an open
problem for finding out what gains may be obtained through
deliberative agent-oriented WSN’s.

Section 2 describes the autonomic computing aspects of a
WSN, as a motivating factor. Section 3 discusses the liter-
ature regarding non-deliberative and deliberative simulations
of WSN’s. Section 4 presents a proposed simulator for BDI-
driven WSN development. Section 5 describes experiments
for basic WSN tasks using BDI agents. Section 6 provides an
evaluation of the simulator. Section 7 concludes the paper.

II. THE AUTONOMOUS NATURE OF WSN SYSTEMS

WSN’s in theory are not difficult to represent using multia-
gent system designs. Like agents, they must interact with each
other, through communication, or coordination in the presence
of potentially limited resources. The WSN is inherently dy-
namic in terms of structure, deployment settings, and behavior
effects. Nodes situated in a real world environment sample
continuously and relay information to other nodes, according
to directives, priority of the information, or other factors. Com-
munication is broadcast based, typically in an inter-dependent,
multihop routing fashion to save power, [11]. Additionally,
WSN nodes do not have a large battery capacity, so sending,
storing, and receiving messages are costly operations. WSN
solutions must share resource costs, much like agent systems
must distribute tasks. Nodes may also be heterogeneous in
terms of the data they are collecting,their owners, objectives,
and current position in the environment. This coincides with
self-interested agents in a society with limited resources.

These factors make the WSN attractive for exploring MAS
engineering, coordination, and negotiation protocols. Finally
the WSN environment domains are very unpredictable, typ-
ically representing a complex world state where the number
of critical choice points to perform effectively is potentially



2

very high (Chrisman, [6], considers this state a “robot’s worst
nightmare,” a term that fits for WSN’s as well). An agent
that has combined internal states of model reactivity, and
contingency anticipation are appropriate for such situations.

III. RELATED WORK

The current literature shows a number of agent based
wireless sensor network implementations ([9], [27], [19], [26],
etc). This is growing, as the advantages of the autonomous
WSN becomes more accepted.

This section details those approaches that simulate agents in
WSN’s, that embed an agent component and a hardware model
into a common framework, including environment modeling.
The first is the work of Kho and Jennings, [13], for adaptive
sampling within the FloodNet project, as mentioned previ-
ously. Here the authors present a non-deliberative simulation
tool known as DC-WSNS, in order to evaluate the algorithms.
DC-WSNS provides modules for nodes, batteries, sensing
capabilities, network stack, and an environment model to
represent cloud coverage for solar panels. They do not, how-
ever, model the wireless communication channel, transmission
details such as messaging, or propagation.

Another similar approach is that of Ruiz, et al, [20], using
the MANNA project to model fire risk monitoring in a WSN.
The work adopts the commonly used Network Simulator 2
(NS-2), [18], and its adaptor for Wireless Sensor Networking.
NS-2 provides a simulation environment that maintains com-
mon MAC protocols, a transmission layer, network layer, a
broadcast mechanism, and an application layer (for implement-
ing MANNA policies). Energy consumption, and data delivery
rates are the main metrics gained by the simulation. This also
is a non-deliberative agent approach.

In the work of Rogers, et al, another simulation is presented
for the domain of the GLACSWEB project [19]. The simulator
details are not discussed, however the results show simulation
of network formation topologies and displays the network as
nodes are dying off, and network restructuring takes place,
allowing for maintaining the network coverage size. This
approach is policy driven, and uses non-deliberative agency.

In Ma, et al, [15], the authors briefly discuss exploring
the use of BDI agents in WSN’s, and show the result of a
simple application for power management. In this work, as the
agents battery consumption level increases, the agent adjusts
the radio state, and lowers sampling rates as a simple approach
to save energy. The simulation framework uses the deliberative
AgentFactory Micro Edition (AFME), [7], combined with the
common J-Sim WSN simulator, [23]. This work is very sim-
ilar, but uses AgentFactory’s belief-commitment-plans (BCP)
approach, and J-Sim’s more detailed hardware model.

