
Context for Goal-level Product Line Derivation

Raian Ali1, Ruzanna Chitchyan2, Paolo Giorgini1

1DISI, University of Trento, Italy; 2University of Lancaster, UK
1{raian.ali; paolo.giorgini}@disi.unitn.it; 2rouza@comp.lancs.ac.uk

Abstract

Product line engineering aims at developing a
family of products and facilitating the derivation of
product variants from it. Context can be a main factor
in determining what products to derive. Yet, there is
gap in incorporating context with variability models.
We advocate that, in the first place, variability
originates from human intentions and choices even
before software systems are constructed, and context
influences variability at this intentional level before the
functional one. Thus, we propose to analyze variability
at an early phase of analysis adopting the intentional
ontology of goal models, and studying how context
can influence such variability. Below we present a
classification of variation points on goal models,
analyze their relation with context, and show the
process of constructing and maintaining the models.
Our approach is illustrated with an example of a smart-
home for people with dementia problems.

1. Introduction

Each software system is situated in a context.
Context is the reification of the environment that is
whatever provides a surrounding in which the system
operates [23].

In product line engineering, context can be a main
factor in deciding what product variants to derive. In
other words, context influences the need for, the
applicability and the appropriateness of, each variant.
We use the term self-contextualizability to denote a
system ability to adapt to context in order to keep its
objectives satisfied. Self-contextualizable product line
is a product line that incorporates the reasoning needed
to derive product variants fitting to their contexts.
Consequently, the relation between products variants
and context has to be explicitly captured and reasoned
on to derive contextualized products.

Software variability modeling, e.g., feature
modeling [10, 16], addresses the problem of modeling
the space of possible product variants and facilitating
derivation of a product upon stakeholders choices.
However, there is still a gap between each variant and
the context where it can, or has to, be adopted.
Speaking in terms of feature modeling, context can
determine if a feature is mandatory or optional or even
redundant. E.g. for an email editing system, encryption
could be an optional feature if the system is to operate
within one organization where staff trust each other.
On the other hand, it could be mandatory if the editor
is for users who will write emails from a public
network.

Goal models (e.g., i* [21], Tropos [3], and KAOS
[5]) are used as an intentional ontology that fits well
with the early requirements analysis phases. They
support analysis of different alternatives for satisfying
user needs [20]. As proposed in [22], a goal model is
a good starting point for feature model construction as
it justifies feature configurations in terms of
stakeholder goals. Thus, in this paper we advocate a
perspective on a goal model as a core domain model: it
acts as the source of all stakeholder-related variability.
Goal models justify existence of all functional
requirements (hard goals) and quality measures (soft
goals) of a software system in terms of stakeholder
intentions. Thus, variability in intentions is a primer
source of system variability. Of course, goals are not
the sole source of system variability – they pertain to
variability of the problem domain. Technical solutions
devised to satisfy these goals will add their own
variability dimensions. The later however, are
meaningless without the former, as a system will be
useful only if it is addressing some set of stakeholder
needs.

Thus, in the rest of this paper the goal models are
perceived as the initial sources of variability models.
Consequently, capturing the relation between context

and the goals is directly relevant to the system models
(e.g., feature models) based on such goal models.

The integration between Tropos [3] goal model and
context as a way to capture the relation between
context and variability at the intentional level was
proposed in [1, 2]. In this paper, we discuss this
integration between goal model and context from the
perspective of software product lines, present a
classification of variation points on goal models,
analyze their relation with context and show how these
points can be used to help for a systematic derivation
of product variants that fit to their contexts. Thus, this
work is directly relevant to the topic of dynamic
software product lines as each of the derived goal
model variants is suited to a particular context, and can
be dynamically substituted into the running system
(i.e., a transition of system from the current to the
newly identified goal model could be initiated) when
the appropriate context occurs1. Furthermore, we show
the process of constructing, using, and maintaining the
self-contextualizable goal model, and illustrate our
concepts and approach on a running example of smart-
home.

The paper is structured as follows: in Section 2 we
overview Tropos goal modeling concepts and
introduce the smart-home scenario. In Section 3 we
discuss and provide modeling construct for capturing
the relation between context and variability at the goal
level. In Section 4, we show the methodological
process of constructing, using, and maintaining the
goal-based self-contextualizable product lines. We
discuss related work in Section 5 and conclude in
Section 6.

