
BarterCell: An Agent-based Bartering Service

for Users of Pocket Computing Devices

Sameh Abdalla, David Swords, Anara Sandygulova, Gregory M.P. O’Hare and
Paolo Giorgini

University College Dublin (UCD)
Belfield, Dublin 4, Ireland.

And, University of Trento, Italy.
{anara.sandygulova, david.swords}@ucdconnect.ie

{sameh, gregory.ohare}@ucd.ie
paolo.giorgini@unitn.it

Abstract. The rising integration of pocket computing devices in our
daily life duties has taken the attention of researchers from different sci-
entific backgrounds. Today’s amount of software applications bringing
together advanced mobile services and literature of Artificial Intelligence
(AI) is quite remarkable and worth investigating. In our research, soft-
ware agents of BarterCell can operate in wireless networks on behalf
of nomadic users, cooperate to resolve complex tasks and negotiate to
reach mutually beneficial bartering agreements. In this paper, we in-
troduce BarterCell that is an agent-based service application for users
of pocket computing devices. We introduce new negotiation algorithms
dedicated to bartering services in specific. We examine our approach in
a scenario wherein it is essential for a multi-agent system to establish a
chain of mutually attracted agents seeking to fulfill different bartering
desires. And, we demonstrate and analyze the obtained results.

1 Introduction

Pocket Computing Devices (PCDs) such as Smartphones are increasingly show-
ing the efficiency of relying on them and the importance of having them. Now,
people are using different types of lightweight PCDs that allow them to check
their emails, exchange faxes, surf the Internet, edit documents, do shopping, and
play a role in a social network. Agents’ deployments in industrial and profit-
making applications are continually growing and, related research are relatively
expanding (for an overview; [11, 10, 8]). Accordingly, the literature of Multi-
Agent Systems (MAS) as well is witnessing the success of delivering advanced
mobile services to users of PCDs, (e.g., Kore [3], mySAM [4], Andiamo [1]).

In an intersection between Distributed Problem Solving (DPS) [6, 5] and
Multi-agent Systems (MAS) [14, 16], our main focus comes in a place related to
the efficiency of the negotiation approaches provided to a set of interacting soft-
ware agents. Several negotiation models were proposed by scholars to introduce
proper negotiation protocols, mechanisms, strategies, or tactics that agents may



employ to reach mutually beneficial agreement. An example of that can be the
strategic negotiation in multiagent environments presented in [9], and also those
presented in [17, 12, 13]

Bartering is a disappearing type of trade where items of similar value are ex-
changed. ”Swapping” is the modern approach to bartering, which is seen these
days by means of websites that encourage end-users to build virtual commu-
nities and share similar interests. BarterCell is our approach to provide users
of lightweight PCDs a bartering service on the go. Based on the location and
characteristics of a specific community, BarterCell would use agents to build the
chain-of-exchange that connects several interested frequenters of the same area.

This paper is organized as follows. Section 2 introduces the general architec-
ture of BaretCell. Section 3 introduces the negotiation algorithms we propose
for building the chain of mutually beneficial barters. In section 4 we describe the
testing environment we evaluated BarterCell within. In section 5 we show the
initial results we obtained.

2 BarterCell: Architecture

The architecture of BarterCell, as shown in figure 1, relies on users’ capable
devices or PCs to accomplish a successful bartering task. Via the pre-installed
Java client-application, users create their own profiles using an interface allowing
them to insert their service preferences, and add details related to the kind of
items they are exchanging. Then users are asked to directly upload the saved data
to a central agents platform that, in return, make it available to other agents.
Different from the carpooling service application we presented in [1] wherein
Jade [2] was used, for the central platform in BarterCell is running Jack [15],
which is an interactive platform for creating and executing multi-agent systems
using a component-based approach.

Our architecture relies on distributed Bluetooth access points located within
a specific environment, (i.e., university), to receive inputs. Therefore, because of
technology limitations, users are asked to be present within the coverage of a
connecting spot to transmit their data to the central server. Once received from
a user, the message or file content is made available to the multi-agent system,
thus it can create a delegated agent that carries the particular characteristics
of an end-user. This agent is identified using the Media Access Control (MAC)
address of the device used to communicate its user’s data. On behalf of users,
agents start to interact, cooperate and negotiation with each other in order to
achieve the predefined objectives in the given time frame.

