
Optimizing Monitoring Requirements in Self-Adaptive
Systems

Raian Ali1, Alberto Griggio2, Anders Franzén3,
Fabiano Dalpiaz4, and Paolo Giorgini4

1 Bournemouth University, UK
2 Fondazione Bruno Kessler, Italy

3 Jasper Design Automation, Sweden
4 DISI, University of Trento, Italy

Abstract. Monitoring the system environment is a key functionality of a self-
adaptive system. Monitoring requirements denote the information a self-adaptive
system has to capture at runtime to decide upon whether an adaptation action
has to be taken. The identification of monitoring requirements is a complex task
which can easily lead to redundancy and uselessness in the set of information to
be monitored and this, consequently, means unjustified instalment of monitoring
infrastructure and extra processing time. In this paper, we study the optimiza-
tion of monitoring requirements. We discuss the case of contextual goal model,
which is a requirements model that weaves between variability of goals (func-
tional and non-functional requirements) and variability of context (monitoring
requirements) and is meant to be used for modelling mobile and self-adaptive sys-
tems requirements. We provide automated analysis —based on a SAT-solver— to
process a contextual goal model and find a reduced set of contextual information
monitor guaranteeing that this reduction does not sacrifice the system ability of
taking correct adaptation decisions when fulfilling its requirements.

Key words: Requirements; Adaptation; Mobility; Monitoring Optimization

1 Introduction

Monitoring requirements is a notion which refers to the information that a system has to
capture at runtime to assess the effectiveness of its current configuration and, if needed,
to determine how to adapt to a more suitable configuration. The monitoring activity
requires the deployment of an adequate infrastructure, such as sensors and databases,
and collects up-to-date values of certain attributes of the system internal state (e.g.,
available resources, errors and faults, and security breaches) and the surrounding envi-
ronment (e.g., user’s location, user’s computing device, user’s movement and activity,
temperature). Depending on the collected information, certain adaptation actions may
be triggered in order to switch the system into different course of execution.

Monitoring is crucial in several areas and for several reasons. In addition to feed-
ing logging and reporting functionalities, which is essential for the off-line processing
established by system analysts, monitoring is a fundamental activity of self-adaptive
systems [15]. These systems are autonomously capable of observing their environment
and internal state and adapting their behaviour in order to keep their functional require-
ments fulfilled and optimize the satisfaction of their non-functional requirements.

2 Raian Ali et al.

Monitoring is a costly activity, both in terms of resources and processing time. The
deployment of a comprehensive monitoring infrastructure may be as expensive as the
implementation of the core functionalities of the system. This is especially true when
considering online monitoring, such as in self-adaptive systems, where the monitoring
infrastructure has to continuously collect and process information at runtime. Mobile
information systems [14] are a clear example of an adaptive system which is subject to
this problem, as some monitoring functionalities have to run on hand-held devices with
low processing power and low-capacity battery. In these systems, optimizing monitor-
ing requirements is essential both to reduce costs and to maximize performance.

In our research, we focus on monitoring information that is relevant at the require-
ments level, namely that affects requirements activation, applicability, and satisfaction.
We adopt the notion of context to represent any information related to the system envi-
ronment which affect system’s requirements. Specifically, we build on top of contextual
goal models proposed by Ali et al. in [1, 2], a requirements engineering framework that
allows for representing, analysing, and reasoning about the relationship between con-
text and requirements (goals). The authors of these works stated that the identified and
represented contexts can become very complex and this causes redundancy and/or in-
consistency problems in both of functional and monitoring requirements.
Example. Let us consider the following three contextual attributes which affect the be-
haviour of a museum-guide mobile information system: a1= “the visitor is in the recep-
tion area”, a2= “there is enough light in the user’s location”, and a3= “the user location
is not noisy”. Imagine that the context C1= a1 ∧ a2 is a precondition for a system re-
quirement of showing a demo using certain visualizing settings. In a museum where
the light level in the reception area is always high, i.e. a1 → a2, C1 can be reduced
to a1 and, thus, the system should not monitor the light level and there will be no need
to deploy the sensors needed for that. In another case, a behaviour like adopting voice
recognition is allowed only in the reception area and feasible when the place is quite,
i.e., when C2= a1 ∧ a2 holds. In a busy museum where the reception is always noisy
then C2 could be reduced to false and there will be no need to install its monitoring
infrastructure unless it helps for monitoring other contexts for other functionalities.

In this paper, we develop a modeling and analysis framework to optimize monitor-
ing requirements in adaptive systems. Our ultimate goal is to minimize the amount and
costs of information to monitor in a way that does not compromises the system abil-
ity in taking correct adaptation decisions. We study the case of contextual goal models
and propose to consider the dependencies between context defined on it as an input
for our developed SAT-based solver. We develop algorithms to optimize monitoring re-
quirements and explain our approach on a scenario of a mobile information system for
assisting visitors of a museum.

The paper is structured as follows. Section 2 explains our baseline: the contextual
goal model proposed in [1, 2]. Section 3 states and analyzes the context dependency
importance for optimizing monitoring requirements. Section 4 presents automated rea-
soning to treat redundancy, triviality, and inconsistency in a monitoring requirements
specification. Section 5 discusses related and future work.