2. Tropos Goal Modeling: Overview

Goal analysis represents a paradigmatic shift with
respect to object-oriented analysis. While object-
oriented analysis fits well to the late stages of
requirement analysis, the goal-oriented analysis is
more natural for the earlier stages where the
organizational goals are analyzed to identify and
justify software requirements and position them within
the organizational system [15]. Tropos goal analysis
projects the system as a set of interdependent actors,
each having its own strategic interests (goals). Goals
are analyzed iteratively and in a top-down way, to
identify the more specific sub-goals needed for
satisfying the upper-level goals. Goals can be

1 The topics of runtime system transition and context
monitoring are not discussed further in this paper.

ultimately satisfied by means of specific executable
processes (tasks).

To clarify Tropos goal modeling concepts and
exemplify our proposed approach in the rest of the
paper, we take a scenario of a smart home [11]. A
smart home is a ubiquitous computing area where
computing is integrated with the environment and
context is considered as an implicit input that
influences what the system needs to do and how it does
it. Amongst their different scenarios, smart homes
were proposed for elderly, health care, entertainment,
and so on.

We consider here a smart home designed for
patients with dementia problems. The smart home
supports some daily tasks that the patient might forget
to do, like refreshing the air inside the home. Besides
their memory impediments, the patients suffer from
unexpected anxiety attacks. The smart home has to
manage such situations by making the patient aware of
the anxiety attack, or by preventing him/her from
getting out of the house in an unusual way. The home
then needs to calm the patient, and call the caregiver to
come and administer a treatment. The smart home
supports also some general tasks, like preventing a
potential robbery by giving illusion that the home is
lived in when the patient is away for a long time, and
asking the police or a neighbor smart home for help
when a suspected robber enters the home area.

To illustrate the main concepts of goal analysis used
in this paper, in Fig. 1 we demonstrate a partial Tropos
goal model for the smart home. In this model the actors
(“Patient Smart Home” and “Neighbor Smart Home”)
have a set of top-level goals (“Manage home”), which
are iteratively decomposed into subgoals by and-
decomposition and or-decomposition. In and-
decomposition all subgoals should be achieved to fulfil
the top goal, while in or-decomposition at least one
subgoal should be achieved to fulfil the top goal. For
instance, the goal “Protect home against robbery” is
and-decomposed into the subgoals “Give illusion of
being lived in” and “Act against potential robbery”;
the goal “Enforce routine exit procedure” is or-
decomposed into the subgoals “Patient is alerted” and
“Patient is prevented from exiting”. Goals are finally
satisfied by means of executable tasks; the goal
“Refresh air inside home” can be reached via one of
two tasks: “Open windows” or “Turn on air
ventilator”.

A dependency indicates that an actor (depender)
depends on another actor (dependee) to attain a goal or
to execute a task: the actor “Patient Smart Home”

depends on the actor “Neighbor Smart Home” for
achieving the goal “Request assistance”.

Soft-goals are qualitative objectives for whose
satisfaction there is no clear cut criteria (e.g., “Patient
privacy” is a rather vague objective), and they can be

contributed either positively or negatively by goals and
tasks: “Open windows” usually contributes negatively
to “Patient privacy”, while “Turn on air ventilator”
usually contributes positively to it.

Fig. 1: Tropos goal model example

3. Goal-based Self-Contextualization

Goal analysis allows for different alternatives
(model variants) to satisfy a goal, but does not specify
when each alternative can be adopted. Since context
can influence human goals and choices even before the
software system is designed, the context has to be
considered early in the analysis where stakeholders
goals are identified and analyzed. We suggest that
while analyzing goal-satisfaction alternatives it is
necessary to specify the relation between each
alternative and the corresponding context. This not
only improves understanding of goal variants and their
related contexts, but also facilitates construction of
self-contextualizable systems, i.e., systems that are
able to ensure satisfaction of their goals in changing
context.

