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Abstract. Pervasive environments support users’ daily routines in an
invisible and unobtrusive way. To do so, they include a technical per-
vasive infrastructure, which is aware of and adaptive to both the op-
erational context and the users at hand. Non-Functional Requirements
(NFRs) have been effectively used to inform decision-making in software
engineering: functional alternatives are compared in terms of their con-
tribution to NFRs satisfaction. In this work, we consider user preferences
over NFRs as a key driver for the adaptation of a pervasive infrastruc-
ture. We devise a model-driven framework for building pervasive systems
that maximize fitness with the context and the user. Our contributions
are: (i) adaptive task models, a conceptual model to describe user rou-
tines that accounts for user preferences over NFRs; and (ii) an adapta-
tion framework, which uses our models at runtime to guide a pervasive
infrastructure in adapting its behaviour to user preferences and context.
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1 Introduction

In pervasive computing [17], technical systems are deployed in the environment—
the so-called pervasive environment—so as to support humans in their daily
activities. Crucially, pervasive environments have to remain, while executing,
invisible and unobtrusive to users. The technical infrastructure of pervasive en-
vironments (pervasive infrastructure) effects changes in the environment and
suggests appropriate activities to the users. While being guided by this system,
the user should not realize that the system is “thinking” on her behalf.

Task models [14] are a modelling language to represent user routines [18]
(sets of habitually performed tasks). They are an example of executable con-
ceptual models, as they hierarchically specify and temporally relate the tasks a
system should execute for supporting a user in the conduction of her daily rou-
tines. These models have been successfully adopted in model-driven pervasive
infrastructures [18].

However, task models provide limited adaptation to user preferences about
non-functional properties. In order to be unobtrusive and invisible, the system



has to execute routines that support courses of action the user finds natural to
her (i.e., that match her preferences). If the user is interested in carbon emissions
reduction, the system should minimize heating usage and suggest going to work
on foot. However, if she has scheduled early meetings and is late, the system
should recommend fast transportation means such as driving.

We investigate how user preferences over non-functional properties can be
taken into account by a pervasive infrastructure. Our approach relies upon Non-
Functional Requirements (NFRs) [13]. NFRs have been successfully used to in-
form decision-making by choosing the alternative that maximizes the satisfaction
of qualities. Based on successful applications in requirements models [23], archi-
tectures [5], and business processes [15], we investigate their effective usage NFRs
with task models.

In this paper, we extend task models and propose a model-driven frame-
work that enables a pervasive infrastructure to adapt its behaviour to the user
preferences and the current context. Our contributions are as follows:

– adaptive task models, a modelling language that enriches task models with
NFRs. The model is created at design-time, and used by the system at
runtime to decide upon how to adapt its behaviour. User preferences over
NFRs are captured by our proposed contextual preference model : each user
specifies, in a context-dependent way, the priority she assigns to each NFR;

– an adaptation framework for building pervasive infrastructures that exploit
adaptive task models and contextual preference models at runtime.

The paper is organised as follows. Sec. 2 presents our baseline. Sec. 3 intro-
duces adaptive task models and the contextual preference model. Sec. 4 proposes
an adaptation framework that exploits our proposed models at runtime. Sec. 5
discusses related work, draws our conclusions and outlines future directions.

2 Research Baseline: Task Models

We build on top of the task models by Serral et al. [18], which specify how a
pervasive infrastructure can support its users in carrying out everyday activi-
ties. Task models are inspired by Hierarchical Task Analysis (HTA) [20], which
constructs a task tree that refines a high-level task into a set of executable ones.

Running example. A smart-home pervasive environment supports the daily
routines of the home inhabitants through a set of pervasive services [18] that
are interfaced with sensors and effectors. Consider the following routine: “Every
working day, the system turns on the bathroom heating at 7:50 a.m. to make it
warm enough for Bob to take a shower. At 8:00 a.m., the system makes a wake-
up call, repeating it until Bob wakes up. Then, the room is illuminated and
Bob is notified about the weather. Afterwards, when Bob enters the kitchen, the
system makes a coffee, and suggests him the best way to go to work.” �

Fig. 1 illustrates the “Waking Up” routine. The root task is broken down into
simpler tasks by means of two task refinement constructs: exclusive refinement
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Fig. 1. Task model representing the “Waking Up” user routine

and temporal refinement. Exclusive refinement (graphically, a solid line) decom-
poses a task into a set of subtasks so that exactly one subtask will be executed.
Temporal refinement (graphically, a dashed line) also decomposes a task into
subtasks; however, all the subtasks shall be performed following a specific or-
der which is depicted by the arrows between sibling tasks. Temporal constraints
employ Concurrent Task Trees (CTT) operators [14]. For example, in Fig. 1:

– Enablement (T1 � T2): task T2 is triggered when task T1 finishes. For in-
stance, the system has to illuminate the room after waking up the user;

– Task Independence (T1 |=| T2): T1 and T2 can be performed in any order. For
instance, “make coffee” and “suggest transport” are temporally independent.