Among other benefits, JACK was chosen to handle all of agents’ interactions
because of its ability to meet the requirements of large dynamic environments,
which allow programmers of agents to enrich their implementations with the
possibility to compatibly access several of the system resources. JACK has also
made the communication language applied among involved agents with no re-
strictions, which made any high-level communication protocol such as KQML
[7] or FIPA ACL easily accepted by the running architecture.



Fig. 1. The architecture of BarterCell.

3 BarterCell: Algorithms

The algorithms we present here are considering offered items names, price
(estimated by owner), short textual description, time to start offer, period of
time to offer and type of the item. Therefore, we assume that users who are
using BarterCell own a capable mobile device with a client application installed
in it. This end-user client will serve as an interface for a user to access the server-
side application where our algorithm has been implemented. Then, upon a user’s
request, a personal agent reflecting this request is then created. This agent will
then be registered within the central multi-agent system and stay active until
different action is passed.

The agent created uses these variables: list of demands for all agents of a
given system (cDList), list of offers for all agents of a given system (cOList),
ID of an agent that will make bartering chains (ChainMaker), most demanded
item in a system at a given time (currentMDItem), ID of an agent running
(currentAgent), list of all available agents (agentsList), set of agents offering
most demanded item (dG), the set of agents seeking for most offered item (oS),



Algorithm 1 BarterCell ChainMaker Selection Algorithm
1: currentAgent = agentID
2: while currentAgent ¿ 0 do

3: cDList = cOList = currentMDItem = MOItem = ChainMaker = NIL
4: currentChainDecision = optimalChain = NIL
5: agentsList = getAvailableAgents()
6: for all ai ∈ {agentList - currentAgent} do

7: send(ai, currentAgent.offers, currentAgent.demands)
8: cDList = updateCommonDemandsList(ai.demands, cDList)
9: cOList = updateCommonOffersList(ai.offers, cOList)
10: end for

11: currentMDItem = findMostDemandedItem(cDList)
12: dG = findMDGivers(currentMDItem, cOList)
13: MOItem = findMostOfferedItem(cOList)
14: oS = findMOSeekers(MOItem, cDList)
15: ChainMaker = ChainMaker(cDList,cOList,currentMDItem,dG,oS)
16: if ChainMaker == currentAgent then
17: runChainMakerService(agentsList,cDList,cOList,currentMDItem,dG,oS)
18: else

19: T = initTimer()
20: while agentProvidesService(ChainMaker,T) do
21: optimalChain = getResults(ChainMaker,T)
22: if currentAgent ∈ optimalChain then

23: userCurrentDecision = sendResults(optimalChain,currentAgent.user)
24: currentChainDecision=getCommonDecision(optimalChain,agentsList,currentAgent)
25: else

26: if currentChainDecision ==”Yes” then

27: updateAgentODLists(optimalChain,currentAgent.offers,currentAgent.demands)
28: sendChainContactsToUser(optimalChain,agentsList,currentAgent.user)
29: end if

30: sendOptChainDecision(ChainMaker,currentChainDecision)
31: end if

32: end while

33: end if

34: end while

set of agents that are able to make an optimal bartering chain in a given system
at particular time (optimalChain).

As seen in algorithm 1, an agent first tries to get to know other agents
available in the system (Line 5). If all other agents will be already involved in
a current process of chain creation, the newly arrived agent will seek the ID
of the system’s ChainMaker and notify it of its availability for bartering. The
ChainMaker will finalize its ongoing computational cycle and inform all agents of
service finish (introduced in algorithm 2), then all agents will start a new search
for optimal bartering chain.

The new cycle of bartering chain creation will start again from attempting to
discover all available agents in the system (Line 5) and creation of list of these



agents. For each available agent, a step is taken to communicate its demanded
and offered items; (Lines 6-10). Thus all agents of the system will have common
demands list (cDList) and common offers list (cOList). Based on the list of
common demands, each agent finds the most demanded item in a given group
of agents at given time (currentMDItem) and the corresponding set of agents
that proposes that item; (Line 12). The agent with the most offered item other
agents are seeking is then selected to further define ChainMaker; (Line 15).

Here, if an agent is selected to be the ChainMaker; (Line 16), then a simple al-
gorithm run showing this agent’s acceptance of the role of ChainMaker and thus
providing other agents with corresponding service. Alternatively, if other agent
was chosen for this role then other agents are informed to be tracking responses
from ChainMaker; (Lines 19-31). However, tracking ChainMaker’s responses, fol-
lowing results, and also checking for service availability are made in (Line 20).
This function is designed for both parsing of messages from ChainMaker and
checking whether it can carry out its role. Every time a ChainMaker finishes
creating an optimal chain, it notifies all agents involved and those agents that
are out of it.