3.1. Context variability points in goal models

Our work leads to integration between goal analysis
as an early analysis model, and context in order to
enable a systematic derivation of goal model
variants for each context. In this paper we use the
term “model variant” to refer to an And-tree of the
goal model hierarchy, i.e., deterministic tree. Fig. 2
depicts a context-annotated Tropos goal model for
the smart home system described in the previous
section. Here we explicitly represent the relations
between goals and the context, where context is
denoted by φi (see Table 1 for full set of relevant
context for the discussed example). We classify
contexts into three categories, each one associated

with a different set of variation points in the goal
model:

1. Stimulating context: this is the context that
stimulates a set of requirements. For instance, a
particular root goal could be “stimulated” only
if its relevant context is in place. The points at
which such context arises are:

a) Root Goals/Tasks: depending on the context,
an actor might decide to satisfy a root
goal/execute a root task or not. E.g., to
stimulate the root goal “Manage home”, the
home has to be lived in with no awake
caregiver or healthy relative inside, and the
inhabitant is expected to have some dementia
problem (φ0).

b) And-decomposition: a sub-goal/sub-task in an
And-decomposition might (or might not) be
needed only in a certain context, that is some
sub-goals/sub-tasks are not always mandatory
for the fulfillment of the top-level goal/task in
an And-decomposition. E.g., the goal G1
needs to be satisfied only if the patient is
anxious and is behaving in unusual way (φ1),
while the goal G2 has to be satisfied only
when the level of humidity inside home is
more than an acceptable level, or the home
windows and doors have not been opened for
a long time (φ2). The satisfaction of goal G6
is needed when the patient is away from home
for a long time and it is night (φ7), while G7

is needed when some person is trying to get
into the yard in a suspicious way (e.g.,
entering from elsewhere than secured external
gate) (φ8). The task T6 is executed if the light
level is too low or too high (φ 11), and the
task T12 is executed if it is too dark in the
house (φ 12).

2. Required context: while stimulating contexts
stipulates the conditions for the need for a set
of requirements, a required context is itself
needed to make it possible to satisfying
stimulated requirements. For one model
variant, the required context is the conjunction
of contexts associated to the following
variation points:

a) Or-decomposition: each subgoal/subtask in
Or-decomposition might require a valid
context to be adoptable. E.g., the alternative
subgoal G4 is adoptable when the patient
dementia disease stage is not advanced and
s/he is not extremely anxious (φ3); while the
alternative G5 is adoptable if the patient
suffers from advanced dementia, or s/he
seems to be extremely anxious (φ4). Thus,
though the goal model may have an or-
decomposition, the availability and utility of
the or-decomposition choices will have
additional limitations stemming from context.

b) Means-end: goals can be ultimately satisfied
by means of specific executable processes
(tasks). The adoptability of each task in
means-end analysis might depend on the

context. E.g., the task T8 is adoptable if the
day is sunny and not too windy (φ5), the task
T4 is adoptable if the phone is free and the
caregiver is not using his/her phone for a call
(φ9), and the task T5 is adoptable if it is not
late in night.

c) Actors dependency: in some contexts, an actor
might attain a goal/get a task executed by
delegating it to another actor. E.g., asking the
help of a neighbor to act against the potential
robbery is adoptable if the neighbor is
healthy, stays at home, and can see or easily
reach the patients’ home (φ 13).

3. Quality context: context can influence the
quality of each possible way of satisfying the
requirements, i.e. the quality of each model
variant. The variation point corresponding to
this effect of context is:

a) Contribution to softgoals: softgoals are
qualitative objectives for their satisfaction
there is no clear cut criteria. The positive and
negative contributions to softgoals from other
goals/tasks can vary from one context to
another. We need to specify the relation
between the context and the value of the
contribution. E.g. the task T8 contributes
positively to the softgoal SG1, if the patient is
outside home (φ6) while it contributes
negatively in the other case. The task T9
contributes negatively to the softgoal SG2
only if the day is sunny and not too windy
(φ5).