Task refinement ends when every leaf task is linked to a pervasive service (con-
trolled by the pervasive infrastructure), which will execute the task. For example,
“raise blinds” is executed by a pervasive service controlling the blinds engine.

A routine can be carried out through alternative sets of tasks depending on
the current state of the context (the “situation” [11]). Situations are used to
indicate the relationship between context and routine execution (see Fig. 1):

– Activation condition: it is associated with the root task of each routine. It
indicates the situation in which the routine is activated. For instance, the
“Waking Up” routine is to be executed every working day at 7:50 a.m.;

– Task precondition: it can be associated with a task to indicate that its ex-
ecution depends on whether a situation (between square brackets) holds.
For instance, the bathroom heating shall be turned on only if the difference
between comfort and current temperature is greater than three degrees.

– Iterative task : it is executed repeatedly while the situation associated with
the task holds. These tasks are graphically marked with an asterisk. For in-
stance, task “wake-up call” is iterated while the user sleeps, and the iteration
stops as soon as the user wakes up;

– Temporal constraints: the following relationships indicate that the execution
of two tasks (linked by an arrow) is subject to a temporal constraint:

• T1 � [s]� T2: after the completion of T1, T2 is started as soon as situ-
ation s holds. In Fig. 1, the system makes coffee after informing about



the weather, as soon as the user is in the kitchen (situation “UserLoca-
tion=kitchen” holds). Note that s could already hold when T1 ends;

• T1 t� T2: after the completion of T1, T2 is started as soon as the time
period t has elapsed. For instance, 10 minutes after turning the bathroom
heating on, the system shall execute task “wake-up call”.

3 Adaptive Task Models

We propose an extended version of task models (adaptive task models) to describe
system behaviour that takes into account both the personal context [22], i.e., the
individual requirements and preferences of specific users, and the physical and
social context, i.e., observable characteristics of the environment that the system
can monitor (e.g., who is in the room, temperature, closed and open doors).

Our extension enables not only adaptation to the preferences of different
users—while one may be more concerned with energy efficiency, another may
give priority to user comfort—, but also to the changing preferences of a specific
user. For instance, if a user is in a hurry, she may favour efficiency over comfort;
when not at home, instead, she may be more interested in energy saving.

Fig. 2 depicts the meta-model of adaptive task models. The red-coloured
classes show our proposed contextual preference model (Sec. 3.1), which indicates
user preferences over NFRs. The white-coloured classes represent the extended
task model itself: we introduce optional and parametric tasks (Sec. 3.2), as well
as task contributions to NFRs (Sec. 3.3). The green-coloured classes represent
the context model (from previous work [18]).

3.1 Contextual Preference Model for NFRs

Each user has different preferences, which depend on the situation and vary
over time. To represent users preferences over NFRs, we propose the contextual
preference model (which extends [11]). Our model enables analysts to define the
relevant NFRs and the priority assigned by each user in different contexts.

Table 1. Partial contextual preference model for user Bob

User Comfort (UC) : 〈UserLocation 6=Home, 0〉
〈UserLocation=Home ∧ UrgentTasks=false, 0.7〉
〈UserLocation=Home ∧ UrgentTasks=true, 0.5〉

User Efficiency (UE) : 〈UserLocation 6=Home, 0〉
〈UserLocation=Home ∧ UrgentTasks=true, 1〉
〈UserLocation=Home ∧ UrgentTasks=false, 0.3〉

Energy Efficiency (EE) : 〈UserLocation 6=Home, 0.9〉
〈UserLocation=Home, 0.4〉

For each NFR, a set of couples consisting of a situation s and a weight
w (a real number in the range [0,1]) is specified. Each couple indicates that,
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Fig. 2. Overview of adaptive task models

when situation s holds, the NFR has priority w. Value 0 indicates minimum
importance, while value 1 indicates maximum importance. The situations for a
given NFR have to be mutually exclusive. Table 1 shows part of the contextual
preference model for Bob. The weight of NFR user comfort is 0 when he is not
at home; if Bob is at home, it is 0.7 if he has no urgent tasks, 0.5 otherwise.

3.2 Task Models with Optional and Parametric Tasks

Our approach to adaptation is model-driven in general, and NFR-driven in par-
ticular. The system adapts by choosing an adequate course of action from its
task model, on the basis of contextual factors and user preferences over NFRs.
To such extent, we enrich task models with optional and parametric tasks.

