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Abstract. We are interested in supporting software evolution caused by chang-
ing requirements and/or changes in the operational environment of a software
system. For example, users of a system may want new functionality or perfor-
mance enhancements to cope with growing user population (changing require-
ments). Alternatively, vendors of a system may want to minimize costs in im-
plementing requirements changes (evolution requirements). We propose to use
Constrained Goal Models (CGMs) to represent the requirements of a system,
and capture requirements changes in terms of incremental operations on a goal
model. Evolution requirements are then represented as optimization goals that
minimize implementation costs or customer value. We can then exploit reasoning
techniques to derive optimal new specifications for an evolving software system.
CGMs offer an expressive language for modelling goals that comes with scal-
able solvers that can solve hybrid constraint and optimization problems using a
combination of Satisfiability Modulo Theories (SMT) and Optimization Modulo
Theories (OMT) techniques. We evaluate our proposal by modeling and reason-
ing with a goal model for the meeting scheduling examplar.

1 Introduction

We have come to live in a world where the only constant is change. Changes need to
be accommodated by any system that lives and operates in that world, biological and/or
engineered. For software systems, this is a well-known problem referred to as software
evolution. There has been much work and interest on this problem since Lehman’s
seminal proposal for laws of software evolution [3]. However, the problem of effectively
supporting software evolution through suitable concepts, tools and techniques is still
largely open. And software evolution still accounts for more than 50% of total costs in
a software system’s lifecycle.

We are interested in supporting software evolution caused by changing requirements
and/or environmental conditions. Specifically, we are interested in models that capture
such changes, also in reasoning techniques that derive optimal new specifications for
a system whose requirements and/or environment have changed. Moreover, we are in-
terested in discovering new classes of evolution requirements, in the spirit of [8] who
proposed such a class for adaptive software systems. We propose to model requirements
changes through changes to a goal model, and evolution requirements as optimization
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goals, such as ”Minimize costs while implementing new functionality”. Our research
baseline consists of an expressive framework for modelling and reasoning with goals
called Constrained Goal Models (hereafter CGMs) [4]. The CGM framework is founded
on and draws much of its power from Satisfiability Modulo Theories (SMT) and Opti-
mization Modulo Theories (OMT) solving techniques [1, 6].

The contributions of this paper include a proposal for modelling changing require-
ments in terms of changes to a CGM model, but also the identification of a new class
of evolution requirements, expressed as optimization goals in CGM. In addition, we
show how to support reasoning with changed goal models and evolution requirements
in order to derive optimal solutions. 1

2 Background: Constrained Goal Models

SMT(LRA) and OMT(LRA). Satisfiability Modulo the Theory of Linear Rational
Arithmetic (SMT(LRA)) [1] is the problem of deciding the satisfiability of arbitrary
formulas on atomic propositions and constraints in linear arithmetic over the rationals.
Optimization Modulo the Theory of Linear Rational Arithmetic (OMT(LRA)) [6] ex-
tends SMT(LRA) by searching solutions which optimize some LRA objective(s). Ef-
ficient OMT(LRA) solvers like OPTIMATHSAT [7] allow for handling formulas with
thousands of Boolean and rational variables [6, 4].
A Working Example. We recall from [4] the main ideas of Constrained Goal Models
(CGM’s) and the main functionalities of our CGM-Tool through a meeting schedul-
ing example (Figure 1). We call elements both goals and domain assumptions. La-
beled bullets at the merging point of the edges connecting a group of source elements
to a target element are refinements (e.g., (GoodParticipation,MinimalConflict)

R20−−→
GoodQualitySchedule), while the Ris denote their labels. The label of a refinement can
be omitted when there is no need to refer to it explicitly.

Intuitively, requirements represent desired states of affairs we want the system-to-be
to achieve (either mandatorily or possibly); they are progressively refined into interme-
diate goals, until the process produces actionable goals (tasks) that need no further
decomposition and can be executed; domain assumptions are propositions about the
domain that need to hold for a goal refinement to work. Refinements are used to rep-
resent the alternatives of how to achieve an element; a refinement of an element is a
conjunction of the sub-elements that are necessary to achieve it.