G1: Enforce routine exit
procedure

G4: Patient is
alterted G5: Patient is

prevented from
exiting

G10: Calm the
patient

φ1 and

or

G3: Protect home
against robbery

and

G6: Give Illusion
of being lived in

G7: Act against
potential robbery

T2: Switch on
lights at patient

location
T1: Alert via

voice
message

T3: Lock balcony
door, windows &

main entrance T4: Call
caregiver
by phone

G8: Actuate
the house

G9: Notify
caregiver

T7: Turn on
calm music

T5: Call caregiver
by public call

T10: Turn on/
off light

iteratively

Police and
caregiver are

notified

G11: Prevent robber
from entering

G12: Request
assistance

T14: Lock
doors

and

and

T11: Phone
police

T12: Turn
all lights on

and
T13: Turn on

security
cameras

G0: Manage Home

G2: Refresh air
inside home

T8:Open
windows

T9: Turn on air
ventilator

φ2

φ5
φ3 φ8φ7

φ9 φ10

T6: Give
warm light

color

Manage
light and

music
and

φ4

φ12

SG1: Patient
privacy

SG2: Energy
spent wisely

+

+

+

φ11

--

φ6

φ5

φ0

Neighbor
Smart
home

φ13

Patient
Smart
Home

SG3: less
noise

--+

Fig. 2: Tropos goal model with context annotation on variation points

Φ 0 Home is lived in, and the patient is expected to have some dementia problem, and there is
no awake caregiver or healthy relative at home.

Φ 1 Patient is anxious and behaving in unusual way.
Φ2 The level of humidity at home is more than the acceptable level, or the home windows

and doors have not been opened for a long time.
Φ3 The patient’s dementia disease stage is not advanced and s/he is not extremely anxious.
Φ4 The patient suffers of advanced dementia, or s/he seems to be extremely anxious.
Φ5 It is a sunny and not too windy day.
Φ6 The patient is out of the home.
Φ7 The patient is out for a long time and it is night time.
Φ8 A person is trying to get into the yard in a suspicious way, e.g., entering from a different

place than the secured external gate.
Φ9 The phone is free and the caregiver is not using his/her phone for a call.
Φ10 It is not late at the night.
Φ11 The light level at patient’s location is too low or too high.
Φ12 It is too dark inside of the home.
Φ13 The neighbor is healthy, stays inside home, and can see or reach the patient’s home

easily.
Table 1: Summary of contexts for Smart Home goal model

Fig. 3 shows two possible model variants for one
stimulating context (see contexts detailed in Table 1).
We spread the contextual And-decomposition and used
artificial nodes (small circles) only for the purpose of
more understandable presentation of the model. The
classification of context in these 3 categories allows us
to answer questions like: in a given context, is any
variant stimulated? what are the possible
alternatives/variants if one stimulus holds? and what is
the quality of each one.

3.2. Context analysis
Having annotated goals with context, we then need to
consider how to model and analyze the context itself in

order to discover, represent, and agree on how it can
be verified. This work has been discussed in [1, 2] and
is briefly summarized in this subsection. In our work
on context analysis, we provide constructs to
hierarchically analyze context and discover alternative
sets of facts the system has to monitor to verify a
context. This is different from the other approaches in
context modeling (for a survey see [18]) where either
ontology or a modeling language for representing
context is developed without the elicitation hierarchy
like the one we propose. A simplified analysis of the
context “patient is anxious” is shown in Fig. 4 (a).

Fig. 3: Two model variants and their contexts

Patient

+normal pulse

Respiration

+inhalation_time
+exhalation_time

Position

+x
+y

Bed

Sofa

Is_at_time

+time

Heart_rate

+rate
+at_time

Sweating

+level
+at_time

Fig. 4: A context analysis hierarchy for “patient is anxious”

The following set of modeling constructs is used to

analyze a high level context and identify the atomic
verifiable facts that give its truth value:

Definition 1 (Fact) a boolean predicate specifying a
current or a previous context, whose truth value can be
computed objectively.

The objective method to compute a fact truth value

requires monitoring some characteristics and/or history
of a set of relevant environment elements. Facts are
graphically represented as parallelograms.

Definition 2 (Statement) a boolean predicate
specifying a current or a previous context, whose truth
value cannot be computed objectively.