Timer initialization, (Line 19), is made to check ChainMaker’s availability
to agents that are not interacting for a predefined time. If an agent is notified
by the ChainMaker that it belongs to an optimal chain, (Line 22), it will then
reports to the user it delegates whether the current status is acceptable or no
by giving the chain; (Line 23). Eventually, newly selected ChainMaker starts
building its list of rejected bartering chains. Having a positive decision as for
proposed optimal chain, agents will send to their users contacts of other users
whom they should contact in order to make barter (Line 27).

In algorithm 2, the ChainMaker start giving its service if it has non-empty
list of own demands; (Line 3). Provided that it has the list, ChainMaker starts
new computational cycle; (Lines 3-56). The cycle starts with a search for new
agents; (Line 5), that might wait to join existing group of agents, which are in
agentsList. If there will be at least one agent waiting to join, the ChainMaker will
inform all known agents of service finish (Lines 7-9). All agents, including new,
will start negotiation process from the beginning (BarteringService Builder).

If there are no new agents, ChainMaker will inform all agents of a new com-
putational cycle, and then checks for optimal chains in queuedChains[]; (Line
16), that it has proposed during previous computational cycles (if there were
any). If at least one user has previously refused to barter in a queued chain, this
chain will then be considered as refused and it will never be proposed again by
the current ChainMaker. Refused chains will be stored in a refusedChains[]
set that will be updated along with queuedChains[] every time the ChainMaker
gets information of refused chain; (Lines 18-22). Accepted bartering chains will
simply be removed from queuedChains[]; (Line 23).

Assuming that the ChainMaker will now have a list of available agents and a
TreeRootAgent, it will then start building bartering trees. Each tree will begin
from treeRootAgent with every child, representing agent that demands at least
one item from list of its parent’s offers. While analyzing every path on such



tree the ChainMaker will find repetitions of agents, it will create a complete
set of agents that can barter between them. The shortest possible chain will be
recorded to chains[], which will consist of shortest bartering chains of three
types (combinations of demand types): 1) Strict; 2) Strict + Flexible; 3) Strict
+ Flexible + Potential. Eventually, the shortest chain selected is built for each
corresponding combination; (Lines 25-27).

If a ChainMaker will succeed to find more than one short chain, it will select
the optimal one from chains[]; (Line 28). Considering chains of equal length,
the highest selection priority is given to a chain that will be based on Strict
demands while the least priority is given to a chain that will be based on Strict
+ Flexible + Potential demands. Assuming that an optimal bartering chain
is found, then the ChainMaker will inform all concerned agents of being ful-
filled; (Line 30). Each agent in the chain will have information such as which
other agents are involved into proposed optimal chain and which items should
be exchanged and corresponding contact information of users. The ChainMaker
will then remove, from the common demands list and common offers list, those
items that are already chosen to be in proposed in the optimal chain (and will
be potentially exchanged later); (Lines 31-32).

If one of optimal chains will be refused to be executed, ChainMaker will
restore items that were involved into it ;(Lines 20-21). Every proposed optimal
chain will be placed into queuedChains[]; (Line 36) to further track whether
it will be accepted by users or not. Every agent that will wait for results from
ChainMaker and will not be involved into optimal chain, will get a message ”cycle
finished”; (Lines 37-39). This will be indicator that ChainMaker has finished
computing optimal chain, during previous computational cycle that agent was
not into it and new computational cycle will be started by the same ChainMaker.
This message will cause every agent’s timer restart to check chain making service
availability.

If ChainMaker fails to achieve a goal, it will notify all involved agents; (Lines
41-43). This message will cause the restart of negotiation process ”BarteringService
Builder”. If optimal chain will consist not only of Strict demands items then
the ChainMaker tries to make it so by changing treeRootAgent to the next most
appropriate agent; (Lines 47-48). In the rest of the algorithm, if there will not be
any agent for current most demanded item, the next most demanded item and
corresponding treeRootAgent will be chosen. If finished with the list of demands
or a suspension message received from its user, the ChainMaker will inform all
agents of service termination. Agents still interested in bartering service will
restart a new negotiation process.