The main objective of the CGM in Figure 1 is to achieve the requirement
ScheduleMeeting, which is mandatory. ScheduleMeeting has only one candidate re-

finement R1, consisting in five sub-goals: CharacteriseMeeting, CollectTimetables,
FindASuitableRoom, ChooseSchedule, and ManageMeeting. Since R1 is the only re-
finement of the requirement, all these sub-goals must be satisfied in order to satisfy

1 Note. This paper was reduced to the current size from its original 14-page length. Accordingly,
we have made available an extended version of [5] including (i) all figures of the examples
which are described only verbally here, (ii) the formalization of the problem of automatically
handling CGM evolutions and evolution requirements for CGMs, (iii) an overview of our tool
implementing the presented approach, (iv) an overview of related work, with a comparison
wrt. previous approaches, (v) some conclusions and description of future work.
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it. There may be more than one way to refine an element; e.g., CollectTimetables is
further refined either by R10 into the single goal ByPerson or by R2 into the single
goal BySystem. The subgoals are further refined until they reach the level of domain
assumptions and tasks.

Some requirements can be “nice-to-have”, like LowCost, MinimalEffort,
FastSchedule, and GoodQualitySchedule (in blue in Figure 1). They are requirements

that we would like to fulfill with our solution, provided they do not conflict with other
requirements. To this extent, in order to analyze interactively the possible different real-
izations, one can interactively mark [or unmark] requirements as satisfied, thus making
them mandatory (if unmarked, they are nice-to-have ones). Similarly, one can interac-
tively mark/unmark (effortful) tasks as denied, or mark/unmark some domain assump-
tion as satisfied or denied. More generally, one can mark as satisfied or denied every
goal or domain assumption. We call these marks user assertions.

In a CGM, elements and refinements are enriched by user-defined constraints, which
can be expressed either graphically as relation edges or textually as Boolean or
SMT(LRA) formulas. We have three kinds of relation edges. Contribution edges
“Ei

++−−→ Ej” between elements (in green in Figure 1), like
“ScheduleAutomatically

++−−→ MinimalConflicts”, mean that if the source element Ei

is satisfied, then also the target element Ej must be satisfied (but not vice versa). Con-
flict edges “Ei

−−←→ Ej” between elements (in red), like “ConfirmOccurrence
−−←→

CancelMeeting”, mean that Ei and Ej cannot be both satisfied. Refinement bindings
“Ri←→Rj” between two refinements (in purple), like “R2←→R7”, are used to state
that, if the target elements Ei and Ej of the two refinements Ri and Rj , respectively,
are both satisfied, then Ei is refined by Ri if and only if Ej is refined by Rj . Intuitively,
this means that the two refinements are bound, as if they were two different instances
of the same choice.

It is possible to enrich CGMs with logic formulas, representing arbitrary logic con-
straints on elements and refinements. In addition to Boolean constraints, it is also possi-
ble to use numerical variables to express different numerical attributes of elements (such
as cost, worktime, space, fuel, etc.) and constraints over them. For example, in Figure 1
we associate to UsePartnerInstitutions and UseHotelsAndConventionCenters a cost
value of 80AC and 200AC respectively, and we associate “(cost < 100AC)” as a prerequi-
site constraint for the nice-to-have requirement LowCost. Implicitly, this means that no
realization involving UseHotelsAndConventionCenters can realize this requirement.

We suppose now that ScheduleMeeting is asserted as satisfied (i.e. it is mandatory)
and that no other element is asserted. Then the CGM in Figure 1 has more than 20 pos-
sible realizations. The sub-graph which is highlighted in yellow describes one of them.
Intuitively, a realization of a CGM under given user assertions (if any) represents one of
the alternative ways of refining the mandatory requirements (plus possibly some of the
nice-to-have ones) in compliance with the user assertions and user-defined constraints.
It is a sub-graph of the CGM including a set of satisfied elements and refinements: it
includes all mandatory requirements, and [resp. does not include] all elements satisfied
[resp. denied] in the user assertions; for each non-leaf element included, at least one
of its refinement is included; for each refinement included, all its target elements are
included; finally, a realization complies with all relation edges and with all constraints.
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Fig. 1. A CGM M1, with a realization µ1 minimizing lexicographically: the difference Penalty-
Reward, workTime, and cost. Notationally, round-corner rectangles (e.g., ScheduleMeeting) are
root goals, representing stakeholder requirements; ovals (e.g. CollectTimetables) are intermedi-
ate goals; hexagons (e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf goals; rectangles
(e.g., ParticipantsUseSystemCalendar) are domain assumptions.