Statement verification could not be objectively done
because the system is not able to monitor and get all
the data needed to compute the truth value of a
statement, or because there could be no consensus
about the way of knowing the truth value of a
statement. To handle such problem we adopt a relaxed
confirmation relation between facts, which are
objectively computable by definition, and statements,
in order to assign truth values to statements. We call
this relation “help” and define it as following:

Definition 3 (Help) Let f be a fact, s be a statement.
help(f,s) <==> f → s

The relation help is strongly subjective, since

different stakeholders could define different help
relations for the same statement, e.g., one stakeholder
could say help(f1,s) Λ help(f2,s), whereas another one
could say help(f2,s) Λ help(f3,s). Statements are
graphically represented as shadowed rectangles, and
the relation help is graphically represented as a filled-
end arrow between a fact and a related statement.

Definition 4 (And-decomposition): Let {s,
s1,s…,sn}, n ≥ 2 be statements (facts).
And_decomposed({s, s1,s…,sn}) <==> s1 Λ… Λ sn → s.

Definition 5 (Or-decomposition): Let {s, s1,s…,sn}, n
≥ 2 be statements (facts). Or_decomposed(<s,
s1,s…,sn}) <==> for all i member of {1, …n}, si → sn

Decomposition is graphically represented as a set of
directed arrows from the sub-statements (sub-facts) to
the decomposed statement (fact) and labeled by AND
or OR. Let us illustrate the above context analysis
constructs by examples:

• “patient is anxious” is a statement since the
system can not objectively compute its truth
value. This statement can be Or-decomposed
into “physiological anxiety” and “moving
without target” and “cannot sleep”
substatements. The system can get some
evidence of the first substatement through the
help of the facts “shortness of breath”,
“sweating abnormally”, and “pounding
heart”. All three of these last facts can be
directly measured via sensors.

• “the moving without target” and “cannot
sleep” are also statements. The first of these
can be verified via observing the movement
pattern or the patient, while the second via
observing the behavior (i.e., sleeping routine)
that the patient would normally display and its
change.

 Thus, each single situation (e.g., “cannot sleep”)
may affect the decision on a given variation point of
the goal model. The relevant context is described via
bollean formula of statements (“trying to sleep” and
“not sleeping”) which are then expanded to supporting
facts (e.g., “laying in bed”, “laying on sofa”). These
facts can then be directly measured or observed.

Our context analysis is motivated by the need for
constructs to analyze context to discover the relevant
atomic data that represent that environment, i.e. the
data the system has to monitor. The leaf facts of the
context analysis help an analyst to elicit the data
conceptual model relevant for the analyzed context as
shown in Fig. 4 (b). Thus, the facts and statements are
reifications over the environment and can be seen as
views over the data conceptual model the system has to
capture.

This hierarchical context analysis helps to make the
context (i) more understandable for the stakeholders,
(ii) more modifiable as it is not given as one
monolithic block, and (iii) more reusable as parts of
the analysis hierarchy can be also used for other
variation points or other stakeholders context
specifications. Moreover, the analysis justifies why the
monitoring system has to capture environmental data
(like the data of Fig. 4 b), as such data is needed to
verify leaf facts that in turn confirm or disprove the
context needed to make a decision in the goal model.

4. Contextualizing Goals for Product Lines

As noted before, we propose to view goal models
and their variability as the origin for product line and
its problem-related variability. In this sub-section we
outline some ideas for a process for construction,
contextualization, and maintenance of such goal-level
product lines.

4.1. Construction
When developing our goal-level product line models,
we follow the general principles of domain analysis,
by considering systems already developed for the
same/similar domain and the models build for those.
The most commonly used goals and their satisfaction
patterns then can be modeled as the core part of system
to be, while less frequently used goals and goal
satisfaction alternatives can be perceived as optional
extras.

Moreover, since our perspective on goal analysis
has a strong context modeling counterpart, we can use
the derived contextual information for analyzing how
appropriate each particular context is for some
potential user environment. We can do this simply by
answering a set of questions, such as: is this goal and
its context going to hold for all environments? When
will it (not) be relevant and why? What alternatives
contexts will this imply?