Optimizing Monitoring Requirements in Self-Adaptive Systems 3

2 Background: Contextual Goal Model

Context, the environment surrounding the system [12], is an important aspect in adap-
tive systems engineering, which has to be considered since the early requirements anal-
ysis stage. We consider Goal-Oriented Requirements Engineering (GORE), in which
stakeholders goals are identified and analyzed, and alternative system behaviours—sets
of tasks the system shall implement—are identified to satisfy such goals. In [2, 1], Ali
et al. advocate the importance of integrating contextual factors in goal analysis, so as to
allow for the derivation of contextualized goal satisfaction alternatives. Moreover, the
authors explained how context itself needs to be modeled and analyzed. Goal analysis
provides constructs to hierarchically analyze goals and discover alternative sets of tasks
the system can execute to satisfy such goals, while context analysis provides constructs
to hierarchically analyze context and discover alternative sets of facts the system has to
monitor to verify a context and then act accordingly.

Fig. 1 represents a contextual goal model for a mobile information system that
assists the visitors of a museum and interacts with them and assistance staff, mainly
through their personal digital assistants (PDAs). The model represents alternative ways
to satisfy the top-level goal of the system: giving information to visitors about the pieces
of art in the museum. Contextual annotations (C1..C8) express the relationship between
context and goals, and are related to the following variation points in the goal model:

1. Or-decomposition: a contextual annotation on a branch specifies that an alternative
sub-goal (task) can be adopted only if that context holds. For instance, to provide
information about a piece of art, a visitor can be directed to a dedicated terminal
only if such terminal is free and close to the visitor and he/she is able to use and
interact with it (C2). The visitor’s PDA can be alternatively used to show informa-
tion when the piece of the art information are not so complicated, and the visitor has
the ability and the knowledge to use PDAs (C3). Getting information through an
assistance staff requires that the visitor is not able to use his PDA and not familiar
with terminals, or that the visitor is classified as an important visitor (C4).

2. Root goals . The activation of a root goal depends on a contextual trigger. To acti-
vate goal “visitor gets informed about a piece of art”, the system needs to verify if
the visitor is interested in the piece, does not already know about it, and if there is
still time to explain about it (C1).

3. Means-end: goals can be ultimately satisfied by means of specific executable pro-
cesses (tasks). The adoptability of each task in means-end decompositions might
depend on the context. The visitor can be notified about the availability of informa-
tion terminals through a voice message when he/she puts the headphones on, and
is not talking to somebody or using his/her PDA for a call (C5), while notifying
him/her by SMS can be adopted in the opposite context (¬C5).

4. Actor dependency: An actor can attain a goal or get a task executed by delegating it
to another actor only in a specific context. The dependency between the two system
actors for providing the information to a visitor through an assistance staff requires
a staff that is close to and talks a language common to the visitor, and knows enough
about the considered piece of art comparing to the visitor knowledge (C6).

4 Raian Ali et al.

Goal

Task

Actor

Actor boundary

Softgoal

Means-ends link

Decomposition link

Dependency link

Legend

visitor [v] gets informed
about a piece of art [p] in

museum [m]

[v] gets info
through [m]

service staff [s]

prepare [p]
detailed

information

prepare [p]
brief simple
information

or

[v] gets info via
his/her PDA

Visitor
Assista

nce
System

C1

[v] gets info.
via terminal [t]

Staff
Assista

nce
System

[p] info suitable
to [v] is prepared

[p] info is
presented

to [v]

and

[p] info is
presented to
[v] via video

[v] info is
presented to

[v] interactively

staff is more
comfortable

visitor well
informed

[v] gets info through
[m] service staff [s]

[s] is alerted
[s] gives [p]
info to [v]

and

[s] gives [p] info
to [v] by call

[s] gives [p] info
to [v] in person

make video
call between

[s] and [v]

make voice
call between

[s] and [v]

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and
send [s] a

voice
command

alert [s] via
PDA vibration

and SMS

or
[s] is alerted

through public call
[s] is alerted

through [s]’s PDA

or

make a call
through speakers
in [s] current room

[s] is alerted
via ringing

tone and SMS

and

[v] know how to
use [t]

[v] arrives to [t]

show demo to [v]
how to use [t]

[v] is notified for
the service

through [v]’s PDA

direct [v] to [t]
place

send [v] a
voice

command alert [v] via
PDA vibration

and SMS

+/-
+ +

-

+

Contribution link

C2
C3

C4

C6

C5
¬C5

¬C8

C7

Fig. 1. Tropos goal model for the museum assistance system

5. And-decomposition: a sub-goal/sub-task is needed to achieve their parent goal only
in a certain context. Guiding the assistance staff to the visitor place is not needed if
the visitor stays around and can be seen directly by the assistance staff (C8).

6. Contribution to softgoals: softgoals are qualitative objectives having no clear-cut
satisfaction criteria, and can be contributed either positively or negatively by goals
and tasks. The contribution value can vary from one context to another. Giving
the information in person is comfortable if the visitor is in the same room as the
assistant (C7), while it is not comfortable when they are in different rooms.

Contextual precondition on the goal model might need to be analyzed, in order to
identify, represent, and agree on how the system can monitor and verify if a context
holds. The context analysis proposed in [2, 1] provides modeling constructs to hier-
archically analyze context. An example of the analysis of the context C1 of Fig. 1 is
shown in Fig. 2.