4



In general, a CGM under given user assertions has many possible realizations.
To distinguish among them, stakeholders may want to express preferences on the re-
quirements to achieve, on the tasks to accomplish, and on elements and refinements to
choose. The CGM-Tool provides various methods to express preferences, including:

– attribute rewards and penalties to nice-to-have requirements and tasks respectively,
so that to maximize the former and minimize the latter; (E.g., satisfying LowCost
gives a reward = 100, whilst satisfying CharacteriseMeeting gives a penalty = 15.)

– introduce numerical attributes, constraints and objectives; (E.g., the numerical at-
tribute Cost not only can be used to set prerequisite constraints for requirements,
like “(Cost < 100AC)” for LowCost, but also can be set as objectives to minimize.)

The CGM-Tool provides many automated-reasoning functionalities on CGMs [4].

Search/enumerate minimum-penalty/maximum reward realizations. One can assert re-
wards to the desired requirements and set penalties of tasks, then the tool finds
automatically the optimal realization(s).

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives. One
can define objective functions obj1, ..., objk over goals, refinements and their nu-

merical attributes; then the tool finds automatically realizations optimizing them.

The above functionalities can be combined in various ways. For instance, the realization
of Figure 1 is the one returned by CGM-tool when asked to minimize lexicographically,
in order, the difference Penalty-Reward, workTime, and cost. 2 They have been imple-
mented by encoding the CGM and the objectives into an SMT(LRA) formula and a
set of LRA objectives, which is fed to the OMT tool OPTIMATHSAT [7]. We refer
the reader to [4] for a much more detailed description of CGMs and their automated
reasoning functionalities.

3 Requirements Evolution and Evolution Requirements

Requirements Evolution. Constrained goal models may evolve in time: goals, require-
ments and assumptions can be added, removed, or simply modified; Boolean and SMT
constraints may be added, removed, or modified as well; assumptions which were as-
sumed true can be assumed false, or vice versa.

Some modifications strengthen the CGMs, in the sense that they reduce the set of
candidate realizations. For instance, dropping one of the refinements of an element (if
at least one is left) reduces the alternatives in realizations; adding source elements to a
refinement makes it harder to satisfy; adding Boolean or SMT constraints, or making
some such constraint strictly stronger, restricts the set of candidate solutions; changing
the value of an assumption from true to false may drop some alternative solutions. Vice
versa, some modifications weaken the CGMs, augmenting the set of candidate realiza-
tions: for instance, adding one of refinement to an element, dropping source elements
to a refinement, dropping Boolean or SMT constraints, or making some such constraint

2 A solution optimizes lexicographically an ordered list of objectives 〈obj1, obj2, ...〉 if it makes
obj1 optimum and, if more than one such solution exists, it makes also obj2 optimum, ..., etc.
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strictly weaker, changing the value of an assumption from false to true. In general, how-
ever, since in a CGM the goal and/or decomposition graph is a DAG and not a tree, and
the and/or decomposition is augmented with relational edges and constraints, modifica-
tions may produce combinations of the above effects, possibly propagating unexpected
side effects which are sometimes hard to predict.