For instance, in Fig. 2 we discuss the G3 “Protect
against robbery” goal which has two subgoals: G6
“Give illusion of being lived in” and G7 “Act against
potential robbery”. Yet, while considering the question
if G6 and its context that the patient is not in during the
night, will always be desirable, we noted that this is
only true for individual/family homes. Other likely
venues of use of the Smart Home for patients with
dementia are, for instance, retirement homes and
hospitals. Neither of these locations needs to have the
“Give illusion of being lived in” goal as these venues
are always densely populated and largely communal.
Thus, though in our initial analysis G6 was considered
a core part of the Smart Home, more careful analysis
of context and goal stability points to the optionally of
this sub-goal. The respective contexts where the goal is
desirable (personal/family home) or redundant
(publicly owned, or densely populated
house/institution) are also identified.

Moreover, more specific analysis of types of
variability needs to be carried out. For instance, in our
example the goal G1: “Enforce routine exit procedure”
has two satisfaction or-decomposed sub-goals: G2
“Patient is alerted” and G3 “Patient is prevented from
exiting”. Here we need to analyze if these are mutually
exclusive alternative sub-goals, or could they both be
present at the same time in a particular system?

As a result of domain analysis and goal/context
stability analysis, we can derive a generic goal-level
product line model for a particular domain.

4.2. Target Environment Contextualization
When the goal-level product line model (discussed
above) is considered for use in a specific environment,
the analyst will be able to adopt it for the specificities
of the target environment by carrying out a two-step
contextualization:

1. Offline Contextualization: at target environment
analysis stage the analyst will be able to decide
that some variant goals/contexts will never be
adopted in the intended system operation
environment. For instance, if the system is to be
deployed in a care home for patients with severe
dementia, the alternative that alerts a patient of an
anxiety attack is unlikely to be useful, moreover,
the light and voice notice may even further
aggravate anxiety. Thus, this option may be
excluded from the system and further analysis.

2. Online Contextualization: when some properties
of the environment are changeable, the system

has to monitor and derive a suitable model variant
for the current context at run time. For instance,
the humidity level in the house is a changing
context and it can not be decided at the
design/deployment time. The system has to
always monitor the humidity and to derive the
suitable variant of goal satisfaction at run time.
Thus, here the analyst has to identify viable ways
of choosing from amongst the options.

In some cases it could also happen that more than
one model variants are possible. For instance,
regulating humidity for the goal G2 “Refresh air inside

home” can be achieved either by T8 of opening
windows or by T9 or turning on ventilator, as shown in
Fig. 5. However both of these options have some side
effects in that T8 affects patients’ privacy, while T9
consumes too much of electrical energy. In this case
the model selection could be based on user preferences
expressed over quality criteria as proposed in [9]. For
instance, if the patient asks that he values his privacy
very much, and never wants to have the windows
open, T8 could always be chosen for him. On the other
hand, if environmental concerns are more important to
her/him, T9 could be always chosen.

Fig. 5: Two instantiated model variants and their contributions

4.3. Maintenance

When a system is implemented based on the above
discussed goal-level product line model, it will be
highly advisable to retain a log of system use,
contextual property values and user responses. In this
way a review of system use and evaluation of
goal/context models can be periodically carried out.
Some core variants which are never or rarely used can
then be moved to the optional set in the domain model,
and frequently used optional variants may be re-
considered for inclusion into the core. At the same
time, the system may be optimized by reviewing
contextual property sets, values, goal satisfaction
alternatives, etc.

5. Related Work

The research in context modeling, (e.g., [8]),
concerns finding modeling constructs to represent
software and user context, but there is still a gap
between the context model and software variability
model, i.e. between context and its use. We tried to
reduce such gaps at the goal level and allow for
answering questions like: “how do we decide the
relevant context?”, “why do we need context?” and
“how does context influence software and user

behavior adaptation?". Salifu et al. [17] investigate the
use of problem descriptions to represent and analyze
variability in context-aware software; the work
recognizes the link between software requirements and
context information as a basic step in designing
context aware systems.

Requirements monitoring is about insertion of a

code into a running system to gather information,
mainly about the computational performance, and
reason if the running system is always meeting its
design objectives, and reconcile the system behavior to
them if a deviation occurs [7]. The objective is to have
more robust, maintainable, and self-evolving systems.
In [6], a GORE (goal-oriented requirements engineer)
framework KAOS [5] was integrated with an event-
monitoring system (FLEA [4]) to provide an
architecture that enables the runtime automated
reconciliation between system goals and system
behavior with respect to a priori anticipated or
evolving changes of the system environment.
Differently, we propose model-driven framework that
concerns an earlier stage, i.e. requirements, with the
focus on identifying requirements together with
context, and eliciting the monitoring data.