Accordingly, context is specified as a formula of world predicates. Based on their
verifiability by an actor, world predicates can be either facts or statements. A world
predicate is a fact (a statement) for an actor, if that actor can (cannot) verify it. Ver-

Optimizing Monitoring Requirements in Self-Adaptive Systems 5

Fig. 2. Context analysis for C1: identifying observable facts to judge whether a context holds

ifiability is clearly linked to monitoring requirements: a fact requires the deployment
of an adequate IT infrastructure (sensors, databases, etc.) to determine its value. State-
ments, on the other side, cannot be monitored as such: analysts shall further analyze
them till reaching observable facts that the system can monitor. Context analysis allows
the analyst to specify that a fact (or a formula of facts) is a means to infer evidence that
a statement holds. To represent such evidence, context analysis provides the notion of
support relation.

We explain context analysis constructs with the help of examples from Fig. 2. “the
piece of art [p] artist [a] has lived in the visitor’s [v] city of birth” is a fact, as the
system can verify through checking the profile of the artist and the city of birth of the
registered visitor. “the visitor [v] is interested in the piece of art [p]” is a statement,
since the system can not determine its truth value without further analysis. The previ-
ous statement is supported if either “[v] is behaviorally interested in [p]”, or “[v] is
historically interested in [p]”. The system can get evidence of the first sub-statement
via the support relation from the formula of facts “[v] looks at [p] for long time” and
“[v] comes to [p] area and has a look at [p] so often”.

3 Context Dependency

In this section, we discuss context dependency, show its importance, and argue about
its generality and complexity. The context hierarchial analysis we explained in the last
section, is easily transformable into a propositional formula consists of the leaf facts as
atomic predicates (variables). The dependency, namely the implications, between these
facts can make the context formula redundant, trivial, or even inconsistent. Here we give
the definition of redundant context and its two extremes: the trivial and the inconsistent.

6 Raian Ali et al.

Definition 1 (Redundant Context) given the implications between its facts, a context
is redundant iff some facts has no effect on its validity.

Definition 2 (Trivial Context) given the implications between its facts, a context is
trivial iff it is always reduced to true.

Definition 3 (Inconsistent Context) given the implications between its facts, a context
is inconsistent iff it is always reduced to false.

Context redundancy makes the context representation more complex without jus-
tification and leads to a useless monitoring of facts that have no effect on its validity.
Context redundancy motivates us to optimize monitoring requirements. Let us take the
two facts f1 = “the visitor is inside a museum room” and f2 = “there is enough light
at the location of the visitor”. Consider a context C = f1∧f1; if the system is going to
operate in a museum that its rooms are well illuminated then f1→ f2 andC is reduced
to f1 which means that there is no need to install sensors to capture the level of light in
the museum. Alternatively, if C = f1 ∨ f2 then C is reduced to f2 and there will be
no need for installing a positioning system to decide if the visitor is inside a museum
room. Some base reductions rules are shown in the following table:

Assured Implication A ∨B ↔ A ∧B ↔
A→ B B A
A→ ¬B A xor B false
A↔ ¬B true false

While the redundancy of context implies a redundancy in monitoring requirements;
context inconsistency adds to that inapplicability in the software functionalities. Besides
the uselessness of monitoring their facts, inconsistent contexts deny the adoptability of
the software functionalities preconditioned by them. E.g., if a functionality is precondi-
tioned by the context C = f1 ∧ f2, and if the museum rooms are not well illuminated
for some decoration reasons or to conserve the quality of a piece of art, i.e. f1→ ¬f2,
then such functionality is never adoptable since C is inconsistent.

After showing its influence, now we argue about the generality of the context depen-
dency problem and that it is not tied to or caused by our context analysis and goal model.
We expect any self-adaptive system to monitor several pieces of information regarding
its context that could be also combined through logical relations to conform logical ex-
pressions. Assuring some implications between these information pieces might reveal
a problem of redundancy, triviality, or inconsistency. Let us take the following generic
pseudo-code that can be part of a decision making process of a self-adaptive system:

1: if (A ∨B) ∧ C then
2: if D ∧ E then
3: adopt alternative set of actions (action set 1)
4: else
5: if F ∨G then
6: adopt another set of actions (action set 2)
7: end if
8: end if
9: end if

Optimizing Monitoring Requirements in Self-Adaptive Systems 7

The three contexts boolean abstractions we have here are (A ∨ B) ∧ C, D ∧ E,
and F ∨ G, that involve monitoring the set of facts S = {A,B,C,D,E, F,G}. The
model has two alternative set of actions action set 1 and action set 2 each fitting to a
certain context. When we assure the implication C → A then (A ∨ B) ∧ C can be
reduced to just C and therefore there will be no need to monitor A and B. If there is
no implication between D and E then D ∧ E alone is not redundant, but this does not
mean that action set 1 is adoptable or D and E are not redundant; suppose we have the
implication C → ¬E, then the accumulated context at line 2, which is C ∧ D ∧ E,
is inconsistent and reduced to false, and the action set 1 is not adoptable. In case we
assure that C → ¬G then the accumulated context at line 5, C ∧ (F ∨ G), can be
reduced to C ∧ F which means that G is redundant and has no effect on the validity of
the accumulated context.