4 BarterCell: Testing Environment

To test our architecture we used a D-Link DBT-900AP Bluetooth Access Point
that is connected to the university LAN through a standard 10/100 Mbit Eth-
ernet interface. This device offers a maximum of 20 meters connectivity range



Algorithm 2 BarterCell’s ChainMaker Operationing Algorithm
1: refusedChains[] = queuedChains[] = newAgentsQueue = optimalChain = NIL
2: treeRootAgent = currentAgent
3: while currentAgent.demands ¡¿ NIL do

4: chains[] = NIL
5: newAgentsQueue = searchNewAgents(agentsList)
6: if newAgentsQueue ¡¿ NIL then

7: for all ai ∈{agentsList - currentAgent} do

8: inform (ai, ”service finished”)
9: end for

10: return NIL
11: else

12: for all ai ∈{agentsList - currentAgent} do

13: inform (ai, ”new cycle start”)
14: end for

15: end if

16: for all chaini ∈ queuedChains[] do
17: if hasDecision(chaini) then
18: if chaini.decision == ”No” then

19: refusedChains[] = refusedChains[] + chaini

20: cDList = restoreCommonDemandsList(chaini)
21: cOList = restoreCommonOffersList(chaini)
22: end if

23: queuedChains[] = queuedChains[] - chaini

24: end if

25: end for

26: chains[] = findShortestChain(agentsList, treeRootAgent, refusedChains[], ”S”)
27: if chains[] ¡¿ NIL then

28: optimalChain = chooseOptimalChain(chains[])
29: for all ai ∈ optimalChain do

30: inform (ai, optimalChain)
31: cDList = removeFromCommonDemandsList(ai.demands, cDList)
32: cOList = removeFromCommonOffersList(ai.offers, cOList)
33: end for

34: queuedChains[] = queuedChains[] + optimalChain
35: for all ai ∈{agentsList - optimalChain - currentAgent} do

36: inform (ai, ”cycle finished”)
37: cDList = removeFromCommonDemandsList(ai.demands, cDList)
38: cOList = removeFromCommonOffersList(ai.offers, cOList)
39: end for

40: else

41: for all ai ∈{agentsList - currentAgent} do

42: inform (ai, ”no bartering chain”)
43: end for

44: return NIL
45: end if

46: if includesFOrPDemands(optimalChain) then
47: if existNextAgent(treeRootAgent, currentMDItem, cDList) then
48: treeRootAgent = nextAgent(treeRootAgent, currentMDItem, cDList)
49: else

50: if existNextItem(currentMDItem, cDList) then
51: currentMDItem = nextItem(currentMDItem, cDList)
52: end if

53: end if

54: end if

55: treeRootAgent = ChainMaker(cDList, cOList, currentMDItem, dG, oS)
56: end while

57: for all ai ∈ {agentsList - currentAgent} do

58: inform (ai, ”service finished”)
59: end for



Fig. 2. Simulating the number of Agents Fig. 3. System Load Distribution

with the maximal bit rate support of 723Kbps, and the possibility to concur-
rently connect up to seven Bluetooth-enabled devices. The same access point
is authenticating pocket devices that have BarterCell previously installed in it
and, it works as a deliverer of the service requests and responses from and to the
central servers. On the end-user side, four competent cell phones were used to
communicate semi-adjusted bartering interests with central servers. These de-
vices are Nokia 6600, 6260, 6630 and XDA Mini. On the server side, a capable
PC was used with JACK 5.0 and BlueCove installed in it.

5 BarterCell: Results

While simulation BarterCell we used JDots for tree building, which is object
oriented software component. Each node of a tree was built with JDots repre-
senting an object with its own fields and methods. Our algorithm works slower
with a large number of agents (e.g., ¿300) because the main agent needs to build
three trees. Nevertheless, while testing with less than 200 agents, our algorithms
are giving efficient results in time.

Figure 2, shows how fast the main agent finishes searching for possible opti-
mal chains depending on the total number of known agents. Here, we assumed
that the number of O-items is 5 and the number of D-items is 15.

Figure 3 shows how fast the main agent finish searching for all possible op-
timal chains depending on number of items that each agent proposes. Total
number of offered + desired items is constant (20). Peak of the graph represents
the most time consuming state when number of offered items is equal to number
of desired items. In this state the main agent has the biggest number of possi-
ble exchange combinations. Assumptions used, Max number of items: 20, Max
number of D-items: 15, and Number of agents: 30.

Figure 4 shows how fast main agent will finish searching for all possible
optimal chains depending on number of items at each known agent. In this run,



Fig. 4. Simulating the number of items at
each agent level Fig. 5. Agent Satisfaction Level

results here are particular since we assumed that the number of demanded items
D-items = number of offered items O-items, and the number of D-items are
only of ”Strict” type and the number of agents is equal to 30.