Optional tasks are not essential to accomplish a specific routine. Their
execution depends on user preferences over NFRs. For instance, task “make
coffee” is optional. If the user has a meeting early in the morning, the NFR user
efficiency will have a high priority, and task “make coffee” will not be executed.
Note that optional is different from contextual: a contextual task is executed only
if the context precondition holds, while an optional task relies on preferences.
Graphically (see Fig. 3), optional tasks are represented by drawing a hollow circle
to the incoming refinement link (like optional features in feature models [10]).

Parametric tasks are leaf tasks in the task model whose execution can
be tuned by adjusting the values of their parameters. This tuning is intended
to maximise satisfaction of user preferences. For instance, task “turn on bath-
room heating” can be tuned by adjusting the target temperature, while “switch



bedroom light on” by setting light intensity. Depending on the value of their
parameters, the tasks will have different impacts on the NFRs. Graphically (see
Fig. 3), parameters are labels—representing the parameter name—connected to
leaf tasks by a line ending with a square-shaped arrow.

make
coffeeTargetTemp

[ComfortTemp-CurrentTemp>3]
turnonbathroomheating

switch
light on

LightIntensity

Fig. 3. Graphical representation of parametric and optional tasks

3.3 Linking Tasks to NFRs via Contributions

Variation points enable adaptability in a model-driven system: they are the loci
in the model wherein alternative decisions are taken by the system (depending
on the current context). In this section we explain how task contributions to
NFRs can be exploited in adaptive task models to drive system adaptation so
as to choose the alternative that fits best with user preferences.

Like in goal analysis [9], analysts indicate the contribution of each task to
individual NFRs in the range [-1,+1]. Let c be such contribution. A task can be
neutral (c=0), provide a negative contribution (c<0), or a positive contribution
(c>0). If no value is specified, we consider a neutral contribution relation.

While expressing contributions, analysts have to distinguish between tasks
where the system automates an activity (automation) and tasks in which the
system suggests the user a specific course of actions (recommendation):

– automation: the contribution quantifies the direct impact of task execution
by the system. For example, contributions for task “raise blinds” refer to the
system action of turning on the blinds engine;

– recommendation: the contribution evaluates the indirect impact of having the
user following the suggestion. For example, contributions for task “suggest
walking” refer to the impact of accepting the suggestion and walking to work,
and not to the action of recommending the user.

We require contributions to be specified in correspondence of all variation
points in a routine. We suppose that the running system explores the task model
for a routine in a top-down fashion, and takes decisions about which alternative
to choose whenever it encounters a variation point.

Adaptive task models include three variation point types: (i) exclusive re-
finement: one subtask is to be selected and executed; (ii) optional tasks: can be
either executed or skipped; and (iii) parametric tasks: parameters can be tuned,
leading to different runtime behaviours. We detail each variation point type:

Exclusive refinement: the system has to choose the best alternative subtask
by comparing their contribution to NFRs. For a non-executable task, the contri-



bution approximates the level of contribution of the abstract task, irrespective
of the specific executable tasks that refine it. Contributions can be context-
dependent. For instance, consider NFR user comfort and task “suggest driving”
in the “Waking Up” routine. The contribution of this task could be +0.5 if the
user lives and works in the city outskirts, -0.5 if the user either works or lives in
the city centre, where traffic jams are very likely to occur.

Optional task: the decision is whether to execute or skip the task, depending
on the contribution to NFRs and user preferences. Contribution to NFRs is
expressed as explained for the exclusive refinement variation point. The rule of
thumb is that the task is carried out if the weighted contribution to NFRs is
positive (>0), and is skipped otherwise. Take, for instance, task “make coffee”,
and suppose its contribution to NFR user comfort is +0.6 if the user has no
early meetings (situation “UrgentTasks” does not hold), -0.8 otherwise; and its
contribution to NFR User Efficiency is -0.4. Take Bob’s preferences from Table 1.
Depending on the current context, the task is executed or skipped:

– “UrgentTasks=true”: user comfort has weight 0.5, user efficiency 1.0. The

average contribution value is (−0.8∗0.5)+(−0.4∗1)
0.5+1 = −0.53; being negative, the

task is skipped;
– “UrgentTasks=false”: user comfort has weight 0.7, user efficiency 0.3. The

average contribution value is (0.6∗0.7)+(−0.4∗0.3)
0.7+0.3 = +0.3; being positive, the

task will be executed by the system.
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Fig. 4. Interpolation functions for NFR contributions of the task “switch light on”

Parametric task: the system has to tune the parameters for optimizing NFRs.
If the task depends on multiple parameters, so as to simplify the specification of
contributions, we suppose the analysts will merge these parameters into a single
numeric parameter in a discrete interval. Contribution values are assigned for a
set of known values, obtained either by expertise, through interviews, from data
sheets, or via measurements. The system will determine the contribution for the
missing values using interpolation functions [19] (e.g., polynomial, spline, cubic).