The implications between facts can be absolute or dependent on the characteris-
tics of the system environment. Absolute implications are applied wherever the system
has to operate, e.g., f3 → ¬(f4 ∧ f5) where f3 =“piece of art [p] is always exclu-
sive to museum [m]”, f4 =“visitor is visiting the museum [m] for the first time” and
f5=“visitor has seen [p] some date before today”. Other implications depend on the
nature of the environment the system is going to operate in, like the aforementioned
implication between the light level and being inside a museum room. Moreover, the
environment itself assures that some contexts are always true or false, so we have to
consider a special kind of implications between the system environment and context
analysis facts, i.e. Env → facts formula. E.g., if the museum opens only in holi-
days, so the fact “the day is holiday in museum region” is always true.

Facts verification has costs; costs are those related to the facts verification process
itself and to getting the data needed to make the verification possible, such as installing
physical equipments like sensors, inserting data by human operators, having enough
storage, processing time and so on. When we have more than one possibility to reduce
contexts, we should choose the one that minimizes the costs.

After the above explanation of the context dependency and its effects, we now ex-
plain two main specific problems that we need to face in order to optimize monitoring
requirements:

– Optimizing monitoring requirements: checking and fixing the redundancy, triviality,
and inconsistency of contexts lead to minimizing the costs of the system as it avoids
us sensing, storing, processing data to verify facts that have no effect on any deci-
sion, and developing software functionalities that are preconditioned by inconsistent
contexts until such inconsistencies are fixed.
Let us consider the contextual goal model of the top-left of Fig. 3. Whenever the
analyst defines a direct context at each variation point (C1,C2,C3,C4,C5,C6), the
automated reasoning has to check if this direct context alone and if the accumulated
context (C1, C1 ∧ C2, C1 ∧ C3, C1 ∧ C4, C1 ∧ C5, C1 ∧ C3 ∧ C6 respectively)
are consistent and non trivial, and notify the analyst to fix any error before repeating
the check and proceeding with the next contexts. However, this check has also to be
done progressively for the accumulated context on the alternatives in the goal model
to know if they can be adopted together, e.g., if C1 ∧ C2 ∧ C5 is inconsistent then
the root goal satisfaction alternative A2= {G5, G3, G8} is never adopted.

8 Raian Ali et al.

After defining contexts at all of the variation points and passing the consistency and
triviality check, we can start to optimize the monitoring requirements. Optimiza-
tion takes the set of all contexts associated to the different goal satisfaction alterna-
tives {A1, A2, A3, A4}and softgoals {SG1}, i.e. {A1C, A2C, A3C, A4C}, and
{SG1C} and gives equivalent reduced contexts {A1C ′, A2C ′, A3C ′, A4C ′}, and
{SG1C ′} that can be verified on a sub-set of facts with minimum monitoring costs.
The analyst has to study the set of facts of the resulted formulas and elicit the data
that the monitoring system has to obtain.

G7

and

or

- SG1

+

or

C1
G1

G4G3G2

G8G6G5

C2 C3

C6

C4 C5

G7

and

or

C1
G1

G4G3G2

G5

C2 C4

and

C1
G1

G4G3G2

G8G5

C2 C5

and

C1
G1

G4G3G2

G8G6

C3 C5

G7

and

C1
G1

G4G3G2

G6

C3 C4

A1C= C1 and C2 and C4

A2C= C1 and C2 and C5

A3C= C1 and C3 and C4

A4C= C1 and C3 and C5

SG1C=C1 and C3 and C6

A1 A2

A3 A4

Fig. 3. The accumulated context for the root goal satisfaction alternatives and softgoals

The automated reduction has to minimize the total cost of monitoring all the re-
duced contexts facts, as doing it separately for each context of {A1C, A2C, A3C,
A4C}, and {SG1C} does not guarantee, in the general case, having the minimal
total monitoring costs. The problem of optimizing a set of contexts together to re-
duce the overall cost is highly expensive as we explain later. In the next section, we
provide an algorithm, based on SAT techniques and greedy algorithms, that takes a
context formula together with the implications between facts (assumptions), checks
its consistency and redundancy, and produces an equivalent formula with less costs.

– Efficient specification of implications: when the number of facts is high, it will be
hard for the analyst to specify even the binary implications between facts. Moreover,
the specified implications themselves might be wrong and inconsistent. Designing a
supporting tool that helps the analyst to correctly specify, with a minimum number
of interactions, the implications between facts is another main problem. We expect
such tool to make a kind of facts analysis and asks the analyst to specify the relation
where the probability of implication is high. In this paper, we do not provide solution
for this problem and we aim to address it in future work.

4 SAT-based Redundancy Elimination

In this section we describe our algorithm for determining whether a context is inconsis-
tent or trivial, and for identifying redundant facts in a context. The algorithm is based
on propositional satisfiability (SAT), and in particular on SAT-based techniques for the
enumeration of all the models of a propositional formula. Before describing the algo-
rithm, we recall some necessary definitions and notions from propositional logic.

Optimizing Monitoring Requirements in Self-Adaptive Systems 9

Definition 4 (Model, Satisfiability, Equivalence) Letϕ be a propositional formula,and
V (ϕ) be the set of its atomic predicates. Let µ be a function µ : V (ϕ) → {0, 1}, and
let ν be a function from propositional formulas to the set {0, 1} defined as: 1

ν(P) = µ(P), P ∈ V (ϕ) ν(¬φ) = 1− ν(ϕ) ν(φ ∧ ψ) = min(ν(φ), ν(ψ))

µ is a model for ϕ if ν(ϕ) = 1. ϕ is satisfiable if it has at least one model, unsatisfiable
otherwise.