Figure 5 represents how many agents would be satisfied (i.e. involved in one of
optimal chains produced by main agent) until the main agent finishes all possible
chain-building processes. Depending on the trees level (depth) the percentage of
satisfaction will vary. Here, we assumed that the number of D-items is 20 and
the number of O-items is 5.

6 Conclusions

In this paper we introduced BarterCell that is a software architecture for provid-
ing location-based bartering service for users of pocket computing devices. This
application was developed to: 1) revive the idea of bartering within members of
a specific community and promoting the benefits of location-based services, 2)
to test new voting-like negotiation algorithms for agents representing nomadic
users and interacting very actively on-the-go, 3) motivate existing users of pocket
devices, and attracting new ones to benefit from recent advanced technologies
by widening the range of services that can be offered to them on the go.

Acknowledgment

Authors would like to acknowledge the support of the Science Foundation Ireland
(SFI) under the grant 07/CE/I1147 as well as the European regional Develop-
ment Fund (ERDF) for supporting partially the SC project trough the Ireland
Wales Program (INTERREG 4A). Authors would like to thank Oleksiy Chayka
for the effort made to implement BarterCell.



References

1. Abdel-Naby, S., Fante, S., Giorgini, P.: Auctions negotiation for mobile rideshare
service. In: Proceedings of the Second International Conference on Pervasive Com-
puting and Applications (ICPCA07). IEEE, Birmingham, UK (July 2007)

2. Bellifemine, F., Rimassa, G.: Developing multi-agent systems with a fipa-compliant
agent framework. Software - Practice & Experience 31(2), 103–128 (2001)

3. Bombara, M., Cal̀ı, D., Santoro, C.: KORE: A multi-agent system to assist museum
visitors. In: WOA. pp. 175–178. Villasimius, CA, Italy (September 2003)

4. Bucur, O., Boissier, O., Beaune, P.: A context-based architecture for learning how
to make contextualized decisions. In: Proceedings of the First International Work-
shop on Managing Context Information in Mobile and Pervasive Environments.
Ayia Napa, Cyprus (May 2005)

5. Durfee, E.H.: Distributed problem solving and planning. In: EASSS’01: Selected
Tutorial Papers from the 9th ECCAI Advanced Course ACAI 2001 and Agent
Link’s 3rd European Agent Systems Summer School on Multi-Agent Systems and
Applications. pp. 118–149. Springer-Verlag, London, UK (2001)

6. Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in cooperative distributed prob-
lem solving. IEEE Transactions on Knowledge and Data Engineering 1(1), 63–83
(1989)

7. Finin, T., Fritzson, R., McKay, D.: A language and protocol to support intelligent
agent interoperability. In: The Proceedings of the CE&CALS Conference. Morgan
Kaufmann, Washington, USA (June 1992)

8. Jennings, N.R., Crabtree, B.: The practical application of intelligent agents and
multi-agent technology. Applied Artificial Intelligence 11(5), 3–4 (1997)

9. Kraus, S.: Strategic negotiation in multiagent environments. MIT Press, Cam-
bridge, MA, USA (September 2001)

10. Mckean, J., Shorter, H., Luck, M., Mcburney, P., Willmott, S.: Technology diffu-
sion: analysing the diffusion of agent technologies. Autonomous Agents and Multi-
Agent Systems 17(3), 372–396 (2008)

11. Munroe, S., Miller, T., Belecheanu, R.A., Pěchouček, M., McBurney, P., Luck,
M.: Crossing the agent technology chasm: Lessons, experiences and challenges in
commercial applications of agents. The Knowledge Engineering Review 21(4), 345–
392 (2006)

12. Sierra, C., Faratin, P., Jennings, N.R.: A service-oriented negotiation model
between autonomous agents. In: Collaboration between Human and Artificial
Societies, Coordination and Agent-Based Distributed Computing. pp. 201–219.
Springer-Verlag, London, UK (1999)

13. Smith, R.G.: The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1981)

14. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial In-
telligence. The MIT Press, Cambridge, MA, USA (March 1999)

15. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming,
chap. 7, pp. 175–193. Springer US, Soeul, Korea (2005)

16. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, New
York, NY, USA (June 2002)

17. Zlotkin, G., Rosenschein, J.S.: Negotiation and task sharing among autonomous
agents in cooperative domains. In: Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence. pp. 912–917. ACM, San Mateo, CA (1989)