Finally, in a recent work, Zboril, [27], presents mobile
agents for the CrossBow platform [8], designing a BDI-
like framework, and middleware, known as “MOTE”. Using
ALLL (Agent Low-Level Language) and a specification of
the CrossBow hardware they present a simulator known as
T-Mass. T-Mass is able to simulate agent behaviors for the
platform, but does not focus on the environment model. The
ALLL language is a combination of calculus approaches, but

Fig. 1. The SAMSON WSN Simulator, [2], provides a Tileworld, sensors,
dialogs, and power consumption charts.

Fig. 2. The simulation architecture following the MVC pattern.

differs from Agentspeak’s modal logic procedural reasoning
system. Further the tool focuses on mobile agents that can
share nodes on a virtual architecture.

IV. A DELIBERATIVE WSN SIMULATION ENVIRONMENT

In addition to a strong notion of agency, a complete solution
for autonomous wireless sensor network simulation would
require models of the environment, and hardware that are as
accurate as possible, [14]. It would also be flexible enough
for many WSN scenarios. Such a solution would consist of
“model components”, namely for power consumption, radio
propagation, network management, packet management, radio
channel model, and environment modeling. Additional utility
would also be added through the possibility of adding an
interpreter based on the TinyOS platform, or SystemC, or Java,
allowing for easy translation of agent code into runnable WSN
code. In this work, a partial solution is presented as a first
step towards BDI agency in a WSN, based on the Agentspeak
language, [16].

The proposed simulator, SAMSON, [2], is designed with
the following in mind; it should have an Agent-based (BDI)
controller and agent definition language; support for hetero-
geneous agents with different objectives and goals; scalability
for testing variable sized agent networks; one to one mappings
of agents to nodes; extensible model of hardware components,
power, and radio; model of the environment (should include



3

node locations, and obstacles of various thickness); Java-based
model for object-oriented design benefits; ease of program-
ming agent logic; clean user interface, allowing for moving
nodes and obstacles, and changing hardware parameters eas-
ily; visualizing charts of various properties (especially power
consumption). Figure 2 shows the architecture of the proposed
system design. The entire tool is constructed with the Ja-
son/Agentspeak framework, [5], as the primary backbone. By
using Agentspeak as the language, the tool is able to present
heterogeneity and generic behaviors that are interpreted in a
reactive fashion by the Jason interpreter. Each Jason agent has
a corresponding node in the model, and access to that node’s
“hardware” through system percepts and actuator functions
(see chapter 5 of [5] for more on how the Jason architecture
communicates with custom models). The model of hardware
and power specifications have been based on industry standard
TMote Sky sensors, [22], [4].

In the model percepts are updated continually as part of the
control loop of the interpreter, but also when a message is
received by the Network component, or a sensor has retrieved
data. This information is then acted upon by the agent, which
is able to perform several preset, but easily customizable,
actions. The main actions that are made available to agents
are internal actions in Jason (see Table I). In particular, nodes
may send messages, sense the environment, set hardware
power and state, and conduct special actions for saving, and
custom computation messages. Together, they allow an agent
to control a model of a sensor, and designers of multi-agent
systems to compose interaction protocols for different cases.

Action Comment
sendTX(Msg) Sends a message across the radio.
sense(SensorId) Polls the sensor based on id.

setTXPower(Pwr) Sets radio transmission power
setRadioState(State) Sets radio status (8states)
setMCUState(State) Sets micro-controller (3states)

saveData(Data) Saves data to file
computePartner(Node, RCost, Pwr) Special action for routing
setPartner(Node) Special action for routing
resetPartner(Node, Pwr) Special action for routing

TABLE I
ACTIONS AVAILABLE TO SAMSON AGENTS.

V. EXPERIMENTS

In order to test the simulator design, functionality, and
usefulness, two main cases are used. The first presents a basic
design for flooding in WSN’s. Flooding is a classical data
dissemination algorithm for wireless networks that is simple,
and is useful for checking power computations and validating
basic functionality, [3]. The second testcase is an industry
study of a current WSN implementation by ArsLogica, [1], an
Italian research and development company affiliated with the
University of Trento. The company is largely interested in the
simulator and its usefulness in early validation. Several demos
of the simulation solution have been successfully conducted
with the company during the course of the work.