Two formulas φ and ψ are equivalent if and only if they have the same models. A
formula φ entails another formula ψ, denoted as φ |= ψ, if all the models of φ are also
models of ψ, but not vice versa.

In what follows, we might denote a model µ as a set of literals µS , such that for each
variable P , if µ(P) = 1 then P ∈ µS , and if µ(P) = 0 then ¬P ∈ µS . Analogously,
we might denote µ as a formula µF which is the conjunction of the literals in µS .2

Example 1. Let ϕ be the formula (P ∨ Q) ∧ (R ∨ ¬S) ∧ (S ∨ P). Then µ :=
{P,Q,¬R,¬S} is a model for ϕ.

Definition 5 (Equivalence under assumptions) Let ξ and ϕ be two formulas. Then a
formula ϕ′ s.t. ξ |= ϕ↔ ϕ′ is said to be equivalent to ϕ under the assumption of ξ.

Example 2. Let P and Q be predicates. Given the definition of equivalence under as-
sumptions, P ∧ Q is equivalent to P under the assumption P → Q since P → Q |=
(P ∧Q)↔ P . There are other formulas which will be equivalent, e.g. P ∧Q is trivially
equivalent to itself.

By substituting every fact (a predicate) in a context with a fresh propositional vari-
able (fact variable) we obtain the boolean abstraction of a context. In the same way, we
can obtain the boolean abstraction of the assumptions which are known to be true in a
context. Given the boolean abstraction for a context ϕ and the corresponding assump-
tions ξ we can express the problem of reducing redundancy of contexts as the problem
of finding an equivalent context ϕ′ which is equivalent to ϕ under the assumptions ξ.

In order to obtain such a ϕ′, we exploit SAT solvers, and in particular techniques
for generating all the models of a boolean formula. The pseudo-code of our algorithm
is reported in Fig. 4. The algorithm enumerates the models of the boolean abstraction
ϕ of the context, and for each such model µ it checks whether µ is compatible with the
assumptions ξ (which express the known implications between facts). If µ is compatible
with the assumptions, the algorithm tries to reduce µ by removing literals from it as long
as it is still a model for ϕ under the given assumptions, that is, as long as µ ∧ ξ |= ϕ,
or in other words as long as µ ∧ ξ ∧ ¬ϕ is unsatisfiable. Then, the reduced context is
given by taking the disjunction of all the reduced models that are compatible with the
assumptions.

Theorem 1. Let ξ and ϕ be two formulas, and let ϕ′ be the result of applying the algo-
rithm of Fig. 4 to ϕ and ξ. Then ϕ′ is equivalent to ϕ under the assumptions ξ.

1 We define ν only for the connectives ¬,∧ since they are enough to express all the others.
2 Moreover, we shall drop the subscripts S and F when they are clear from the context.

10 Raian Ali et al.

Input: context ϕ, assumptions ξ
Output: reduced context ϕ′

1: ϕ′ ← ⊥
2: for all models µ of ϕ do
3: if Is Satisfiable(µ ∧ ξ) then
4: for all literals l ∈ µ do
5: µ′ ← µ \ {l}
6: if not Is Satisfiable(µ′ ∧ ξ ∧ ¬ϕ) then
7: µ← µ′

8: end if
9: end for

10: ϕ′ ← ϕ′ ∨ µ
11: end if
12: end for
13: return ϕ′

Fig. 4. Pseudo-code of the context reduction algorithm

Proof. We have to show that:

1. every model of ϕ that is compatible with ξ is also a model of ϕ′; and
2. for each model µ of ϕ′, all its extensions to all the variables in V (ϕ) \ V (ϕ′) that

are compatible with ξ are models of ϕ.

– Let µ be a model of ϕ compatible with ξ (that is, µ ∧ ξ is satisfiable). Then, by
construction (lines 4-10 of the algorithm) ϕ′ contains a subset of µ as a disjunct.
Therefore, µ is a model for ϕ′.

– Let µ be a model of ϕ′ compatible with ξ. Since ϕ′ is a disjunction of conjunctions
of literals, µ must be a superset of the set of literals σ in one of such conjunctions.
We can assume w.l.o.g. that σ is the smallest such set, because clearly if µ satisfies
ψ ∧ l, then µ satisfies also ψ. Moreover, the variables occurring in µ are a subset
of the variables of ϕ. Consider any extension µ′ of µ to all the variables of ϕ, such
that µ′ is compatible with ξ, and suppose that µ′ is not a model for ϕ. Then µ′ can
be turned into a model for ϕ by flipping 3 some of the literals in µ′ \ σ, since by
construction the literals in σ occur in a model of ϕ compatible with ξ (lines 3-10 of
the algorithm). Let η be a minimal set of literals to flip to obtain a model µ′′ of ϕ
from µ′. By construction, µ′′ ∧ ξ ∧ ¬ϕ is unsatisfiable, and for all the literals l in η,
(µ′′ \{l})∧ξ∧¬ϕ is satisfiable. 4 But then, none of the literals in η would have been
removed from µ′′ by the algorithm (lines 4-9) when processing µ′′ (which must have
been processed since it is a model of ϕ), and so η must be a subset of σ, which is a
contradiction. Therefore, µ′ is a model for ϕ.