We consider the CGM in Figure 1 (namely, M1) as our starting model, and we
assume that for some reasons it has been modified into the CGMM2 of Figure 2 in [5]
(see §1).M2 differs fromM1 for the following modifications:

(a) two new tasks, SetSystemCalendar and ParticipantsFillSystemCalendar, are added
to the sub-goal sources of the refinement R13;

(b) a new source task RegisterMeetingRoom is added to R17, and the binding between
R16 and R17 is removed; the refinement R18 of the goal BookRoom and its source
task CancelLessImportantMeeting are removed;

(c) the alternative refinements R8 and R9 of ManageMeeting are also modified: two
new internal goals ByUser and ByAgent are added and become the single source of
the two refinements R8 and R9 respectively, and the two tasks ConfirmOccurrence
and CancelMeeting become respectively the sources of two new refinements R21

and R22, which are the alternative refinements of the goal ByUser; the new goal
ByAgent is refined by the new refinement R23 with source task SendDecision.

Evolution Requirements. We consider the generic scenario in which a previous version
of a CGMM1 with an available realization µ1 is modified into a new CGMM2. As a
consequence, µ1 typically is no more a valid realization ofM2. E.g., we notice that µ1

in Figure 2 in [5] does not represent a valid realization ofM2: not all source tasks of
R13 are satisfied, BookRoom has no satisfied refinement, and the new goal ByUser and
refinement R21 are not satisfied. It is thus necessary to produce a new realization µ2 for
M2.

In general, when one has a sequenceM1,M2, ...,Mi, ... of CGMs and must pro-
duce a corresponding sequence µ1, µ2, ..., µi, ... of realizations, it is necessary to decide
some criteria by which the realizations µi evolve in terms of the evolution of the CGMs
Mi. We call these criteria, evolution requirements. We describe some possible criteria.
Recomputing realizations. One possible evolution requirement is that of always hav-
ing the “best” realization µi for eachMi, according to some objective (or lexicographic
combination of objectives). LetM1,M2, and µ1 be as above. One possible choice for
the user is to compute a new optimal realization µ2 from scratch, using the same criteria
used in computing µ1 fromM1. In general, however, it may be the case that the new
realization µ2 is very different from µ1, which may displease the stakeholders.

We consider now the realization µ1 of the CGMM1 highlighted in Figure 1 and the
modified modelM2 of Figure 2 in [5]. If we run CGM-Tool overM2 with the same
optimization criteria as for µ1 –i.e., minimize lexicographically, in order, the difference
Penalty-Reward, workTime, and cost– we obtain a novel realization µlex

2 (Figure 3
in [5]. The new realization µlex

2 satisfies all the requirements (both ”nice to have” and
mandatory) except MinimalEffort. It includes the following tasks: CharateriseMeeting,
EmailParticipants, GetRoomSuggestions, UseAvailableRoom,
RegisterMeetingRoom, ScheduleManually, ConfirmOccurrence, GoodParticipation,
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and MinimalConflicts, and it requires one domain assumption: LocalRoomAvailable.
This realization was found automatically by our CGM-Tool in 0.059 seconds on an
Apple MacBook Air laptop.

Unfortunately, µlex
2 turns out to be extremely different from µ1. This is due to the

fact that the novel tasks SetSystemCalendar and ParticipantsFillSystemCalendar raise
significantly the penalty forR13 and thus forR2; hence, in terms of the Penalty-Reward
objective, it is now better to choose R10 and R6 instead of R2 and R7, even though this
forces ByPerson to be satisfied, which is incompatible with CollectionEffort, so that
MinimalEffort is no more achieved. Overall, for µ2 we have Penalty−Reward = −65,
workTime = 4h and cost = 0AC.

In many contexts, in particular if µ1 is well-established or is already implemented,
one may want to find a realization µ2 of the modified CGMM2 which is as similar as
possible to the previous realizationM1. The suitable notion of ”similarity”, however,
may depend on stakeholder’s needs. In what follows, we discuss two notions of ”simi-
larity” from [2], familiarity and change effort, adapting and extending them to CGMs.
Maximizing familiarity. In our approach, in its simplest form, the familiarity of µ2

wrt. µ1 is given by the number of elements of interest which are common toM1 and
M2 and which either are in both µ1 and µ2 or are out of both of them; this can be
augmented also by the number of new elements in M2 of interest (e.g., tasks) which
are denied. In a more sophisticate form, the contribution of each element of interest can
be weighted by some numerical value (e.g., Penalty, cost, WorkTime,...).