Fig. 3. Results gained from running a simple “Flood-hop routing” testcase
show increased message receipts (and corresponding power losses) of a
randomly chosen node in the network. This is typical flooding behavior.
Flooding involves broadcasting any messages received to all neighbouring
nodes; this approach is very wasteful in propagating duplicate messages.

The server management scenario represents a different kind
of test, in that the focus is on reflecting the behavior of the real
ArsLogica server implementation in terms of assessing what
real nodes do, and how the agents correspond. Unfortunately,
this case has no corresponding data from actual implemen-
tations, and thus only behavioral assessment is available. It
is expected that the agents in this scenario will function as
follows. Data collector nodes should perform low power lis-
tening, and thereby save power overall, while still forwarding
data. Clusterheads should forward data to the base station via
multihop routing, and reform relay partners after a request
from the base station. This will result in higher amounts
of message passing for clusterheads. The basestation only
receives data and initiates net formation. Note that being able
to reproduce this basic behavior will not show that agents
improve the scenario, but instead that strong agency can be
used for wireless sensor network interactions.

VI. EVALUATION

For the results shown the simulator performs partially well,
providing a good sense of the flooding example, although it
does not provide decent stopping conditions for the problem,
hence messages tend to be continually sent. For the servers
scenario, the simulation functions sufficiently to distinguish
the behaviors of the three agent types; despite the discrepancy
with the number of messages sent from data collectors not
matching up with the number of received messages at the
basestation. The multihop succeeded in transferring messages
across the clusterheads to the basestation. In short, the agents
managed to succeed in imitating some recognizable aspects of
the system. As for the simulator itself, the results have shown
that it is adaptable to different scenarios, with the five different
agents discussed. Both test scenarios were able to reflect some
of the real behavior, although the degree of realism is not
directly quantified with actual data. The model for power con-
sumption and message handling works as designed, but could



4

Fig. 4. Averages of messages sent and received in the Server scenario,
and average power voltage remaining. Clusterheads sent the highest number
of messages, and lost the most power, due to the multihop forwarding costs,
combined with the costs of network reformation handling. The data collectors,
performed interestingly, sending an average of 50 messages, but receiving 10
times as much. This is likely due to many receipts that would be received
during the interval when the radio is turned on before transmitting a message
occurs. These messages are from other data collectors nearby and multihop
requests from other clusterheads. Data collectors are also programmed to sleep
at intervals, saving resources.

be improved. The environmental models for obstacles, requires
further work for radio attenuation factors. Additionally, there
needs to be a method of managing the size of the belief-base
used in each agent, as this turns out to grow unboundedly in a
case such as flooding. Finally, the simulator could be improved
by providing a better interface and a model for radio channels.

VII. CONCLUSIONS

This work has discussed the potential for using autonomous
agents in wireless sensor networks. In particular, it has outlined
the vision for such a network, and the work involved to date
in using agent mechanisms in order to improve current WSN
performance, flexibility, scalability, and adaptiveness. Since
deploying such systems is difficult to debug, early testing
is important. This work has presented a partial solution; a
simulator that is both general purpose, and that also incor-
porates the work of deliberative agent research. Above all,
the simulations have shown that the strong agents used in
the simulation can model wireless sensor network behaviors.
However, the benefits gained from such agency remains to be
explored in future work.

VIII. ACKNOWLEDGMENTS

This work has been supported by the ArsLogica research
group. Thanks to Luca Debiasi, Fabrizio Stefani, and Fernando
Pianegiani, for their interest, feedback, and time spent in
discussions and demos of the simulator.

REFERENCES

[1] ArsLogica, STATUS Project.
http://www.arslogica.it/projects/status/status.html, Aug. 2008.