Example 3. Let the context be ϕ = (P ∧ Q) ∨ R, and we wish to reduce this formula
under the assumption ξ = (P → ¬Q) ∧ (P → R)

To obtain a reduced context we can enumerate all models of ϕ and reduce given the
assumption in this way:
3 Flipping a literal here means replacing l with ¬l or vice versa.
4 Because ((µ′′ \ {l})∪ {¬l})∧ ξ 6|= ϕ, so ((µ′′ \ {l})∪ {¬l})∧ ξ ∧¬ϕ is satisfiable, and so

also (µ′′ \ {l}) ∧ ξ ∧ ¬ϕ is satisfiable.

Optimizing Monitoring Requirements in Self-Adaptive Systems 11

1. We set up the algorithm by setting ϕ′ ← ⊥
2. ϕ is satisfiable, and the first model returned is e.g. µ = {¬P,¬Q,R}

a) ¬P ∧ ¬Q ∧R ∧ ((P → ¬Q) ∧ (P → R)) is satisfiable (line 3), so the model
is compatible with the assumptions.

b) Since R∧ (P → ¬Q)∧ (P → R)∧¬((P ∧Q)∨R) is unsatisfiable, both ¬P
and ¬Q are redundant in this model, so they are removed from µ′ in lines 4-9
of the algorithm.

c) Update ϕ′ ← R
3. the second model of ϕ returned is e.g. µ = {P,Q,¬R}

a) As P ∧Q∧¬R∧ ((P → ¬Q)∧ (P → R)) is unsatisfiable (line 3), the model
is not compatible with the assumptions, so we skip lines 4-10.

4. the other two models returned are µ = {P,¬Q,R} and µ = {¬P,Q,R}. As above,
they can be reduced to {R} only, sinceR∧(P → ¬Q)∧(P → R)∧¬((P∧Q)∨R)
is unsatisfiable (line 6).

The resulting reduced context becomes ϕ′ = R, and we have found that P and Q are
redundant for this context.

We remark that the above algorithm can be used also to detect inconsistent or trivial
contexts: in the former case, none of the models will be compatible with ξ, so ϕ′ will be
always equal to⊥; in the latter case, ξ∧¬ϕwill be always unsatisfiable, so in the loop of
lines 8-10 all the literals would be removed from µ, which will therefore be reduced to
>. However, for efficiency reasons it might be preferable to check for inconsistency and
triviality before entering the main loop of lines 2-12, by checking the unsatisfiability of
the formulas ξ ∧ ϕ and ξ ∧ ¬ϕ respectively.

Efficiency of the algorithm The algorithm enumerates all models, and in the worst
case there are an exponential number of them. For each model, we solve a number of
SAT problems. So in the worst case, we need to solve an exponential number of NP-
complete problems.

Despite this, the cost of the calls to a SAT procedure can be greatly reduced by
using an incremental SAT solver such as MiniSat [9]. The call on line 3 will use the
same formula ξ in every iteration of the outer loop, only varying the model µ. In this
case, one single solver instance containing ξ can be reused from one iteration to the
next. In the same way, the call on line 6 uses the same formula ξ ∧¬φ in each call, only
varying the model µ. A single SAT solver instance can be reused for all these calls.
The advantage of using an incremental SAT solver for each of these three cases is that
everything learnt from the formulas in one iteration of the outer loop can be reused for
all following iterations and will not have to be rediscovered. Lastly, enumerating all
models can be done with an efficient algorithm for the all-SAT problem.

Further optimizations are possible. E.g. the number of iterations in the loop enumer-
ating all models on line 2 can be reduced by blocking clauses gained from the reduction.
We can conjunct the negation of the reduced model µ computed on lines 4–9 to the for-
mula φ after each iteration. In example 3 above, this improvement would remove the
two last iterations.

12 Raian Ali et al.

4.1 Greedy Strategies for Cost Reduction

In the problem of reducing contexts, we wish to remove redundant facts from the con-
text. This corresponds to producing a formula ϕ′ with less variables than ϕ. In fact, we
want to reduce the cost of monitoring facts in a context. If we associate a cost (a real
number) to each fact variable in the boolean abstraction of a context, our aim is that of
finding a ϕ′ such that the sum of the costs of the variables occurring in ϕ′ is smaller
than the sum of the costs of the variables occurring in ϕ.

As presented, our context reduction algorithm does not take costs into account. One
simple possibility to make it aware of costs is to apply some greedy strategies when
determining the order in which variables are eliminated from the current model (line
4 of Fig. 4). For example, one strategy could be to sort the variables in the model µ
according to their cost, to try to eliminate more expensive variables first. A more so-
phisticated strategy could also consider whether a variable already occurs in the current
ϕ′ constructed so far, to try to keep the set of variables V (ϕ′) as small as possible.

Example 4. Consider the following context formula ϕ and assumptions ξ:

ϕ = ((¬P ∨ ¬R) ∧ (¬Q ∨ ¬S)) ∨ (¬P ∧ S)
ξ = (P ↔ Q) ∧ (R↔ S) ∧ (S → Q)

Suppose that the cost of P is 3, that ofQ is 1, that ofR is 5 and that of S is 4. Moreover,
suppose that the first model found by the algorithm of Fig. 4 that is compatible with ξ
is µ1 = {P,Q,¬R,¬S}.