Take, for instance, task “switch light on”. Depending on the light intensity,
NFRs energy efficiency, user comfort, and user efficiency receive different contri-



butions. In Fig. 4, the analysts have specified contributions to the three NFRs
for different light intensity values (50, 100, 250, 400, 800 lux), based on her own
experience and the light bulb data sheet. A spline interpolation has been applied
to compute the contribution values for the missing light intensity values.

When a task is both parametric and a subtask in an exclusive refinement,
parametric task contributions are considered instead of contextual contributions.

4 Executing Adaptive Task Models

Adaptive task models are machine-processable and are executable models. At
runtime, they drive the adaptive behaviour of a pervasive infrastructure. In this
way, all the efforts invested at design time are reused at runtime providing new
opportunities for adaptation capabilities without increasing development costs.

The adaptation process is activated by triggering events, which define when
the system should adapt. These triggering events are: changes in user preferences,
task execution faults, plan failures or context evolution.

The pervasive infrastructure will use the information about the occurrence
of a trigger in the next execution (instance) of a routine. In such next instance,
the plan that supports the user best—i.e., maximizes NFRs—will be selected. A
plan consists of a set of executable tasks in the routine and ordering constraints
between those tasks that, together, carry out the routine.

For instance, consider it’s a hot Monday of September, and Bob has urgent
tasks at work. In this context, NFRs weights are: user comfort = 0.5, user ef-
ficiency = 1, energy efficiency = 0.4. The pervasive infrastructure executes the
adaptive task model of Fig. 1 as follows: the root task is temporally refined, so
its subtasks are examined. The precondition of task “turn on the heating” does
not hold, thus the task is skipped. After ten minutes, a wake up call is made.
The task is exclusively refined. The buzzer option is chosen by comparing the
weighted contributions to NFRs. Since user efficiency has priority over comfort,
task “activate buzzer” is executed. Bob awakes immediately. The room is illumi-
nated by raising the blinds, since the contribution of this task to user efficiency
is higher than the contribution of “switch light on”, no matter its tuning. Bob
is informed about the weather by executing such task. When Bob enters in the
kitchen, driving is suggested, as this option has the best contribution to user
efficiency. Note that the optional task “make coffee” is not executed because
Bob has urgent tasks and is in a hurry (see Sec. 3.3).

5 Discussion

We have proposed adaptive task models, an executable modelling language that
a pervasive infrastructure can use to support users in their daily routines. These
models do not only support alternatives to carry out a routine, but also include
the decision-making rationale. Moreover, by handling preferences over NFRs as a
separated model, a specific routine can be presented to the user in different ways
just by changing the contextual preference model, without altering the routine.



We have also devised a user-centric adaptation framework (more details in [7])
that uses adaptive task models at runtime to adapt system behaviour. While
automating user routines, the system adapts its behaviour by choosing a course
of action that maximizes user preferences over NFRs.

The use of NFRs to drive decision-making has been widely explored in Goal-
Oriented Requirements Engineering (GORE). Most GORE approaches rely upon
(variants of) the NFR framework [13] or the i* framework [23], and exploit the
concept of soft-goal to represent NFRs and reason about NFR satisfaction.

Chung et al. [5] use a NFR graph to select among alternative architectural
designs. Adaptive software systems (e.g., [12]) use soft-goals to choose the con-
figuration that maximizes the satisfaction of a set of NFRs. We also rely on
optimizing NFRs; however, unlike those approaches, we account for the priori-
ties of each user, and we allow for contextual contributions.

Brown et al. [3] exploit a goal-oriented specification to define adaptation
requirements, i.e. how the system switches from one configuration to another.
In a similar spirit, Souza et al. [21] define awareness requirements as meta-
requirements to drive adaptations. Our framework embodies an adaptation re-
quirement, i.e. the optimization of user preferences over NFRs.

Some approaches [16, 8] explore contextual variations in business process
models. Interestingly, in [8], context analysis [2] is used to specify context. Such
approach could be exploited to define situations. Another interesting direction
is assessing the suitability of BPM languages for representing user routines.

Other approaches use feature models [4, 1] to describe architectural config-
urations, each consisting of components that are activated depending on the
current context. In addition to contextual factors, we consider user preferences
over NFRs so as to adapt the system. Also, we do not focus on individual com-
ponents, but on the adaptation of complex system behaviours (user routines).

Future work includes the development of a pervasive software infrastructure
based on our adaptation framework. We intend to rely upon previous work on
pervasive infrastructures [18] and goal-oriented adaptation [6]. The effectiveness
of the infrastructure in adapting to users will be assessed through case studies.
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