Goal analysis (i* [21], Tropos [3], and KAOS [5]),
provides a way to analyze high level goals and then to
discover and represent alternative sets of the tasks that
can be adopted to achieve such goals. Goal models - a
mainstream in requirements engineering - are used to
represent the rationale of both humans and software
systems, and help representing software design
alternatives [15]. These characteristics are also
important for self-contextualizable software that must
allow for alternatives and have a rationale to reflect
users and software adaptation to the context in order to
adopt one useful execution course [7, 19].

Customizing goal models to fit to user skills and

preferences was studied in [9, 13]. The selection
between goal satisfaction alternatives is based on one
dimension of context, i.e. user skills, related to the
atomic goals (executable tasks) of the goal hierarchy,
and on user preferences which are expressed over
softgoals. Lapouchnian et al. [12] propose techniques
to design autonomic software based on an extended
goal modeling framework, but the relation with the
context is not focused on. Liaskos et al [14], study the
variability modeling under the requirements
engineering perspective and propose a classification of
the intentional variability when Or-decomposing a
goal. We focused on context variability, i.e. the
unintentional variability, which influences the
applicability and appropriateness of each goal
satisfaction alternative.

6. Conclusions and Future Work

In this paper, we have shown the influence of context
on the variability at the intentional level, adopting
Tropos goal modeling as an intentional requirement
engineering ontology and integrating it with contexts.
By doing so we are capturing the product line
variability at the intentional level providing a goal-
level product line model. This model contains details
of intentions and the context in which such intentions
can be satisfied. This facilitates a more deterministic
derivation or products with respect to context. Such
context-based models can be used to specify dynamic
transition between configurations of instantiated goal-
based products when a specific context occurs. Such
transitions, however, are not covered in the present
paper. Instead, we have outlined a process for
construction of goal-based product line models, and
for their use and maintenance over time.

The main drawback of this approach is the
assumption of a “closed world”, i.e., it cannot

accommodate any arbitrary changes in requirements.
Instead, it is well suited for the systems where the
dynamic change scenarios are relatively stable and can
be expressed in goal models. In addition, the critical
systems require more careful and complete context
specification, possibly complemented with some
formalized checks.

Yu et al. [22] proposed a method to derive feature
models from goal models. Feature models still do not
have an explicit notion of the relation between features
and contexts. As a future work, we intend to study the
relation between feature models and context, as well as
instantiation of the goal-level product lines with the
supporting context as feature-level product lines. This
will allow us to proceed from contextual goal models
into contextual feature models. In other words, we will
proceed from the intentional variability into functional
one.

6. Acknowledgement

This work was partially supported by the European
Commission grant IST-215412 - Dynamic Variability
in complex, Adaptive systems (DiVA) and by the
PRIN program of MIUR under the MEnSA project.

7. References
[1] R. Ali, F. Dalpiaz, and P. Giorgini, "Goal-

Based Self-Contextualization", In Proc. of
the Forum of the 21st International
Conference on Advanced Information
Systems (CAiSE'09 - Forum), 2009, pp. 37-
42.

[2] R. Ali, F. Dalpiaz, and P. Giorgini, "A Goal
Modeling Framework for Self-
Contextualizable Software", In the 14th Intl.
Conf. on Exploring Modeling Methods in
Systems Analysis and Design (EMMSAD'09),
2009, Springer, LNBIP 29-0326, pp. 326-338.

[3] P. Bresciani, A. Perini, P. Giorgini, F.
Giunchiglia, and J. Mylopoulos, "Tropos: An
Agent-Oriented Software Development
Methodology", Autonomous Agents and
Multi-Agent Systems, Vol. 8, No. 3, pp. 203-
236, 2004.

[4] Cohen, M. S. Feather, K. Narayanaswamy,
and S. S. Fickas, "Automatic monitoring of
software requirements ", Proceedings of the
19th international conference on Software
engineering (ICSE '97), 1997, ACM, pp. 602-
603.