[2] Samson: An agent oriented wireless sensor network simulator.
http://lama.disi.unitn.it/page.php?34, Nov. 2008.

[3] K. Akkaya and M. F. Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks, 3(3):325–349, 2005.

[4] J. Beutel. Metrics for sensor network platforms. In REALWSN 06. ACM,
2006.

[5] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[6] L. Chrisman, R. Caruana, and W. Carriker. Intelligent agent design
issues: Internal agent state and incomplete perception. In In AAAI Fall
Symposium Series: Sensory Aspects of Robotic Intelligence, pages 18–
25. Press/MIT Press, 1991.

[7] R. W. Collier. Agent Factory: A Framework for the Engineering of
Agent-Oriented Applications. Doctor of philosophy, National University
of Ireland, Faculty of Science, University College Dublin, December
2002.

[8] Crossbow. Crossbow sensors. http://www.xbow.com/index.aspx, Aug.
2008.

[9] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent middleware for sensor
networks: an application case study. In IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks,
page 51, Piscataway, NJ, USA, 2005. IEEE Press.

[10] N. R. Jennings. On agent-based software engineering. Artificial
Intelligence, 177(2):277–296, 2000.

[11] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons, 2005.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[13] J. Kho, A. Rogers, and N. R. Jennings. Decentralised adaptive sampling
of wireless sensor networks. In in 1st Int Workshop on Agent Technology
for Sensor Networks, 2007.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable
simulation of entire tinyos applications. In SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems,
pages 126–137, New York, NY, USA, 2003. ACM.

[15] R. Ma, G. M. P. O’Hare, and M. J. O’Grady. Embedded intelligence:
Enabling in-situ power management for wireless sensor networks. In
EuroSSC, pages 244–247, 2006.

[16] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In R. van Hoe, editor, Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The
Netherlands, 1996.

[17] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In
Proceedings of the First Intl. Conference on Multiagent Systems, San
Francisco, 1995.

[18] G. F. Riley. The georgia tech network simulator. In MoMeTools ’03:
Proceedings of the ACM SIGCOMM workshop on Models, methods and
tools for reproducible network research, pages 5–12, New York, NY,
USA, 2003. ACM.

[19] A. Rogers, E. David, and N. Jennings. Self-organized routing for
wireless microsensor networks. Systems, Man and Cybernetics, Part
A, IEEE Transactions on, 35(3):349–359, May 2005.

[20] L. Ruiz, T. Braga, F. Silva, H. Assuncao, J. Nogueira, and A. Loureiro.
On the design of a self-managed wireless sensor network. Communica-
tions Magazine, IEEE, 43(8):95–102, Aug. 2005.

[21] Sentilla. Sentilla.com. http://www.sentilla.com/index.html, Aug. 2008.
[22] Sentilla. Tmote sky datasheet. http://www.sentilla.com/pdf/eol/tmote-

sky-datasheet.pdf, Aug. 2008.
[23] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y.

Tyan, and H. Zhang. J-sim: A simulation environment for wireless sensor
networks. In ANSS ’05: Proceedings of the 38th annual Symposium
on Simulation, pages 175–187, Washington, DC, USA, 2005. IEEE
Computer Society.

[24] M. Vinyals, J. A. Rodrguez-Aguilar, and J. Cerquides. A survey on
sensor networks from a multi-agent perspective. In 2th International
Workshop on Agent Technology for Sensor Networks (ATSN-08), 2008.

[25] T. D. Wolf and T. Holvoet. Towards autonomic computing: agent-
based modelling, dynamical systems analysis, and decentralised control.
In In Proceedings of the First International Workshop on Autonomic
Computing Principles and Architectures, page 10, 2003.

[26] O. Yadgar and S. Kraus. Coverage density as a dominant property of
large-scale sensor networks. In CIA, pages 138–152, 2006.

[27] F. Zboril and V. F. Zboril. Simulation of wireless sensor networks
with intelligent nodes. In 10th International Conference on Computer
Modelling and Simulation, page 6. IEEE Computer Society, 2008.