If the algorithm does not consider costs, µ1 might get reduced in lines 4-9 to {¬R}.
Therefore, after the first iteration of the loop of lines 2-12, ϕ′ = ¬R. The only other
model of ϕ that is compatible with ξ is µ2 = {¬P,¬Q,¬R,¬S}. In this case, µ2 might
get reduced to {¬P}, and thus the resulting reduced context ϕ′ would be ¬P ∨ ¬R,
whose cost is 8.

However, if costs are considered, in the process of reducing µ1 and µ2 the algorithm
would try to eliminate first the more expensive variables, resulting in the reduced mod-
els {¬S} and {¬Q} respectively. Therefore, in this case the reduced context ϕ′ would
be ¬S ∨ ¬Q, whose cost is 5.

Finally, if the algorithm takes into account also the presence of variables in the
current ϕ′, in the process of reducing µ2 the order in which literals are processed in the
loop of lines 4-9 would be ¬R,¬P,¬Q,¬S, as S is already in ϕ′ (because of µ1). With
this order, also µ2 would be reduced to {¬S}, and so in this case the final ϕ′ would be
¬S, whose cost is only 4.

Efficiency of the algorithm The algorithm has the same complexity as the algorithm
without costs, since we are only modifying the order in which we try to eliminate vari-
ables. We can therefore expect similar performance.

4.2 Finding an Optimal Solution and Reducing Multiple Dependent Contexts

The algorithm of Fig. 4 (and its greedy variant) computes one reduction for the in-
put context formula, but it does not find (in general) the reduction with minimum cost.

Optimizing Monitoring Requirements in Self-Adaptive Systems 13

Input: context ϕ, assumptions ξ
Output: reduced context ϕ′

1: ϕ′ ← ϕ
2: for all subsets S of variables V (ϕ) do
3: for all formulas ψ(S) over S do
4: if ξ |= ψ(S)↔ ϕ then
5: if cost of ψ(S) is lower than cost of ϕ′ then
6: ϕ′ ← ψ(S)
7: break
8: end if
9: end if

10: end for
11: end for
12: return ϕ′

Fig. 5. Naive algorithm for finding the context with minimum cost

Clearly, finding such optimal context wrt. costs would be very desirable. However, solv-
ing this problem is far from trivial. A naive algorithm/solution for it is shown in Fig.5.

This algorithm works by enumerating up to all the formulasψ(S) that are equivalent
to the context formula ϕ under the assumptions ξ, and picking the one with minimum
cost. Such exhaustive enumeration is prohibitively costly: the outer loop of lines 2-10 is
executed 2|V (ϕ)| times, and, since the number of different boolean formulas over k vari-
ables is 22

k

, the inner loop of lines 3-9 is executed up to 22
|S|

times. Moreover, checking
whether ψ(S) and ϕ are equivalent under the assumptions ξ (line 4) is an NP-complete
problem. Therefore, the naive algorithm would require to solve up to

∑
S∈2V (ϕ) 22

|S|

NP-complete problems.
In practice, the algorithm can be improved by performing a branch-and-bound

search [13] (on the sum of costs of the variables) instead of enumerating all the subsets
of variables, thus avoiding to enumerate (and check) formulas over variables whose cost
is known to be higher than the best solution found so far. However, in the worst case the
complexity would not improve.

5 Discussion and Future Work

In this paper, we have proposed a framework to optimize monitoring requirements, so
as to minimize the monitoring infrastructure a system has to deploy. We have presented
the context dependency problem, which may lead to trivial, redundant, and inconsis-
tency in monitoring requirements, and proposed algorithms to detect such problems as
well as to suggest ways to fix redundancies. In our approach, monitoring requirements
are identified as a result of contextual goal analysis. First, relevant contexts are identi-
fied by means of contextual goal models [2]. Second, the contexts in such models are
analysed, via context analysis technique, in order to identify monitorable facts, which
constitute the monitoring requirements. Such requirements can suffer from different
problems; they can be (i) redundant, if the monitoring infrastructure is going to observe
more data than necessary; (ii) inconsistent, if a context to be monitored is always false;

14 Raian Ali et al.

(iii) trivial, if a context to be monitored is always true. In order to detect these problems
and to fix them, by producing an equivalent monitoring requirements specification with
reduced cost, we propose techniques based on state-of-the-art SAT-solvers. Research on
monitoring requirements (and their optimization) is still at an early stage. To the best of
our knowledge, ours is the first approach that argues for the importance of optimizing
monitoring requirements in adaptive systems by detecting redundancies, inconsisten-
cies, and trivialities. Thus, we will also consider literature on requirements monitoring
and contextual requirements, which provides useful insights for our research.

Salifu et al. [16] have clarified the importance of considering monitoring require-
ments. In particular, they relate monitoring requirements to what an application shall
monitor in order to check whether a requirement has failed or is being met. They con-
sider the existence of alternative means to perform monitoring, and the choice among
such alternatives. Our approach, instead, focuses on minimizing the amount of informa-
tion to be monitored: this is a particularly important concern when considering mobile
and adaptive systems with a large space of variations (alternatives).