[5] A. Dardenne, A. van Lamsweerde, and S.
Fickas, "Goal-directed requirements
acquisition", Selected Papers of the Sixth
International Workshop on Software
Specification and Design table of contents,
pp. 3-50, 1993.

[6] M. Feather, S. Fickas, A. Van Lamsweerde,
and C. Ponsard, "Reconciling System
Requirements and Runtime Behavior",
Proceedings of the 9th International
Workshop on Software Specification and
Design, pp. 50-59, 1998.

[7] S. Fickas and M. Feather, "Requirements
monitoring in dynamic environments",
Proceedings of the Second IEEE
International Symposium on Requirements
Engineering, pp. 140, 1995.

[8] K. Henricksen and J. Indulska, "A software
engineering framework for context-aware
pervasive computing", Proc. Second IEEE
Intl. Conference on Pervasive Computing and
Communications (PerCom04), pp. 77, 2004.

[9] B. Hui, S. Liaskos, and J. Mylopoulos,
"Requirements analysis for customizable
software goals-skills-preferences
framework", Requirements Engineering, No.,
pp. 117-126, 2003.

[10] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin,
and M. Huh, "Form: A feature-oriented reuse
method with domain-specific reference
architectures", Ann. Softw. Eng., Vol. 5, pp.
143-168, 1998.

[11] C. D. Kidd and e. al., "The Aware Home: A
Living Laboratory for Ubiquitous Computing
Research", Proceedings of the Second
International Workshop on Cooperative
Buildings, Integrating Information,
Organization, and Architecture, Vol. 1670,
No., pp. 190-197, 1999.

[12] A. Lapouchnian, Y. Yu, S. Liaskos, and J.
Mylopoulos, "Requirements-driven design of
autonomic application software", Proceedings
of the 2006 conference of the Center for
Advanced Studies on Collaborative research,
No., 2006.

[13] S. Liaskos, S. McIlraith, and J. Mylopoulos,
Representing and reasoning with preference
requirements using goals. Technical report,
Dept. of Computer Science, University of
Toronto (2006)
ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

[14] S. Liaskos, Y. Yu, E. Yu, and J. Mylopoulos,
"On Goal-based Variability Acquisition and
Analysis", Proceedings of the 14th IEEE
International Requirements Engineering
Conference (RE'06), pp. 76-85, 2006.

[15] J. Mylopoulos, L. Chung, and E. Yu, "From
object-oriented to goal-oriented requirements
analysis", Commun. ACM, Vol. 42, No., pp.
31-37, 1999.

[16] K. Pohl, G. Bockle, and F. v. d. Linden,
Software Product Line Engineering:
Foundations,Principles, and Techniques.:
Springer, 2005.

[17] Salifu, M., Yu, Y., Nuseibeh, B. Specifying
Monitoring and Switching Problems in
Context. Proc. 15th Intl. Conference on
Requirements Engineering (RE’07), 2007,
211–220.

[18] T. Strang and C. Linnhoff-Popien, "A context
modeling survey", Workshop on Advanced
Context Modelling, Reasoning and
Management as part of UbiComp, No., 2004.

[19] D. Sykes, W. Heaven, J. Magee, and J.
Kramer, "From Goals to Components: A
Combined Approach to Self-Management",
International IEEE/ACM Workshop on
Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2008, pp.

[20] E. Yu and J. Mylopoulos, "Why goal-oriented
requirements engineering", Proceedings of
the 4th International Workshop on
Requirements Engineering: Foundations of
Software Quality, pp. 15-22, 1998.

[21] E. S. K. Yu, "Modelling strategic
relationships for process reengineering",
Ph.D. Thesis, University of Toronto, No.,
1995.

[22] Y. Yu, J. C. S. d. P. Leite, A. Lapouchnian,
and J. Mylopoulos, "Configuring features
with stakeholder goals", SAC 08: Proceedings
of the 2008 ACM symposium on Applied
computing, 2008, ACM, pp. 645-649.

[23] A. Finkelstein, and A. Savigni: A framework
for requirements engineering for context-
aware services. In: Proceedings of the 1st Int.
Workshop on From Software Requirements to
Architectures (STRAW), 2001