For example, if we ask CGM-Tool to find a realization which maximizes our notion
of familiarity, we obtain the novel realization µfam

2 (Figure 4 in [5]). µfam
2 satisfies all

the requirements (both ”nice to have” and mandatory ones), and includes the follow-
ing tasks: CharacteriseMeeitng, SetSystemCalendar, ParticipantsFillSystemCalendar,
CollectFromSystemCalendar, GetRoomSuggestions, UseAvailableRoom,
RegisterMeetingRoom, ScheduleAutomatically, ConfirmOccurrence,
GoodParticipation, MinimalConflicts, CollectionEffort, and MatchingEffort; µfam

2 also
requires two domain assumptions: ParticipantsUseSystemCalendar and
LocalRoomAvailable.

Notice that all the tasks which are satisfied in µ1 are satisfied also in µfam
2 , and only

the intermediate goal ByUser, the refinementR21 and the four tasks SetSystemCalendar,
ParticipantsFillSystemCalendar, UseAvailableRoom, and RegisterMeetingRoom are
added to µfam

2 , three of which are newly-added tasks. Thus, on common elements,
µfam
2 and µ1 differ only on the task UseAvailableRoom, which must be mandatorily be

satisfied to complete the realization. Overall, wrt. µlex
2 , we pay familiarity with some

loss in the “quality” of the realization, since for µfam
2 we have Penalty − Reward =

−50, workTime = 3.5h and cost = 0AC. This realization was found automatically by
our CGM-Tool in 0.067 seconds on an Apple MacBook Air laptop.
Minimizing change effort. In our approach, in its simplest form, the change effort of
µ2 wrt. µ1 is given by the number of newly-satisfied tasks, i.e., the amount of the new
tasks which are satisfied in µ2 plus that of common tasks which were not satisfied in
µ1 but are satisfied in µ2. In a more sophisticate form, the contribution of each task of
interest can be weighted by some numerical value (e.g., Penalty, cost, WorkTime,...).
Intuitively, since satisfying a task requires effort, this value considers the extra effort
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required to implement µ2. (Notice that tasks which pass from satisfied to denied do not
reduce the effort, because we assume they have been implemented anyway.)

For example, if we ask CGM-Tool to find a realization which minimizes the number
of newly-satisfied tasks, we obtain the realization µeff

2 (Figure 5 in [5]). The realization
satisfies all the requirements (both ”nice to have” and mandatory), and includes the fol-
lowing tasks: CharacteriseMeeitng, SetSystemCalendar,
ParticipantsFillSystemCalendar, CollectFromSystemCalendar, UsePartnerInstitutions,
ScheduleAutomatically, ConfirmOccurrence, GoodParticipation, MinimalConflicts,
CollectionEffort, and MatchingEffort; µeff

2 also requires one domain assumption
ParticipantsUseSystemCalendar.

Notice that, in order to minimize the number of new tasks needed to be achieved, in
µeff
2 , FindASuitableRoom is refined by R3 instead of R5. In fact, in order to achieve
R5, we would need to satisfy two extra tasks (UseAvailableRoom and
RegisterMeetingRoom) wrt. µ1, whilst for satisfying R3 we only need to satisfy one
task (UsePartnerInstitutions). Besides, two newly added tasks SetSystemCalendar and
ParticipantsFillSystemCalendar are also included in µeff

2 . Thus the total effort of evolv-
ing from µ1 to µeff

2 is to implement three new tasks. Overall, for µeff
2 we have Penalty−

Reward = −50, workTime = 3.5h and cost = 80AC. This realization was found auto-
matically by our CGM-Tool in 0.085 seconds on an Apple MacBook Air laptop.
Combining familiarity or change effort with other objectives. In our approach, fa-
miliarity and change effort are numerical objectives like others, and as such they can
be combined lexicographically with other objectives, so that stakeholders can decide
which objectives to prioritize.

References

1. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

2. N. A. Ernst, A. Borgida, J. Mylopoulos, and I. Jureta. Agile Requirements Evolution via
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