Requirements monitoring is about insertion of a code into a running system to gather
information (mainly about computational performance), so as to determine whether the
running system is meeting its design objectives and reconcile the system behaviour to
requirements if a deviation occurs [11]. In [10], the GORE (Goal-Oriented Require-
ments Engineering) framework KAOS [8] is integrated with an event-monitoring sys-
tem (FLEA [6]) to provide an architecture that enables the runtime automated reconcili-
ation between system goals and system behaviour with respect to a priori anticipated or
evolving changes of the system environment. Their work does implicitly specify moni-
toring requirements; thus, our approach could be applied to their modelling framework
in order to minimize the monitoring infrastructure to be deployed.

Wang et al. [17] propose an approach to requirements monitoring based on goal
models, wherein tasks and goals are associated with pre- and post-condition. A failure
occurs if (i) a post-condition is met while the respective pre-condition does not hold, or
(ii) an event representing a precondition occurs and at the next time-step the postcondi-
tion does not hold. They argue for and show the importance of requirements monitoring
trade-off, especially when their approach is applied to multi-layer monitoring, e.g. in
service-oriented architectures. They conduct experiments on how different granularity
of monitoring affects the accuracy of the diagnosis. Our approach focuses on minimiz-
ing the amount of contextual information to monitor, while leading to optimal diagnosis.

Baresi et al. [5] propose Dynamo, an approach that provides dynamic monitoring in
web services. In their framework, monitoring requirements are specified by an analyst
an monitorable rules. Dynamic monitoring is provided by the monitoring manager com-
ponent: depending on the current context, the component decides whether a rule is to
be monitored or not. Like the previously mentioned approaches, however, they do not
focus on identifying a minimal monitoring infrastructure and contextual information
which do not sacrifice the system ability of taking correct adaptation decisions.

In future work, we aim to develop a supporting tool for our framework that as-
sists the analysts for building correctly our proposed models and simulating the system
behaviour. We plan to integrate our techniques in frameworks for requirements-driven
self-adaptive software; a good candidate is the work by Dalpiaz et al. [7], which already
captures the relation between context and requirements. The role of users in monitoring

Optimizing Monitoring Requirements in Self-Adaptive Systems 15

a system’s environment and quality is being recognized through the concepts of Social
Sensing [4] and Social Adaptation [3]. We also plan to allow users to report meta-data
about the data they are asked to monitor so we can further optimize monitoring require-
ments. Moreover, we will apply our framework to case studies to understand how our
optimization techniques save costs in practice and reduce their complexity.
Acknowledgement The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grants n
o 257930 (Aniketos), 256980 (Nessos), and 258109 (FastFix), and Science Founda-
tion Ireland under grant 10/CE/I1855 and also from Provincia Autonoma di Trento and
the European Community’s FP7/2007-2013 under grant agreement Marie Curie FP7 -
PCOFUND-GA-2008-226070 “progetto Trentino”, project ADAPTATION.

References
1. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Modeling Framework for Self-

Contextualizable Software. In Proceedings of EMMSAD’09, pages 326–338, 2009.
2. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal-based Framework for Contextual

Requirements Modeling and Analysis. Requirements Engineering, 15:439–458, 2010.
3. Raian Ali, Carlos Solis, Inah Omoronyia, Mazeiar Salehie, and Bashar Nuseibeh. Social

Adaptation: When Software Gives Users a Voice. In Proceedings of ENASE’12, 2012.
4. Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia, Bashar Nuseibeh, and Walid

Maalej. Social Sensing: When Users Become Monitors. In Proceedings of ESEC/FSE ’11,
pages 476–479, 2011.

5. Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL Processes. In
proceedings of ICSOC 2005, number 3826 in LNCS, pages 269–282. Springer, 2005.

6. Don Cohen, Martin S. Feather, K. Narayanaswamy, and Stephen S. Fickas. Automatic Mon-
itoring of Software Requirements. In Proceedings of ICSE’97, pages 602–603, 1997.

7. Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Adaptive Socio-Technical Systems:
a Requirements-driven Approach. Requirements Engineering, 2012. To appear.

8. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed requirements
acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

9. Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and Applications of
Satisfiability Testing, pages 333–336. Springer, 2004.

10. Martin S. Feather, Stephen S. Fickas, Axel Van Lamsweerde, and Cristophe Ponsard. Recon-
ciling System Requirements and Runtime Behavior. In Proceedings of the 9th international
workshop on Software specification and design (IWSSD’98). ACM, New York, USA, 1998.

11. Stephen S. Fickas and Martin S. Feather. Requirements Monitoring in Dynamic Environ-
ments. In Proceedings of RE’95, page 140. IEEE Computer Society, 1995.

12. Anthony Finkelstein and Andrea. Savigni. A Framework for Requirements Engineering for
Context-Aware Services. In Proceedings of STRAW’01, 2001.

13. Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Research, vol-
ume 6. McGraw-Hill New York, NY, 1990.

14. John Krogstie, Kalle Lyytinen, Andreas Lothe Opdahl, Barbara Pernici, Keng Siau, and Kari
Smolander. Research Areas and Challenges for Mobile Information Systems. International
Journal of Mobile Communications, 2(3):220–234, 2004.

15. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems, 4:14:1–14:42, May 2009.

16. Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying Monitoring and Switching
Problems in Context. In Proceedings of RE’07, pages 211–220, 2007.

17. Yiqiao Wang, Sheila McIlraith, Yijun Yu, and John Mylopoulos. Monitoring and Diagnosing
Software Requirements. Automated Software Engineering, 16(1):3–35, 2009.

